Vacuum-Process-Based Dry Transfer of Active Layer with Solvent Additive for Efficient Organic Photovoltaic Devices

Jong Hwa Lee,† Kang Min Kim,† Woongsik Jang, Sunyong Ahn, Young Yun Kim,
O Ok Park*, and Dong Hwan Wang*.

a. Department of Chemical and Biomolecular Engineering (BK21+ graduate Program), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

b. School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756, Republic of Korea.

* E-mail: oopark@kaist.ac.kr (OOP), king0401@cau.ac.kr (DHW)
† J. H. Lee, and K. M. Kim contributed equally to this work.
Figure S1. Photographs of the stamped active layers for variation of (a) vacuum time and (b) hot-plate-heating temperatures
Figure S2. Two-dimensional AFM height images with RMS values (a–d) and three-dimensional images (e–h) for the surfaces of the BHJ active layer and TiO$_x$ interlayer: (a, e) spin-coated BHJ layer, (b, f) transferred BHJ layer, (c, g) TiO$_x$ interlayer on the spin-coated BHJ layer, and (d, h) TiO$_x$ interlayer on the transferred BHJ layer
Figure S3. Absorption curves of the PTB7:PC$_{71}$BM-based solar cells fabricated by spin coating and stamping transfer
Figure S4. Normalized values of (a) J_{sc}, (b) FF, and (c) V_{oc} as functions of storage time. (d) and (e) show the photocurrent density–voltage curves of each device.