Supporting information

Modelling Compound Cytotoxicity Using Conformal Prediction and PubChem HTS Data

Fredrik Svensson¹, Ulf Norinder^{2,3}, Andreas Bender¹

¹ Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

² Swedish Toxicology Sciences Research Center, SE-151 36 Södertälje, Sweden

³ Dept. Computer and Systems Sciences, Stockholm Univ., Box 7003, SE-164 07 Kista, Sweden

Contents

List of RDKit descriptors used in this study	2
Modeling results using random forest and 100 trees.	2
Correlation between RDKit descriptors and assay outcome	2
Distribution of assay data	6
Molprint2D Results	9
Number of trees and model validity	10
Overlapping compounds between the different data sets	11

List of RDKit descriptors used in this study

'Chi0', 'Chi0n', 'Chi0v', 'Chi1', 'Chi1n', 'Chi1v', 'Chi2n', 'Chi2v', 'Chi3n', 'Chi3v', 'Chi4n', 'Chi4v', 'EState_VSA1', 'EState_VSA10', 'EState_VSA11', 'EState_VSA2', 'EState_VSA3', 'EState_VSA4', 'EState_VSA5', 'EState_VSA6', 'EState_VSA7', 'EState_VSA8', 'EState_VSA9', 'FractionCSP3', 'HallKierAlpha', 'HeavyAtomCount', 'Ipc', 'Kappa1', 'Kappa2', 'Kappa3', 'LabuteASA', 'MolLogP', 'MolMR', 'MolWt', 'NHOHCount', 'NOCount', 'NumAliphaticCarbocycles', 'NumAliphaticHeterocycles', 'NumAliphaticRings', 'NumAromaticCarbocycles', 'NumAromaticHeterocycles', 'NumAromaticRings', 'NumHAcceptors', 'NumHDonors', 'NumHeteroatoms', 'NumRotatableBonds', 'NumSaturatedCarbocycles', 'NumSaturatedHeterocycles', 'NumSaturatedRings', 'PEOE_VSA1', 'PEOE_VSA10', 'PEOE_VSA11', 'PEOE_VSA12', 'PEOE_VSA13', 'PEOE_VSA14', 'PEOE_VSA2', 'PEOE_VSA3', 'PEOE_VSA4', 'PEOE_VSA5', 'PEOE_VSA6', 'PEOE_VSA7', 'PEOE_VSA8', 'PEOE_VSA9', 'RingCount', 'SMR_VSA1', 'SMR VSA10', 'SMR VSA2', 'SMR VSA3', 'SMR VSA4', 'SMR VSA5', 'SMR VSA6', 'SMR VSA7', 'SMR_VSA8', 'SMR_VSA9', 'SlogP_VSA1', 'SlogP_VSA10', 'SlogP_VSA11', 'SlogP_VSA12', 'SlogP_VSA2', 'SlogP_VSA3', 'SlogP_VSA4', 'SlogP_VSA5', 'SlogP_VSA6', 'SlogP_VSA7', 'SlogP_VSA8' , 'SlogP_VSA9', 'TPSA', 'VSA_EState1', 'VSA_EState10', 'VSA_EState2', 'VSA_EState3', 'VSA_EState4' , 'VSA_EState5' , 'VSA_EState6' , 'VSA_EState7' , 'VSA_EState8' , 'VSA_EState9'

Modeling results using random forest and 100 trees.

Table S1. Validity for RDKit model using 100 trees at different confidence levels. The results	display a
strong tendency towards over conservative predictions.	

Conf. lvl	70		75		80		85		90	
AID	Toxic	Non-								
		toxic								
463	0.761	0.751	0.827	0.805	0.865	0.850	0.918	0.896	0.972	0.937
1486	0.724	0.784	0.785	0.825	0.857	0.873	0.932	0.909	0.993	0.943
1825	0.743	0.778	0.803	0.828	0.866	0.866	0.933	0.909	0.988	0.942
598	0.724	0.714	0.778	0.765	0.829	0.814	0.880	0.864	0.929	0.911
648	0.741	0.755	0.795	0.798	0.844	0.841	0.892	0.884	0.957	0.923
719	0.760	0.745	0.800	0.800	0.858	0.848	0.912	0.887	0.966	0.927
847	0.856	0.790	0.948	0.844	0.995	0.887	1	0.920	1	0.950
903	0.775	0.725	0.760	0.827	0.828	0.870	0.902	0.900	0.988	0.934
504648	0.902	0.703	0.822	0.924	0.940	0.937	0.985	0.947	0.998	0.956
588856	0.733	0.777	0.790	0.827	0.847	0.865	0.924	0.899	0.990	0.935
624418	0.765	0.908	0.891	0.931	0.958	0.945	0.994	0.955	1.000	0.963
430	0.731	0.740	0.786	0.787	0.839	0.834	0.902	0.879	0.946	0.921
620	0.745	0.796	0.835	0.837	0.934	0.886	0.986	0.923	1	0.947
602141	0.739	0.825	0.793	0.848	0.869	0.870	0.958	0.915	0.995	0.945
2275	0.694	0.791	0.751	0.815	0.824	0.848	0.881	0.898	1	0.931
2717	0.736	0.756	0.787	0.800	0.842	0.838	0.893	0.882	0.944	0.922

Correlation between RDKit descriptors and assay outcome

For each dataset we list the ten descriptors with highest absolute Person correlation to the assay outcome.

AID 463

MolLogP 0.053 NumAromaticRings 0.049 FractionCSP3 -0.047 NumAromaticCarbocycles 0.040 NumSaturatedHeterocycles -0.033 HallKierAlpha -0.030 NumAliphaticRings -0.027 EState_VSA2 -0.027 NumAliphaticHeterocycles -0.023 NumAromaticHeterocycles 0.023

AID 1486

EState_VSA8 0.067 NumHeteroatoms -0.045 NOCount -0.043 NumHAcceptors -0.041 EState_VSA2 -0.039 EState_VSA10 -0.038 MolLogP 0.037 PEOE_VSA2 -0.035 SMR_VSA3 -0.032 EState_VSA3 -0.028

AID 598

MolLogP 0.171 NumAromaticRings 0.151 RingCount 0.134 MolMR 0.128 SMR_VSA7 0.126 HallKierAlpha -0.122 NumAromaticCarbocycles 0.121 Chi1 0.120 LabuteASA 0.119 HeavyAtomCount 0.118

AID 648

MolLogP 0.092 MolMR 0.066 RingCount 0.064 NumAromaticRings 0.061 NumAromaticCarbocycles 0.061 LabuteASA 0.061 Chi1 0.060 HeavyAtomCount 0.059 MolWt 0.059 SMR_VSA7 0.058

AID 719

MolLogP 0.072 NumAromaticRings 0.056 SMR_VSA7 0.051 NumAromaticCarbocycles 0.050 RingCount 0.049 MolMR 0.048 MolWt 0.044 LabuteASA 0.044 Chi1 0.043 HeavyAtomCount 0.043

AID 847

MolWt 0.026 NumHeteroatoms 0.026 Chi0 0.025 HeavyAtomCount 0.024 Chi1 0.023 LabuteASA 0.023 Chi0v 0.023 Chi1v 0.023 MolMR 0.023 Kappa1 0.022

AID 903

Kappa1 -0.064 Kappa2 -0.061 Chi0 -0.058 Chi0v -0.058 MolWt -0.058 Chi0n -0.056 LabuteASA -0.056 HeavyAtomCount -0.054 Chi1 -0.053 Chi1n -0.052

AID 504648

EState_VSA8 0.028 SMR_VSA4 0.020 Chi4n 0.019 Chi3n 0.018 Chi2n 0.017 MoIMR 0.016 Chi0 0.016 HallKierAlpha -0.016 HeavyAtomCount 0.016 EState_VSA1 0.015

AID 588856

MolLogP 0.054 Estate_VSA8 0.037 PEOE_VSA6 0.037 SMR_VSA7 0.031 NumAromaticCarbocycles 0.030 MolMR 0.024 NumAromaticRings 0.023 Estate_VSA4 0.021 FractionCSP3 0.020 LabuteASA 0.020

AID 624418

EState_VSA8 0.018 EState_VSA2 -0.015 EState_VSA10 -0.015 EState_VSA9 0.013 NOCount -0.013 EState_VSA3 -0.012 FractionCSP3 -0.012 NumRotatableBonds -0.012 MolLogP 0.011 EState_VSA6 -0.010

AID 430

MolLogP 0.108 NumAromaticRings 0.080 NumAromaticCarbocycles 0.061 MolMR 0.059 MolWt 0.056 LabuteASA 0.055 Ipc 0.055 HallKierAlpha -0.055 Chi1 0.054 FractionCSP3 -0.054

AID 620

MolLogP 0.038 NumAromaticCarbocycles 0.027 FractionCSP3 -0.027 NumAromaticRings 0.022 EState_VSA9 0.018 EState_VSA7 0.016 NumSaturatedHeterocycles -0.015 HallKierAlpha -0.014 EState_VSA2 -0.014 MolMR 0.013

AID 602141

MolLogP 0.038 NumAromaticRings 0.026 SMR_VSA7 0.024 SMR_VSA10 0.023 NumAliphaticCarbocycles 0.022 Chi4n 0.022 FractionCSP3 -0.021 MolMR 0.021 LabuteASA 0.021 MolWt 0.021

AID 2275

NumSaturatedRings 0.155 NumAliphaticRings 0.131 NumAliphaticCarbocycles 0.128 SMR_VSA5 0.120 NumSaturatedHeterocycles 0.120 NumSaturatedCarbocycles 0.116 Chi4n 0.106 SMR_VSA4 0.105 EState_VSA1 0.104 Chi3n 0.081

AID 2717

MolLogP 0.107 PEOE_VSA6 0.064 NumAromaticCarbocycles 0.060 SMR_VSA7 0.058 NumAromaticRings 0.058 EState_VSA8 0.055 MolMR 0.055 LabuteASA 0.048 MolWt 0.046 Chi0v 0.044

Distribution of assay data

Figure S1. Distribution of raw assay data. Either measured as percent inhibition or percent cell viability depending on assay

Molprint2D Results

Table S5. Accuracy on the single class predictions and coverage for the models built using Molprint2Ddescriptors at 70 and 80 % confidence levels.

	70 %				80 %			
	Accuracy				Accuracy			
	non-	Coverage	Accuracy	Coverage	non-	Coverage	Accuracy	Coverage
AID	toxic	non-toxic	toxic	toxic	toxic	non-toxic	toxic	toxic
463	77.2	92.4	79.3	95.2	77.4	81.7	83.5	87.4
1486	72.8	98.2	73.1	98.7	74.3	68.1	79.2	82.4
1825	84.8	86.0	82.7	89.8	80.7	90.6	83.2	93.6
598	75.7	92.8	78.8	94.1	77.3	84.5	81.2	86.8
648	80.1	89.5	80.3	91.6	79.1	87.3	81.6	90.2
719	75.1	95.9	76.5	96.4	76.8	76.7	82.1	84.0
847	47.0	49.3	67.9	56.2	14.4	19.2	94.3	36.1
903	91.9	80.5	86.7	84.6	83.8	97.7	84.9	98.2
504648	90.5	94.6	77.8	94.7	87.3	85.0	81.6	92.5
588856	79.0	92.7	77.8	94.5	78.6	81.1	81.9	87.5

624418	87.8	95.4	72.6	95.4	81.0	53.4	85.9	77.1
430	77.0	92.2	79.5	91.8	77.8	84.2	81.3	87.4
620	74.3	96.0	74.4	95.6	73.8	60.5	86.5	73.4
602141	85.6	89.1	80.1	92.1	82.8	88.9	81.3	93.2
2275	86.2	83.2	84.7	81.3	80.4	96.3	80.9	97.4
2717	84.3	85.0	84.9	87.5	80.4	94.9	83.1	96.3

Number of trees and model validity

Previous studies applying conformal prediction have used RFs consisting of 100 trees with good results.^{51,52} However, when applied to the data sets in this study the resulting validities were overconservative, i.e. the validity is above the set confidence level (Table S1). This has previously been observed for aggregated conformal predictors as well as being reported as an effect when the number of calibration examples is small, which may sometimes be the case for the minority class in this study.⁵³⁻⁵⁵ Too conservative models may pose a problem since the increase in validity can generate a decrease in the efficiency of the classifier. Using the data from AID 2275 we investigated how the number of trees affected the validity of the predictions, the results are shown in Figure S1. When using only 20 trees the validity was 95.1 % but as the number of trees increases the model validity approaches the set confidence level of 80 % with a validity of 80.6 % for 1000 trees. This was largely due to fewer and fewer compounds being assigned to the *both* class as the number of trees increased. Based on the results we decided on using 500 trees as the model had a validity of 81.3 % and this was deemed an appropriate balance between validity and computational time.

S1. U. Norinder, L. Carlsson, S. Boyer and M. Eklund, Introducing Conformal Prediction in Predictive Modeling. A Transparent and Flexible Alternative to Applicability Domain Determination, J. Chem. Inf. Model., 2014, 54, 1596–1603.

S2. U. Norinder, L. Carlsson, S. Boyer and M. Eklund, Introducing conformal prediction in predictive modeling for regulatory purposes. A transparent and flexible alternative to applicability domain determination, Regul. Toxicol. Pharmacol., 2015, 71, 279–284.

S3. L. Carlsson, M. Eklund and U. Norinder, Aggregated Conformal Prediction, in Artificial Intelligence Applications and Innovations: AIAI 2014 Workshops: CoPA, MHDW, IIVC, and MT4BD, Rhodes, Greece, September 19-21, 2014. Proceedings, ed. L. Iliadis, I. Maglogiannis, H. Papadopoulos, S. Sioutas and C. Makris, Springer International Publishing, Berlin, Heidelberg, 2014, pp. 231–240.

S4. L. Carlsson, E. Ahlberg, H. Boström, U. Johansson and H. Linusson, Modifications to p-Values of Conformal Predictors, in Statistical Learning and Data Sciences: Third International Symposium, SLDS 2015, Egham, UK, April 2023, 2015, Proceedings, ed. A. Gammerman, V. Vovk and H. Papadopoulos, Springer International Publishing, Cham, 2015, pp. 251–259 S5. U. Johansson, E. Ahlberg, H. Boström, L. Carlsson, H. Linusson and C. Sönströd, Handling Small Calibration Sets in Mondrian Inductive Conformal Regressors, in Statistical Learning and Data Sciences: Third International Symposium, SLDS 2015, Egham, UK, April 20-23, 2015, Proceedings, ed. A. Gammerman, V. Vovk and H. Papadopoulos, Springer International Publishing, Cham, 2015, pp. 271–280.

•

Overlapping compounds between the different data sets

 Table S2. Overlap of tested compounds between the different data sets.

AID	463	1825	1486	847	598	648	719	588856	624418	504648	903	620	430	602141	2717	2275
463	56485	54869	54833	34230	52080	52938	51795	54809	53153	41378	2541	55173	54006	54582	49761	961
1825	54869	290731	217964	40133	83541	84474	83224	286272	271744	217456	13365	84204	60798	285490	265906	3736
1486	54833	217964	217964	40133	83524	84457	83207	213872	202361	161460	11512	84145	60762	212981	198860	3167
847	34230	40133	40133	41169	37690	38448	37788	39769	38546	29777	1939	39944	38872	39564	36047	801
598	52080	83541	83524	37690	85201	85201	83921	82996	80074	62647	7530	80733	57615	82658	75657	1578
648	52938	84474	84457	38448	85201	86160	84880	83924	80959	63337	7559	81687	58523	83583	76498	1592
719	51795	83224	83207	37788	83921	84880	84880	82687	79757	62385	7469	80407	57360	82353	75368	1569
588856	54809	286272	213872	39769	82996	83924	82687	404288	382224	291391	52622	83851	60682	358597	296840	4779
624418	53153	271744	202361	38546	80074	80959	79757	382224	386666	278938	51529	80903	58845	340552	282111	4528
504648	41378	217456	161460	29777	62647	63337	62385	291391	278938	292454	40138	63231	45801	258183	225873	3626
903	2541	13365	11512	1939	7530	7559	7469	52622	51529	40138	52789	7913	2790	13218	12030	120
620	55173	84204	84145	39944	80733	81687	80407	83851	80903	63231	7913	86742	60270	83448	76336	1582
430	54006	60798	60762	38872	57615	58523	57360	60682	58845	45801	2790	60270	62655	60411	55093	1234
602141	54582	285490	212981	39564	82658	83583	82353	358597	340552	258183	13218	83448	60411	359231	295880	4733
2717	49761	265906	198860	36047	75657	76498	75368	296840	282111	225873	12030	76336	55093	295880	300111	4155
2275	961	3736	3167	801	1578	1592	1569	4779	4528	3626	120	1582	1234	4733	4155	29940

AID	463	1825	1486	847	598	648	719	588856	624418	504648	903	620	430	602141	2717	2275
463	706	201	246	20	383	60	110	28	6	12	0	147	234	24	42	3
1825	201	2259	827	11	271	72	120	225	51	84	5	176	171	195	300	10
1486	246	827	2409	11	310	80	138	158	51	72	5	187	171	128	207	10
847	20	11	11	194	56	31	37	15	3	7	1	12	40	13	20	0
598	383	271	310	56	5140	676	747	212	46	41	10	260	562	122	266	6
648	60	72	80	31	676	925	396	118	18	37	5	76	165	75	184	0
719	110	120	138	37	747	396	937	125	29	36	5	125	165	90	155	2
588856	28	225	158	15	212	118	125	3021	90	122	35	38	61	344	429	4
624418	6	51	51	3	46	18	29	90	526	57	4	11	9	66	55	0
504648	12	84	72	7	41	37	36	122	57	606	5	17	20	102	88	3
903	0	5	5	1	10	5	5	35	4	5	338	4	1	13	2	0
620	147	176	187	12	260	76	125	38	11	17	4	364	157	42	43	4
430	234	171	171	40	562	165	165	61	9	20	1	157	1122	36	112	4
602141	24	195	128	13	122	75	90	344	66	102	13	42	36	1302	282	7
2717	42	300	207	20	266	184	155	429	55	88	2	43	112	282	3187	14
2275	3	10	10	0	6	0	2	4	0	3	0	4	4	7	14	193

Table S3. Overlap of toxic compounds between the different data sets.

Table S4. Number of times each toxic compound has been tested vs. the number of times it has displayed toxicity.

Nt	ested															
Ntoxic	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	279	317	708	801	1278	2060	1811	172	274	706	998	791	1176	865	25	0
2		71	85	175	338	441	212	32	95	185	184	194	286	154	8	0
3			21	43	88	104	50	19	56	88	96	83	101	26	2	0
4				23	33	32	22	12	43	57	36	46	39	16	0	0
5					11	15	14	5	17	32	20	39	37	13	1	0
6						5	1	3	11	13	21	24	26	10	0	0
7							1	2	6	8	7	12	9	4	1	0
8								1	2	3	1	7	3	1	0	0
9									1	1	2	2	1	1	0	0
10										1	0	3	2	0	0	0
11											0	1	0	0	0	0
12												0	0	0	0	0
13													0	0	0	0
14														0	0	0
15															0	0