Deep-Blue Thermally Activated Delayed Fluorescence (TADF) Emitters for Light-Emitting Electrochemical Cells (LEECs)

Michael.Y. Wong,^a Maria-Grazia La-Placa,^b Antonio Pertegas, ^b Henk J. Bolink^b and Eli Zysman-Colman^{*a}

^{*a*} Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK, KY16 9ST, Fax: +44-1334 463808; Tel: +44-1334 463826; E-mail: <u>eli.zysman-colman@st-andrews.ac.uk</u>; URL: <u>http://www.zysmancolman.com</u>

^{*b*} Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán, 2, 46980 Paterna, Spain. E-mail: Henk.bolink@uv.es.

SUPPORTING INFORMATION

Table of Contents:

	Pages
Experimental Section	S2-S7
¹ H, ¹³ C and ¹⁹ F NMR spectra	S8-S13
Cyclic voltammograms of imCzDPS and imDPADPS in MeCN	S14
Emission decays of imCzDPS and imDPADPS in degassed MeCN	S15
References	S16

Experimental Section

General Synthetic Procedures. All the commercially available chemicals and reagent grade solvents were used as received. Air-sensitive reactions were performed using standard Schlenk techniques under a nitrogen atmosphere. Anhydrous THF was obtained from a solvent purification system. Flash column chromatography was carried out using silica gel (60 Å, 40-63 µm). Analytical thin-layer-chromatography (TLC) was performed with silica plates with aluminum backings (250 µm with F-254 indicator). TLC visualization was accomplished by 254/365 nm UV lamp. ¹H, ¹³C and ¹⁹F NMR spectra in CDCl₃, CD₂Cl₂ or DMSO-*d*6 were recorded on a NMR spectrometer (300 or 400 MHz for ¹H, 76 or 101 MHz for ¹³C and 282 MHz for ¹⁹F). Melting points were measured using open-ended capillaries and are uncorrected. High-resolution mass spectrometry (HRMS) was performed by the EPSRC National Mass Spectrometry Service Centre (NMSSC), Swansea University. Elemental analyses were performed by Mr. Stephen Boyer, London Metropolitan University.

CzC₄**Im**, 1:

The synthesis of the title compound has been reported previously.¹

(CzC₄Im)₂DPS, 2:

CzC₄Im (500 mg, 1.73 mmol, 2 equiv.) and sodium hydride (60% in mineral oil, 104 mg, 2.60 mmol, 3 equiv.) were mixed in dry DMF (5 mL) and stirred for 15 mins. Bis(4-fluorophenyl)sulfone (220 mg, 0.87 mmol, 1 equiv) was added and the mixture was heated at 100°C under nitrogen for 6 hours. The reaction mixture was poured into ice water (5 mL) and extracted with DCM (3 x 10 mL). The combined organic layers were dried with anhydrous sodium sulphate and purified by column chromatography (silica, DCM: Hexanes: Triethylamine = 4: 1: 10%) to afford the title compound. White solid. **Yield**: 64%. **R**_{*t*}: 0.23 (Acetone : Triethylamine = 9: 1 on silica). **Mp**: 115-116 °C. ¹**H NMR** (400 MHz, **CDCl₃**) δ (**ppm**): 8.29 (d, *J* = 8.7 Hz, 4 H), 8.13 (d, *J* = 7.6 Hz, 2 H), 7.91 (s, 2 H), 7.84 (d, *J* = 8.7, 4 H), 7.63-7.43 (m, 8 H), 7.35 (t, J = 7.9 Hz, 2 H), 7.23 (dd, *J* = 8.4, 1.6 Hz, 2 H), 7.08 (s, 2 H), 6.92 (s, 2 H), 3.98 (t, d = 6.9 Hz, 2 H), 2.85 (t, J = 7.3 Hz, 2 H), 1.92-1.85 (m, 2 H), 1.78-1.71 (m, 2 H). ¹³**C NMR** (101 MHz, **CDCl₃**) δ (**ppm**): 142.8, 140.2, 139.2, 138.5, 134.4, 129.7, 127.0, 126.9, 126.4, 124.2, 123.9, 121.0, 120.5, 119.9, 109.7, 109.6, 47.0, 35.3, 30.6, 29.0. **HR-MS** (ESI) [**M+H]⁺ Calculated:** (C₅₀H₄₄N₆O₂S) 793.3319; **Found:** 793.3322.

imCzDPS:

(C_zC₄Im)DPS (200 mg, 0.25 mmol, 1 equiv.) and methyl iodide (108 mg, 0.75 mmol, 3 equiv.) was mixed in acetonitrile (5 mL) and heated at 40 °C for 2 hours. After

cooling, the reaction mixture was poured into saturated aqueous solution (10 mL) of ammonium hexafluorophosphate to obtain the title compound which was then washed with distilled water and dried thoroughly. White solid. **Yield**: 96%. **Mp**: decomposed at 187 °C. ¹**H NMR (300 MHz, DMSO-d6) δ (ppm)**: 9.08 (s, 2 H), 8.33 (d, J = 8.6 Hz, 4 H), 8.21 (d, J = 7.7 Hz, 2 H), 8.06 (s, 2 H), 7.97 (d, J = 8.7, 4 H), 7.76 (s, 2 H), 7.68 (s, 2 H), 7.56-7.27 (m, 10 H), 4.20 (t, J = 7.0, 4 H), 3.82 (s, 3 H), 2.80 (t, J = 7.2 Hz, 4 H), 1.89-1.79 (m, 4 H), 1.68-1.59 (m, 4 H). ¹³C NMR (76 MHz, DMSO-d6) δ (ppm): 146.2, 143.5, 140.9, 139.9, 139.2, 135.0, 130.4, 127.6, 127.5, 127.0, 124.9, 124.5, 122.2, 120.5, 111.0, 47.2, 37.4, 35.5, 30.8, 29.1. ¹⁹F NMR (282 MHz, DMSO-d6) δ (ppm): -68.9, -71.4. HR-MS (ESI) [M]²⁺ Calculated: (C₅₀H₅₀N₆O₂S) 411.1852; Found: 411.1845.

TPAC₄Im, 3:

The title compound was accomplished using the same procedure as C_zC_4Im , 1,¹ except diphenylamine was used instead of carbazole. White solid. **R**_f: 0.16 (EA on silica). **Mp**: 134-135 °C. ¹**H NMR (300 MHz, CDCl₃) \delta (ppm)**: 7.42 (s, 1 H), 7.23-7.18 (m, 2 H), 7.05 (d, J = 8.5 Hz, 2 H), 6.98-6.92 (m, 7 H), 3.94 (t, J = 7.0, 2 H), 2.59 (t, J = 6.8, 2 H), 1.86-1.76 (m, 2 H), 1.65-1.55 (m, 2 H). ¹³C NMR (76 MHz, CDCl₃) δ (ppm): 141.0, 139.2, 138.2, 133.6, 130.5, 127.4, 126.8, 124.5, 124.1, 121.2, 120.6, 120.3, 119.8, 111.5, 111.4, 47.4, 30.9, 29.3, 20.1. HR-MS (ESI) [M+H]⁺ Calculated: (C₁₉H₂₂N₃) 292.1808; Found: 292.1806.

The title compound was synthesized from TPAC₄Im 3 and Bis(4fluorophenyl)sulfone in an analogous fashion to (C_ZC₄Im)DPS, 2. White solid. Yield: 42%. R_f: 0.17 (Acetone : Triethylamine = 9: 1 on silica). Mp: 97-98 °C. ¹H NMR (**300 MHz, CDCl₃**) δ (ppm): 7.43 (s, 1 H), 7.19-6.88 (m, 10 H), 6.87-6.75 (m, 4 H), 3.95 (t, J = 7.1 Hz, 2 H), 2.58 (t, J = 6.9 Hz, 2 H), 1.85-1.76 (m, 2 H), 1.64-1.53 (m, 2 H). ¹³C NMR (76 MHz, CDCl₃) δ (ppm): 141.1, 140.2, 139.5, 138.4, 135.7, 134.7, 134.0, 130.6, 127.9, 127.8, 127.3, 125.1, 124.7, 121.8, 121.4, 120.8, 110.4, 47.3, 30.8, 29.2, 19.1.

imDPADPS:

The title compound was synthesized from (**TPAC**₄**Im**)**DPS**, **4** in an analogous fashion to **imCzDPS**. White solid. **Yield**: 93%. **Mp**: 171-172 °C. ¹**H NMR (300 MHz, CD**₂**Cl**₂) δ (**ppm**): 8.54 (s, 2 H), 7.63 (d, J = 8.9 Hz, 4 H), 7.36-7.28 (m, 8 H), 7.18-7.12 (m, 10 H), 7.06 (d, J = 8.4 Hz, 4 H), 6.94 (d, J = 8.9 Hz, 4 H), 4.21 (t, J = 7.4 Hz, 4 H), 3.94 (s, 6 H), 2.67 (t, d = 7.0 Hz, 4 H), 2.00-1.90 (m, 4 H), 1.73-1.65 (m, 4 H). ¹³**C NMR (76 MHz, DMSO-***d***6) δ (ppm**): 144.0, 143.0, 142.3, 141.2, 138.4, 137.4, 136.7, 133.3, 130.5, 130.4, 129.8, 127.6, 127.2, 124.3, 123.8, 123.2, 112.6, 47.9, 37.8,

31.0, 29.4, 19.4. ¹⁹F NMR (282 MHz, CD₂Cl₂) δ (ppm): -71.2, -73.7. HR-MS (ESI) [M-PF₆]⁺ Calculated: (C₅₂H₅₄F₆N₆O₂PS) 917.3665; Found: 917.3657.

Photophysical measurements. Optically dilute solutions of concentrations in the order of 10⁻⁵ or 10⁻⁶ M were prepared in HPLC grade acetonitrile for absorption and emission analyses. Absorption spectra were recorded at room temperature on a double beam spectrophotometer. Molar absorptivity values were determined by linear regression analysis from at least four solutions of different concentrations within the range of 10^{-4} to 10^{-5} M. Aerated solutions were prepared by using aerated solvent with prior air bubbling for 5 min whereas degassed solutions were prepared via five freezepump-thaw cycles prior to emission analysis using a home-made cuvette extended solvent bulb designed for cryogenic degassing. Steady state emission and timeresolved emission spectra were recorded at 298 K. Samples were excited at 360 nm for steady state measurements and at 378 nm for time-resolved measurements. Photoluminescence quantum yields for solutions were determined using the optically dilute method² in which four sample solutions with absorbance at 360 nm being ca. 0.10, 0.080, 0.060 and 0.040 were used. Their emission intensities were compared with those of a reference, quinine sulfate, whose quantum yield (Φ_r) in 1 N H₂SO₄ was taken as 54.6%.³ The quantum yield of sample, Φ_s , can be determined by the equation $\Phi_s = \Phi_r(A_r/A_s)((I_s/I_r)(n_s/n_r)^2)$, where A stands for the absorbance at the excitation wavelength (λ_{exc} : 360 nm), I is the integrated area under the corrected emission curve and n is the refractive index of the solvent, with the subscripts "s" and "r" representing sample and reference respectively. An integrating sphere was employed for quantum yield measurements for thin film samples.

Electrochemistry measurements. Cyclic Voltammetry (CV) analysis was performed on a potentiostat. Samples were prepared as MeCN solutions, which were degassed by sparging with MeCN-saturated nitrogen gas for 15 minutes prior to measurements. All measurements were performed in 0.1 M MeCN solution of tetrabutylammonium hexafluorophosphate (nBu_4NPF_6). An Ag/Ag⁺ electrode was used as the reference electrode while a platinum electrode and a platinum wire (Pt/Pt⁺) were used as the working electrode and counter electrode, respectively. The redox potentials are reported relative to a saturated calomel electrode (SCE) with a ferrocenium/ferrocene (Fc⁺/Fc) redox couple as the internal standard (0.38 V vs SCE).⁴

Figure S1. ¹H NMR spectrum of (CzC₄Im)DPS.

Figure S2. ¹³C NMR spectrum of (CzC₄Im)DPS.

Figure S3. ¹H NMR spectrum of imCzDPS.

Figure S4. ¹³C NMR spectrum of imCzDPS.

Figure S5. ¹⁹F NMR spectrum of **imCzDPS**.

Figure S6. ¹H NMR spectrum of TPAC₄Im.

Figure S7. ¹³C NMR spectrum of TPAC₄Im.

Figure S8. ¹H NMR spectrum of (TPAC₄Im)DPS.

Figure S9. ¹³C NMR spectrum of (TPAC₄Im)DPS.

Figure **S10**. ¹H NMR spectrum of **imDPADPS**.

Figure **S11**. ¹³C NMR spectrum of **imDPADPS**.

Figure **S12**. ¹⁹F NMR spectrum of **imDPADPS**.

Figure S13. Cyclic voltammograms of imCzDPS and imDPADPS in degassed MeCN under argon with 0.1 M n-Bu₄NPF₆ as the supporting electrolyte.

Figure S14. Emission decays of imCzDPS (a) and imDPADPS (b) in degassed MeCN.

References

- (1). M. Y. Wong, G. J. Hedley, G. Xie, L. S. Kölln, I. D. W. Samuel, A. Pertegás, H. J. Bolink and
- E. Zysman-Colman, *Chem. Mater.*, 2015, **27**, 6535-6542.
- (2). G. A. Crosby and J. N. Demas, J. Phys. Chem., 1971, 75, 991-1024.
- (3). W. H. Melhuish, J. Phys. Chem., 1961, 65, 229-235.
- (4). V. V. Pavlishchuk and A. W. Addison, Inorg. Chim. Acta, 2000, 298, 97-102.