Proparacaine induces cytotoxicity and mitochondria-dependent apoptosis in corneal stromal cells both in vitro and in vivo

Electronic Supplementary Information (ESI)

Supplement Fig. 1 Flow cytometry (FCM) images of proparacaine (PPC)-exposed HCS cells. Cultured HCS cells exposed to 1.25 g L⁻¹ PPC for 0 h, 4 h, 8 h and 12 h were stained with propidium iodide (PI), and their cell cycle phase at each time point was assayed by FCM, respectively. One representative image from three independent experiments is shown.

Supplement Fig. 2 Flow cytometry (FCM) images of proparacaine (PPC)-exposed HCS cells. Cultured HCS cells exposed to 1.25 g L⁻¹ PPC for 4 h, 8 h and 12 h were stained with FITC-Annexin V/propidium iodide (PI), and phosphatidylserine (PS) externalization in their plasma membrane at each time point was assayed by FCM, respectively. One representative image from three independent experiments is shown.
Supplement Fig. 3 Acridine orange (AO)/ethidium bromide (EB) double staining photographs of proparacaine (PPC)-exposed HCS cells. Cultured HCS cells exposed to PPC at the indicated concentrations for the indicated time were double stained with 100 μg mL⁻¹ AO/EB (1:1), respectively, and were observed under a fluorescent microscope. One representative photograph from three independent experiments is shown.
Supplement Fig. 4 Flow cytometry (FCM) images of proparacaine (PPC)-exposed HCS cells. Cultured HCS cells exposed to 1.25 g L⁻¹ PPC for 4 h, 8 h and 12 h were stained with JC-1 (5,5',6,6'-Tetrachloro-1,1',3,3'-Tetraethylbenzimidaza), and their mitochondrial transmembrane potential (MTP) at each time point was assayed by FCM, respectively. One representative image from three independent experiments is shown.