Supporting Information

Color-Tunable Persistent Luminescence in New Oxyfluoride Glass and Glass Ceramic Containing Mn$^{2+}$: α-Zn$_2$SiO$_4$ Nanocrystals

Tao Hu,ab Hang Lin,*a Ju Xu,a Bo Wang,a Jiaomei Wang,a Yuansheng Wang*α

α Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (P. R. China)

b College of Materials Science and Engineering, Fujian Normal University, Fuzhou, Fujian, 350007 (P. R. China)

*E-mail: lingh@fjirsm.ac.cn; Tel/Fax: +86-591-63179423
*E-mail: yswang@fjirsm.ac.cn; Tel/Fax: +86-591-63179438
Figure S1. Transmittance spectra of the precursor glass (PG) and two representative glass ceramic (GC-3h, GC-9h) samples.

Figure S2. Luminescent decay curves of Mn$^{2+}$: $^4T_{1g}(G) \rightarrow ^6A_{1g}(S)$ at 620 nm for PG and Mn$^{2+}$: $^4T_{1}$ (G) $\rightarrow ^6A_{1}(S)$ at 524 nm for GC-9h, under 260 nm excitation.
Figure S3. PersL decay curves by monitoring at (a) 524 nm and (b) 620 nm in the GC samples with different annealing durations. (c) Mn$^{2+}$ doping concentration dependent persistent decay curves by monitoring at 620 nm in the PG samples.

Figure S4. Persistent luminescence spectra of GC-7h sample at different time intervals (15-3600s) after ceasing the 260 nm excitation.
Figure S5. Persistent decay curves of the Mn$^{2+}$ doped (a) PG and (b) GC samples excited at various wavelengths.
Figure S6. EPR spectrum of the Mn$^{2+}$ doped glass ceramic.

Figure S7. The composition dependent PersL decay curves in 55SiO$_2$-20KF-(25-x)ZnF$_2$-xZnO glasses by monitoring at 620 nm upon 260 nm excitation for 5 min.