Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2017

Supporting information

b

Fig.S1. The photos of single thin PIL/MIP fiber (a) and final PIL/MIP-MMF with four thin fibers (b)

Fig.S2. The SEM images of PIL/MIP at $50 \times$ (a) and $10000 \times$ (b) magnification

Fig.S4. The effect of desorption solvent on extraction efficiency Conditions: Extraction and desorption time were 50 min and 40 min, respectively;

no salt was added in the sample and the pH values of sample matrix were not adjusted. The sample volume was 20 mL and spiked concentration was 100 μ g/L for each analyte.

Symbols: ●FA; ①VA; ② CA; ④DBA; ①HFA.

Conditions: The mixture of methanol/0.5% formic acid aqueous solution (90/10, v/v) was used as desorption solvent. The other conditions were the same as in Fig.S4.

Fig.S6. The effect of desorption time on extraction efficiency

Conditions: Sample pH value was adjusted to 5.0 with 0.1 mol/L HCl. The other conditions were the same as in Fig.S5.

Fig.S7. The effect of ionic strength in sample matrix on extraction efficiency Conditions: Desorption time was 25 min. The other conditions were the same as in Fig.S6.

Compounds	molecular formula	Molecular mass	CAS number	Chemical structures	Log <i>Kow</i> ^a	p <i>K</i> a
3,4- dihydroxybenzenep ropanoic acid	$C_{9}H_{10}O_{4}$	182.17	1078-61-1	но он	/	/
caffeic acid	C ₉ H ₈ O ₄	180.16	331-39-5	од Сон но он	1.15	4.77 ^b
ferulic acid	$C_{10}H_{10}O_4$	194.18	1135-24-6	HO OH	1.58	4.61 ^b
hydroferulic acid	$C_{10}H_{12}O_4$	196.2	1135-23-5	HO OH	1.51	4.58 a
vanillic acid	$C_8H_8O_4$	168.15	121-34-6	но ј	1.43	4.51ª
Catechol	C ₆ H ₆ O ₂	110.11	120-80-9	HOHO	0.88	9.45 ª
Benzene	C ₆ H ₆	78.11	200-753-7	\bigcirc	2.13	/

Table S1. The chemical properties of PAs, catechol and benzene

a: http://chem.sis.nlm.nih.gov/chemidplus/ b: Mota F.L., Queimada A.J., Pinho S.P., Macedo E.A., 2008 (15): 5182-5189.

Monomer mixture		Polymerization mixture		Peak area (mAU×min)						
AVC (%,w/w)	ED (%,w/w)	Monomer mixture (%,w/w)	Porogen solvent (%,w/w)	The amount of DBA (mg)	DBA	CA	VA	HFA	FA	
40	60	50	50	15	6017	18421	32887	6826	36548	
40	60	50	50	10	12007	2671	9204	2079	11659	
40	60	50	50	5	18391	41029	70880	14406	88270	
30	70	50	50	5	9175	4002	7041	2974	9741	
35	65	50	50	5	13960	13601	32369	7640	42840	
45	55	50	50	5	14272	8669	25579	5512	33166	
50	50	50	50	5	3314	1665	7182	2629	9002	
40	60	40	60	5	12441	14409	22708	4656	26516	
40	60	45	55	5	15106	16996	28825	6111	32169	
40	60	55	45	5	16024	25423	33756	8383	36056	

 Table S2. Extraction efficiency of different PIL/MIP-MMF for PAs

		Pseudo-first-	order	Pseudo-second-order			
	R^2	$K_l(\min^{-1})$	$Q_{m(cal)}(\mu g/g)$	R^2	$K_2(\mu g/(g \cdot \min))$	$Q_{m(cal)}(\mu g/g)$	
MIPs	0.930	0.052	1550	0.982	0.065	1818	
NIPs	0.779	0.031	620	0.966	0.031	909	

Table S3. Kinetic constants for the pseudo-first-order rate and the pseudo-second-order rate equations

Table S4. Adsorption isotherm constants for the Langmuir and Freundlich equations

	Langmuir				Freundlich			
		$Q_m (\mu g/g)$	<i>R</i> ²	-	n	K_F	R^2	
MIPs	9.181	319	0.986		1.667	9.215	0.994	
NIPs	17.07	31.3	0.864		3.487	5.181	0.756	