Electronic Supplementary Information

Self-powered Multifunctional UV and IR Photodetector as Artificial Electronic Eye

Yinben Guoa, Yaogang Lib, Qinghong Zhangb*, Hongzhi Wanga*

aState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People’s Republic of China.

bEngineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201620, People’s Republic of China.

Corresponding Author

* Tel: +86-21-67792881; fax: +86-21-67792855. E-mail address: zhangqh@dhu.edu.cn (Q. H. Zhang), wanghz@dhu.edu.cn (H. Z. Wang).
Figure S1. Digital photographs of conductivity test process of the RGO film using a four-point probe system.

Figure S2. Short-circuit current of TENG after 12000 contact-separation cycles

Figure S3. XRD pattern of ZnO thin layer
Figure S4. Dark and photocurrents of MSM UV photodetector with (a) visible light illumination, (b) IR illumination, at 5 V forward and reverse bias.

Figure S5. UV-Vis transmission spectrum of glass and ZnO coated glass.

Figure S6. The digital picture of the integrated electronic eye (the minimum scale on the ruler is 1 mm).
<table>
<thead>
<tr>
<th>Photodetector</th>
<th>Wavelength(nm)</th>
<th>R (A/W)</th>
<th>D* (10^{12} Jones)</th>
<th>Response time (rise/decay time)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag-ZnO-Ag</td>
<td>365</td>
<td>0.25</td>
<td>4.2</td>
<td>10.3 s/18.1 s</td>
<td>This work</td>
</tr>
<tr>
<td>ZnO/ SnO_2</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>32.2 s/7.8 s</td>
<td>S1</td>
</tr>
<tr>
<td>Cu NW/ZnO</td>
<td>360</td>
<td>0.26 x 10^{-3}</td>
<td>-</td>
<td>< 0.5 s/30 s > 30 s</td>
<td>S2</td>
</tr>
<tr>
<td>ZnO NWs/Au</td>
<td>365</td>
<td>0.40</td>
<td>-</td>
<td>0.13 s/0.40 s</td>
<td>S3</td>
</tr>
<tr>
<td>Au1–ZnO–Au2</td>
<td><400</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>S4</td>
</tr>
<tr>
<td>Pt-GaN-Ni</td>
<td><400</td>
<td>0.03</td>
<td>1.78</td>
<td>-</td>
<td>S5</td>
</tr>
<tr>
<td>TiO_2–PANI</td>
<td>320</td>
<td>0.36 x 10^{-2}</td>
<td>0.39</td>
<td>3.8 ms/30.7 ms</td>
<td>S6</td>
</tr>
<tr>
<td>SnO_2/NiO</td>
<td><400</td>
<td>-</td>
<td>-</td>
<td>17 s/9 s</td>
<td>S7</td>
</tr>
<tr>
<td>TiO_2/NiO</td>
<td>350</td>
<td>0.67 x 10^{-3}</td>
<td>1.1 x 10^{-2}</td>
<td>1.2 s/7.1 s</td>
<td>S8</td>
</tr>
<tr>
<td>Ni/TiO_2/Ni</td>
<td>260</td>
<td>889.6</td>
<td>-</td>
<td>13.34 ms/11.43 s/11.4s</td>
<td>S9</td>
</tr>
<tr>
<td>Bi/WS_2/Si</td>
<td>635</td>
<td>0.42</td>
<td>13.6</td>
<td><100 ms/-</td>
<td>S10</td>
</tr>
<tr>
<td>Bi_2Te_3/Si</td>
<td>635</td>
<td>1</td>
<td>0.25</td>
<td><100 ms/-</td>
<td>S11</td>
</tr>
</tbody>
</table>

Reference