Supporting Information

Real-time fluorescence turn-on assay for acetylcholinesterase activity based on the controlled release of a perylene probe from the MnO$_2$ nanosheets

Yunyi Zhang,abc Cuiyun Zhang,abc Jian Chen,bc Yongxin Li,bc Meiding Yang,bc Huipeng Zhou,bc*

Sohail Anjum Shahzad,bd* Hong Qi,e* Cong Yu,bc* and Shichun Jianga*

aSchool of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China

bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

cUniversity of Chinese Academy of Sciences, Beijing, 100049, P. R. China

dDepartment of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan

eTumor Hospital of Jilin Province, Changchun 130061, P. R. China

*Corresponding authors: scjiang@tju.edu.cn; congyu@ciac.ac.cn
EXPERIMENTAL SECTION

Materials

P-4C+ was prepared as previously described. AChE (from Electrophorus electricus) and trypsin were purchased from Sigma (St. Louis, MO, USA). Acetylthiocholine iodide, donepezil hydrochloride and 3-hydroxycarbofuran were purchased from J&K Scientific Ltd. (Beijing, China). S1 nuclease was purchased from Fermentas Inc. (MBI, Canada). Lysozyme was purchased from Dingguo Biotechnology Co., Ltd. (Beijing, China). Alkaline phosphatase (ALP) and exonuclease I (Exo I) were purchased from Takara Biotechnology Co., Ltd. (Dalian, China). All stock and buffer solutions were prepared using water purified with a Milli-Q A10 filtration system (Millipore, Billerica, MA, USA).

Instrumentation

UV-Vis absorption spectra were obtained using a Cary 50 Bio Spectrophotometer (Varian Inc., CA, USA) equipped with a xenon flash lamp. Emission spectra were recorded using a Fluoromax-4 spectrofluorometer (Horiba Jobin Yvon Inc., USA). Excitation wavelength was 442 nm. Quartz cuvettes with 10 mm path length and 2 mm window width were used for UV-vis and emission measurements. Zeta potential measurements were performed with a Zetasizer NanoZS (Malvern Instruments, USA). Transmission electron microscopy (TEM) images were obtained using a JEM-2100F high resolution transmission electron microscope (Philips, The Netherlands) operated at 200 kV. Atomic force microscopy (AFM) characterization was performed on a Multimode-V (Veeco Instruments, USA) using a tapping mode. Unless specified, all
concentrations of P-4C+, ATCh, MnO₂ nanosheets and buffer were those in the final assay solutions (total sample volume, 400 μL), and all spectra were taken at 37 °C in 5 mM phosphate buffer at pH 7.4.

Preparation of the MnO₂ nanosheets

The MnO₂ nanosheets were prepared following the reported procedures. In short, an aqueous solution comprised 20 mL of tetramethylammonium hydroxide (0.6 M) and H₂O₂ (3 wt%) was first prepared, and 10 mL of 0.3 M MnCl₂ was quickly mixed. The resulting mixture was stirred vigorously overnight in open air. The bulk MnO₂ was obtained though centrifugation, cleaned with double-distilled water and methanol and dried in an oven. MnO₂ nanosheets were obtained via ultrasonication of the aqueous solution of the bulk manganese dioxide.

Fluorescence quenching of P-4C+ by the MnO₂ nanosheets

A series of concentrations of the MnO₂ nanosheets (0, 8.75, 17.5, 26.25, 35, 43.75, 52.5, 61.25, and 70 μg/mL) were mixed with P-4C+ (5 μM) in 5 mM phosphate buffer (pH 7.4). Samples were mixed completely and maintained at 37 °C for 3 min. The emission intensity was then recorded.

ATCh concentration optimization

Thiocholine was prepared following the reported procedures and characterized by ¹H-NMR (Figure S5). Different amounts of thiocholine were mixed with 5 mM phosphate buffer solution (pH 7.4) comprising 26.25 μg/mL MnO₂ nanosheets and 50 μM PPi. The samples were
incubated at 37 °C for 60 min. 5 μM of P-4C+ was added. Samples were mixed and maintained at 37 °C for 3 min. The emission intensity was then recorded. Pyrophosphate was introduced to complex with the Mn$^{2+}$ ions, since the in situ generated Mn$^{2+}$ ions could attach to the surface of the MnO$_2$ nanosheets and caused aggregation of the nanosheets.

AChE assay procedures

0.3 mM ATCh (20 μL) was injected to 380 μL of 5 mM phosphate buffer solution (pH 7.4) comprising 26.25 μg/mL MnO$_2$ nanosheets, 50 μM P Pi, 5 μM P-4C+ and AChE of different concentrations. The final concentrations of AChE were 0, 5, 10, 25, 50, 100, 250, 500 and 1000 mU/mL, respectively. The temperature was stabilized at 37 °C and the emission intensity of P-4C+ at 488 nm was recorded with data points taken every 5 seconds.

Selectivity of the AChE assay

Different enzymes including lysozyme, alkaline phosphatase (ALP), S1 nuclease, trypsin, Exo I (10.0 U/mL each) and AChE (500 mU/mL) were mixed with the solution of 0.3 mM ATCh, 50 μM P Pi and 26.25 μg/mL MnO$_2$ nanosheets in 5 mM phosphate buffer (pH 7.4). The solutions were incubated at 37 °C for 60 min. 5 μM of P-4C+ was added. Samples were mixed completely and maintained at 37 °C for 3 min. The emission intensity was then recorded.

AChE assay in biological fluid

Various quantities of AChE were mixed with the sample solution of 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 50 μM P Pi and 2.5% human serum in 5 mM phosphate buffer (pH
7.4). Samples were kept at 37 ºC for 15 min. 5 μM of P-4C+ was then mixed with the solution. Samples were mixed completely and maintained at 37 ºC for 3 min. The emission intensity was then recorded.

AChE inhibitor screening

Various concentrations of the inhibitors (donepezil or 3-hydroxycarbofuran) were mixed with the sample solution of 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 50 μM PPi and 100 mU/mL AChE in 5 mM phosphate buffer (pH 7.4). The samples were kept at 37 ºC for 15 min. 5 μM of P-4C+ was added. Samples were mixed thoroughly and maintained at 37 ºC for 3 min. The emission intensity was then recorded.

The inhibition efficiency (IE) is given by: $IE = \frac{[I - I_i]}{[I - I_0]}$

The emission intensity values of P-4C+ at 488 nm in the absence and presence of the inhibitor are symbolized as I and I_i, I_0 is the emission intensity of P-4C+ at 488 nm in the absence of AChE.

REFERENCES

Figure S1. Tapping-mode of the AFM image of the MnO$_2$ nanosheets. Inset: the height profile of the section labeled with the white line.

Figure S2. UV-vis absorption spectrum of the MnO$_2$ nanosheets (black curve) and the fluorescence emission spectrum of P-4C+ (blue curve).
Figure S3. Zeta potential analysis: the MnO$_2$ nanosheets possess a potential value of -26.2 mV before (a) and 1.29 mV after (b) mixed with P-4C$^+$.

Figure S4. Fluorescence quenching efficiency versus MnO$_2$ nanosheets concentration (0, 8.75, 17.5, 26.25, 35, 43.75, 52.5, 61.25, and 70 μg/mL). Buffer: 5 mM phosphate buffer, pH 7.4.
Figure S5. 1H-NMR spectrum of thiocholine.

Figure S6. UV-vis absorption spectra: Blue curve: the reaction mixture of MnO$_2$ nanosheets and thiocholine was centrifuged, the supernatant was taken and treated with sodium periodate; Green curve: the reaction mixture of sodium periodate and MnCl$_2$; Red curve: KMnO$_4$ aqueous solution; Black curve (blank control): the MnO$_2$ nanosheets containing sample solution was centrifuged, the supernatant was taken and mixed with sodium periodate.
The reduction of \(\text{MnO}_2 \) to \(\text{Mn}^{2+} \) by thiocholine could be proven by a highly specific reaction of \(\text{Mn}^{2+} \) with sodium periodate, and the resulting sample solution shows clear color changes:

\[
2\text{Mn}^{2+} + 5\text{IO}_4^- + 3\text{H}_2\text{O} \rightarrow 2\text{MnO}_4^- + 5\text{IO}_3^- + 6\text{H}^+
\]

Figure S7. UV-vis absorption spectra of the \(\text{MnO}_2 \) nanosheets before (red curve) and after (black curve) the enzymatic reaction of AChE with the substrate.

Figure S8. Changes in emission intensity of P-4C+ (5 \(\mu \)M) at 488 nm upon the addition of...
increasing concentrations of free thiocholine. Conditions: 5 mM phosphate buffer (pH 7.4),
26.25 μg/mL MnO\textsubscript{2} nanosheets and 50 μM PPI.

Figure S9. Selectivity study. Columns A–G: AChE, lysozyme, ALP, S1 nuclease, trypsin and
Exo I nuclease. AChE: 500 mU/mL; the other enzymes: 10 U/mL each. 50 μM EDTA was used
instead of pyrophosphate. I and I\textsubscript{0} represent the emission intensity of P-4C+ in the presence and
absence of the enzyme.
Figure S10. Probing AChE activity in the presence of different biothiols (Cys, GSH, Hcy and Na₂S). Black columns: no AChE added. Red columns: all contains 100 mU/mL AChE. Columns a – d: different concentrations of ATCh were added (0, 50, 100, 150 μM, respectively). All samples contain 5 mM phosphate buffer (pH 7.4), 5 μM P-4C+, 26.25 μg/mL MnO₂ nanosheets, 50 μM biothiol (Cys, GSH, Hcy, or Na₂S), and the emission intensity changes of P-4C+ at 488 nm were monitored.
Figure S11. Changes in emission intensity of P-4C+ at 488 nm (5 μM) in the presence of the reductive substances. Green column: background emission of P-4C+ in the presence of the MnO$_2$ nanosheets and ATCh only; Red column: emission of P-4C+ in the presence of the MnO$_2$ nanosheets, ATCh, and Cys (or GSH, Hcy, Na$_2$S); Blue column: samples of Cys, GSH, Hcy, and Na$_2$S were passed through a filter (MWCO 30K), wash with water, the supernatant was taken, and mixed with P-4C+, MnO$_2$ nanosheets, and ATCh; Black column: samples of Cys, GSH, Hcy, and Na$_2$S were mixed with AChE, passed through the filter, and mixed with P-4C+, MnO$_2$ nanosheets, and ATCh. Conditions: 5 mM phosphate buffer (pH 7.4), 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 0.3 mM Cys (or GSH, Hcy, Na$_2$S), 0.5 U/mL AChE.
Figure S12. Emission intensity changes of P-4C+ (5 μM) at 488 nm in dilute human serum (2.5%) with time. Conditions: 5 mM phosphate buffer (pH 7.4), 50 μM PPI, 26.25 μg/mL MnO$_2$ nanosheets. The results show that the assay mixture is stable enough for the enzyme activity quantification (Figure 3).

Figure S13. Changes in emission intensity of P-4C+ at 488 nm (5 μM) with AChE concentration in dilute human serum (2.5%). Conditions: 5 mM phosphate buffer (pH 7.4), 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 50 μM PPI.
Figure S14. Changes in emission spectrum (a) and the corresponding emission intensity at 488 nm (b) of P-4C+ upon the addition of increasing concentrations of donepezil (0 – 200 nM). Conditions: 5 mM phosphate buffer (pH 7.4), 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 50 μM PPI and 100 mU/mL AChE.
Figure S15. Changes in emission spectrum (a) and the corresponding emission intensity at 488 nm (b) of P-4C+ upon the addition of increasing concentrations of 3-hydroxycarbofuran (0 – 400 nM). Conditions: 5 mM phosphate buffer (pH 7.4), 26.25 μg/mL MnO$_2$ nanosheets, 0.3 mM ATCh, 50 μM PPI and 100 mU/mL AChE.