Dynamic nature of excited states of donor-acceptor TADF materials for OLEDs: how theory can reveal structure-property relationships.

Yoann Olivier¹, Monica Moral²,³, Luca Muccioli⁴,⁵, and Juan-Carlos Sancho-Garcia³

¹Laboratory for Chemistry of Novel Materials, University of Mons, 7000 Mons, Belgium, E-mail: yoann.olivier@umons.ac.be
²Renewable Energy Research Institute, University of Castilla-La Mancha, 02071 Albacete, Spain
³Departamento de Química Física, University of Alicante, 03080 Alicante, Spain
⁴Institut des Sciences Moléculaires, UMR 5255, University of Bordeaux, 33405 Talence, France
⁵Dipartimento di Chimica Industriale ”Toso Montanari”, University of Bologna, 40136 Bologna, Italy

Table of contents

Pages 2-21: Figures S1 to S21
Pages 22-27: Tables S1 to S5
Figure S1: Isocontour plots (cutoff=0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXD donor (left) is combined with the OXD acceptor (right) giving rise to the PXZ-OXD and 2PXZ-OXD equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S2: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXZ donor (left) is combined with the TDZ acceptor (right) giving rise to the PXZ-TDZ and 2PXZ-TDZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S3: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PXZ donor (left) is combined with the TAZ acceptor (right) giving rise to the PXZ-TAZ and 2PXZ-TAZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S4: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PTZ donor (left) is combined with the OXD acceptor (right) giving rise to the PTZ-OXD and 2PTZ-OXD equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S5: Isocontour plots (cutoff= 0.02 a.u.) and energies of the frontier orbitals (HOMO and LUMO), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), where the PTZ donor (left) is combined with the TDZ acceptor (right) giving rise to the PTZ-TDZ and 2PTZ-TDZ equatorial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S6: Comparison between the HOMO and LUMO energies of all compounds studied computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).
Figure S7: Excited states energy diagram, computed at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PXZ donor (left) is combined with TDZ acceptor (right) moieties giving rise to the PXZ-TDZ and 2PXZ-TDZ equatorial conformers (center).
Figure S8: Excited states energy diagram, computed at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PXZ donor (left) is combined with TAZ acceptor (right) moieties giving rise to the PXZ-TAZ and 2PXZ-TAZ equatorial conformers (center).
Figure S9: Excited states energy diagram, computed at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PTZ donor (left) is combined with OXD acceptor (right) moieties giving rise to the PTZ-OXD and 2PTZ-OXD equatorial conformers (center).
Figure S10: Excited states energy diagram, computed at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case where PTZ donor (left) is combined with TDZ acceptor (right) moieties giving rise to the PTZ-TDZ and 2PTZ-TDZ equatorial conformers (center).
Figure S11: Front and side views of a) PXZ and b) PTZ electron donors.

Figure S12: a) Front and b) side views of the TAZ electron acceptor.
Figure S13: Hole (in blue) and electron (in green) density centroids of 2PXZ-OXD calculated in the attachment/detachment formalism
Figure S14: Isocontour plots (cutoff= 0.02 a.u.) of the frontier orbitals (HOMO and LUMO), computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case of PTZ-OXD, PTZ-TDZ and PTZ-TAZ axial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S15: Isocontour plots (cutoff= 0.02 a.u.) of the calculated frontier orbitals (HOMO and LUMO), computed at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), for the case of 2PTZ-OXD, 2PTZ-TDZ and 2PTZ-TAZ axial conformers (center). The size and color describe the amplitude and sign, respectively, of the lobes of orbitals.
Figure S16: Oscillator strength normalized to the S_1 excitation energy as a function of $\phi_S^2(S_1)$ for a) PXZ-OXD and b) PTZ-TAZ. The straight lines represent linear fits of the data. For PTZ-TAZ, two different linear fits are required in order to interpolate the data corresponding to CT- and LE-dominated excitations.
Figure S17: Two-dimensional torsion energy profiles (in kcal/mol), calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, (b) TDZ and (c) TAZ).
Figure S18: Evolution of the singlet-triplet energy gap ΔE_{ST} (in eV), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, (b) TDZ and (c) TAZ).
Figure S19: Evolution of the oscillator strength (O.S.), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, (b) TDZ and (c) TAZ).
Figure S20: Evolution of the overlap between the hole and electron densities related to the electronic transition to S_1 (S$_1$), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, b) TDZ and c) TAZ).
Figure S21: Evolution of the overlap between the hole and electron densities related to the electronic transition to T_1 (ϕ_5 (T_1)), calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene), as a function of the two D-A dihedral angles ϕ_1 and ϕ_2 between the PXZ donors and the three different acceptors (a) OXD, (b) TDZ and (c) TAZ).
<table>
<thead>
<tr>
<th>Compound</th>
<th>Conformer</th>
<th>ΔE (kcal/mol)</th>
<th>Compound</th>
<th>Conformer</th>
<th>ΔE (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXZ-OXD</td>
<td>axial</td>
<td>2.24</td>
<td>2PXZ-OXD</td>
<td>axial</td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PXZ-TDZ</td>
<td>axial</td>
<td>2.36</td>
<td>2PXZ-TDZ</td>
<td>axial</td>
<td>4.79</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PXZ-TAZ</td>
<td>axial</td>
<td>3.29</td>
<td>2PXZ-TAZ</td>
<td>axial</td>
<td>6.59</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PTZ-OXD</td>
<td>axial</td>
<td></td>
<td>2PTZ-OXD</td>
<td>axial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td>0.84</td>
<td></td>
<td>equatorial</td>
<td>1.54</td>
</tr>
<tr>
<td>PTZ-TDZ</td>
<td>axial</td>
<td></td>
<td>2PTZ-TDZ</td>
<td>axial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td>0.65</td>
<td></td>
<td>equatorial</td>
<td>1.24</td>
</tr>
<tr>
<td>PTZ-TAZ</td>
<td>axial</td>
<td>0.14</td>
<td>2PTZ-TAZ</td>
<td>axial</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
</tbody>
</table>

Table S1: Relative energies between axial and equatorial (in kcal/mol) conformers for D-A and D-A-D compounds calculated at the PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Conformer</th>
<th>ΔE (kcal/mol)</th>
<th>Compound</th>
<th>Conformer</th>
<th>ΔE (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXZ-OXD</td>
<td>axial</td>
<td>2.51</td>
<td>2PXZ-OXD</td>
<td>axial</td>
<td>5.03</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PXZ-TDZ</td>
<td>axial</td>
<td>2.75</td>
<td>2PXZ-TDZ</td>
<td>axial</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PXZ-TAZ</td>
<td>axial</td>
<td>3.53</td>
<td>2PXZ-TAZ</td>
<td>axial</td>
<td>7.14</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
<tr>
<td>PTZ-OXD</td>
<td>axial</td>
<td></td>
<td>2PTZ-OXD</td>
<td>axial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td>0.64</td>
<td></td>
<td>equatorial</td>
<td>1.11</td>
</tr>
<tr>
<td>PTZ-TDZ</td>
<td>axial</td>
<td></td>
<td>2PTZ-TDZ</td>
<td>axial</td>
<td></td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td>0.35</td>
<td></td>
<td>equatorial</td>
<td>0.60</td>
</tr>
<tr>
<td>PTZ-TAZ</td>
<td>axial</td>
<td>0.36</td>
<td>2PTZ-TAZ</td>
<td>axial</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>equatorial</td>
<td></td>
<td></td>
<td>equatorial</td>
<td></td>
</tr>
</tbody>
</table>

Table S2: Relative energies between axial and equatorial (in kcal/mol) conformers for D-A and D-A-D compounds calculated at the PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene).
<table>
<thead>
<tr>
<th></th>
<th>PXZ-OXD (Cs)</th>
<th>PXZ-TDZ (Cs)</th>
<th>PXZ-TAZ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>φs</td>
<td>Δr (Å)</td>
</tr>
<tr>
<td>T₁</td>
<td>2.5927</td>
<td>- 0.15</td>
<td>5.58</td>
</tr>
<tr>
<td>S₁</td>
<td>2.604</td>
<td>0 0.15</td>
<td>5.62</td>
</tr>
<tr>
<td>ΔEST</td>
<td>0.0113</td>
<td>0.0077</td>
<td>0.0645</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PTZ-OXD (Cs)</th>
<th>PTZ-TDZ (Cs)</th>
<th>PTZ-TAZ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>φs</td>
<td>Δr (Å)</td>
</tr>
<tr>
<td>T₁</td>
<td>2.9193</td>
<td>- 0.23</td>
<td>5.48</td>
</tr>
<tr>
<td>S₁</td>
<td>2.9388</td>
<td>0 0.17</td>
<td>5.75</td>
</tr>
<tr>
<td>ΔEST</td>
<td>0.0195</td>
<td>0.11</td>
<td>0.1684</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2PXZ-OXD (C2V)</th>
<th>2PXZ-TDZ (C2V)</th>
<th>2PXZ-TAZ (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>φs</td>
<td>Δr (Å)</td>
</tr>
<tr>
<td>T₁</td>
<td>2.4777</td>
<td>- 0.16</td>
<td>1.85</td>
</tr>
<tr>
<td>S₁</td>
<td>2.4876</td>
<td>0 0.15</td>
<td>1.86</td>
</tr>
<tr>
<td>ΔEST</td>
<td>0.0099</td>
<td>0.007</td>
<td>0.0204</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2PTZ-OXD (Cs)</th>
<th>2PTZ-TDZ (C2V)</th>
<th>2PTZ-TAZ (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>φs</td>
<td>Δr (Å)</td>
</tr>
<tr>
<td>T₁</td>
<td>2.8207</td>
<td>- 0.25</td>
<td>1.73</td>
</tr>
<tr>
<td>S₁</td>
<td>2.8376</td>
<td>0.002 0.18</td>
<td>1.78</td>
</tr>
<tr>
<td>ΔEST</td>
<td>0.0169</td>
<td>0.0091</td>
<td>0.1013</td>
</tr>
</tbody>
</table>

Table S3: Sₑ and T₁ excitations energies and their associated singlet-triplet energy gap (ΔEST) for the equatorial conformer as well as the attachment and detachment densities overlap and distance difference between attachment and detachment densities centroids of the different compounds calculated at the TDA-PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S₁ electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.
<table>
<thead>
<tr>
<th></th>
<th>PXZ-OXD (Cs)</th>
<th>PXZ-TDZ (Cs)</th>
<th>PXZ-TAZ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>Energy (eV)</td>
<td>O.S.</td>
</tr>
<tr>
<td>T₁</td>
<td>2.6347</td>
<td>-</td>
<td>2.437</td>
</tr>
<tr>
<td>S₁</td>
<td>2.6465</td>
<td>0</td>
<td>2.4453</td>
</tr>
<tr>
<td>ΔE<sub>ST</sub></td>
<td>0.0118</td>
<td>0.0083</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PTZ-OXD (Cs)</th>
<th>PTZ-TDZ (Cs)</th>
<th>PTZ-TAZ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>Energy (eV)</td>
<td>O.S.</td>
</tr>
<tr>
<td>T₁</td>
<td>2.8528</td>
<td>-</td>
<td>2.6647</td>
</tr>
<tr>
<td>S₁</td>
<td>2.872</td>
<td>0</td>
<td>2.676</td>
</tr>
<tr>
<td>ΔE<sub>ST</sub></td>
<td>0.0192</td>
<td>0.0113</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2PXZ-OXD (C2V)</th>
<th>2PXZ-TDZ (C2V)</th>
<th>2PXZ-TAZ (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>Energy (eV)</td>
<td>O.S.</td>
</tr>
<tr>
<td>T₁</td>
<td>2.4985</td>
<td>-</td>
<td>2.2874</td>
</tr>
<tr>
<td>S₁</td>
<td>2.5081</td>
<td>0</td>
<td>2.2944</td>
</tr>
<tr>
<td>ΔE<sub>ST</sub></td>
<td>0.0096</td>
<td>0.007</td>
<td>0.0154</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2PTZ-OXD (Cs)</th>
<th>2PTZ-TDZ (C2V)</th>
<th>2PTZ-TAZ (C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (eV)</td>
<td>O.S.</td>
<td>Energy (eV)</td>
<td>O.S.</td>
</tr>
<tr>
<td>T₁</td>
<td>2.7885</td>
<td>-</td>
<td>2.5634</td>
</tr>
<tr>
<td>S₁</td>
<td>2.8038</td>
<td>0.0025</td>
<td>2.572</td>
</tr>
<tr>
<td>ΔE<sub>ST</sub></td>
<td>0.0153</td>
<td>0.0086</td>
<td>0.1777</td>
</tr>
</tbody>
</table>

Table S4: S₁ and T₁ excitations and their associated singlet-triplet energy gap (ΔE_{ST}) for the equatorial conformer of the different compounds calculated at the TDA-PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S₁ electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.
<table>
<thead>
<tr>
<th>Molecule</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PXZ-OXD (C1)</td>
<td>2.878</td>
<td>-</td>
<td>2.607</td>
<td>-</td>
<td>3.237</td>
<td>-</td>
</tr>
<tr>
<td>2PXZ-TDZ (C1)</td>
<td>3.598</td>
<td>1.156</td>
<td>3.299</td>
<td>1.204</td>
<td>3.867</td>
<td>0.834</td>
</tr>
<tr>
<td>2PXZ-TAZ (C1)</td>
<td>0.720</td>
<td>0.693</td>
<td>0.630</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTZ-OXD (C1)</td>
<td>2.871</td>
<td>-</td>
<td>2.610</td>
<td>-</td>
<td>3.225</td>
<td>-</td>
</tr>
<tr>
<td>PTZ-TDZ (C1)</td>
<td>3.604</td>
<td>1.186</td>
<td>3.334</td>
<td>1.242</td>
<td>3.842</td>
<td>0.908</td>
</tr>
<tr>
<td>PTZ-TAZ (C1)</td>
<td>0.733</td>
<td>0.724</td>
<td>0.617</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PXZ-OXD (Cs)</td>
<td>2.799</td>
<td>-</td>
<td>2.543</td>
<td>-</td>
<td>3.158</td>
<td>-</td>
</tr>
<tr>
<td>2PXZ-TDZ (Cs)</td>
<td>3.470</td>
<td>1.730</td>
<td>3.211</td>
<td>1.807</td>
<td>3.750</td>
<td>1.439</td>
</tr>
<tr>
<td>2PXZ-TAZ (C1)</td>
<td>0.671</td>
<td>0.668</td>
<td>0.592</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
<th>Energy (eV)</th>
<th>O.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2PTZ-OXD (Cs)</td>
<td>2.811</td>
<td>-</td>
<td>2.529</td>
<td>-</td>
<td>3.142</td>
<td>-</td>
</tr>
<tr>
<td>2PTZ-TDZ (Cs)</td>
<td>3.505</td>
<td>1.691</td>
<td>3.207</td>
<td>1.410</td>
<td>3.716</td>
<td>1.947</td>
</tr>
<tr>
<td>2PTZ-TAZ (C1)</td>
<td>0.693</td>
<td>0.678</td>
<td>0.574</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table S5: S₁ and T₁ excitations and their associated singlet-triplet energy gap (ΔEₘ) for the axial conformer of the different compounds calculated at the TDA-PBE0-D3(BJ)/def2TZVP level of theory with the PCM module for solvent (toluene). Oscillator strengths (O.S.) for S₁ electronic transitions as well as the symmetry point group of the ground state optimized geometries (in parenthesis next to the molecule names) are also reported.
<table>
<thead>
<tr>
<th></th>
<th>PXZ-OXD (Cs)</th>
<th>PXZ-TDZ (Cs)</th>
<th>PXZ-TAZ (C1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_0</td>
<td>S_1</td>
<td>T_1</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>83.08</td>
<td>90.31</td>
<td>89.69</td>
</tr>
<tr>
<td></td>
<td>PTZ-OXD (Cs)</td>
<td>PTZ-TDZ (Cs)</td>
<td>PTZ-TAZ (C1)</td>
</tr>
<tr>
<td></td>
<td>S_0</td>
<td>S_1</td>
<td>T_1</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>79.33</td>
<td>89.82</td>
<td>90.16</td>
</tr>
<tr>
<td></td>
<td>2PXZ-OXD (C2V)</td>
<td>2PXZ-TDZ (C2V)</td>
<td>2PXZ-TAZ (C2)</td>
</tr>
<tr>
<td></td>
<td>S_0</td>
<td>S_1</td>
<td>T_1</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>84.60</td>
<td>89.65</td>
<td>90.35</td>
</tr>
<tr>
<td></td>
<td>2PTZ-OXD (Cs)</td>
<td>2PTZ-TDZ (C2V)</td>
<td>2PTZ-TAZ (C2)</td>
</tr>
<tr>
<td></td>
<td>S_0</td>
<td>S_1</td>
<td>T_1</td>
</tr>
<tr>
<td>Angle (°)</td>
<td>81.18</td>
<td>88.38</td>
<td>89.54</td>
</tr>
</tbody>
</table>

Table S6: Equilibrium D-A torsion angles (in degrees) for ground state (S_0) and, singlet (S_1) and triplet (T_1) excited state (Tamm-Dancoff) optimization at PBE0-D3(BJ)/6-31G(d,p) level of theory with the PCM module for solvent (toluene).
<table>
<thead>
<tr>
<th>State</th>
<th>PXZ-OXD</th>
<th>PXZ-TDZ</th>
<th>PXZ-TAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>99.9</td>
<td>99.9</td>
<td>99.3</td>
</tr>
<tr>
<td>S₁</td>
<td>99.9</td>
<td>99.9</td>
<td>99.8</td>
</tr>
<tr>
<td>T₂</td>
<td>92.9</td>
<td>92.1</td>
<td>93.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>PTZ-OXD</th>
<th>PTZ-TDZ</th>
<th>PTZ-TAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>99.6</td>
<td>99.8</td>
<td>93.0</td>
</tr>
<tr>
<td>S₁</td>
<td>99.9</td>
<td>99.9</td>
<td>99.8</td>
</tr>
<tr>
<td>T₂</td>
<td>88.4</td>
<td>92.0</td>
<td>96.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>2PXZ-OXD</th>
<th>2PXZ-TDZ</th>
<th>2PXZ-TAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>92.2</td>
<td>96.4</td>
<td>86.0</td>
</tr>
<tr>
<td>T₂</td>
<td>92.2</td>
<td>96.4</td>
<td>85.9</td>
</tr>
<tr>
<td>S₁</td>
<td>92.6</td>
<td>96.6</td>
<td>87.0</td>
</tr>
<tr>
<td>S₂</td>
<td>92.6</td>
<td>96.6</td>
<td>87.1</td>
</tr>
<tr>
<td>T₃</td>
<td>46.9</td>
<td>91.9</td>
<td>47.0</td>
</tr>
<tr>
<td>T₄</td>
<td>46.9</td>
<td>47.3</td>
<td>47.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State</th>
<th>2PTZ-OXD</th>
<th>2PTZ-TDZ</th>
<th>2PTZ-TAZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>92.1</td>
<td>96.5</td>
<td>69.7</td>
</tr>
<tr>
<td>T₂</td>
<td>92.1</td>
<td>96.5</td>
<td>69.6</td>
</tr>
<tr>
<td>S₁</td>
<td>93.2</td>
<td>96.9</td>
<td>87.4</td>
</tr>
<tr>
<td>S₂</td>
<td>93.2</td>
<td>96.9</td>
<td>87.3</td>
</tr>
<tr>
<td>T₃</td>
<td>88.1</td>
<td>91.9</td>
<td>61.6</td>
</tr>
<tr>
<td>T₄</td>
<td>45.5</td>
<td>45.5</td>
<td>61.7</td>
</tr>
</tbody>
</table>

Table S7: Composition of the excited states transitions in terms of the HONTO to LUNTO transitions.