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Materials and Methods 

Materials and Reagents: MoS2 powder, Dopamine (DA), Adenine (Ade), Tyrosine (Tyr) were purchased 

from Sigma-Aldrich, USA.  Fructose (Fru), Galactose (Gal), Creatinine (Cre), Thymine (Thy), Uric acid 

(UA) were purchased from SRL Pvt. Ltd, India. Tryptophan(Try), Tyramine (Tym), Cadmium chloride  

(CdCl2) were purchased from Alfa Aesar, UK. Lead nitrate (PbNO3) was purchased from Otto Chemicals, 

India.   Glucose (Glu), Glutathione (GSH), Cobalt sulphate ( CoSO4), Ascorbic acid (AA), Tin chloride 

(SnCl2), Lysin (Lys), glycin (Gly), Sodium carbonate(NaCO3), Potassium chloride (KCl), Silver nitrate 
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(AgNO3), Ferrous sulphate ( FeSO4), Ferric chloride (FeCl3), Nickel sulphate (NiSO4), Copper sulphate 

(CuSO4), Magnesium sulphate ( MgSO4), Calcium carbonate ( CaCO3), Aluminum nitrate Al2(NO)3, Zinc 

Sulphate (ZnSO4) Sodium hydroxide (NaOH), Hydrochloric acid (HCl) were from Merck, India. Double 

distilled water was used throughout the experiments. All reagents purchased were of analytical grade and 

used without further purification. 

Characterization: UV-visible experiments were done using a Carry-100 UV-visible spectrophotometer. 

Fluorescence measurements were carried out using FluoroMax-4C spectrofluorometer (Horiba Instruments, 

USA), by fixing excitation and emission slit width at 5 nm with an integration time of 0.1 ns. Time resolved 

fluorescence measurements were executed using time-correlated single-photon counting (TCSPC). For 

TCSPC measurements, excitation wavelength was fixed at 330 nm and decay profile were collected at 415 

nm (laser pulse width <1ns). FTIR spectra were recorded/acquired in a Spectrum 100T Perkin-Elmer FTIR 

spectrometer in transmission mode by KBr pellet method. pH measurements were conducted using 

EUTECH instruments’ pH meter. Zeta potential measurements were carried out using Zetasizer Nano ZS 

series; Malvern Instruments, Malvern, UK. Mass spectra was recorded in a Bruker Q-TOF (COMPACT) 

mass spectrometer. Methanol-water mixture (50:50) was used as the electrospray solvent.  

 

Fig. S1. (a) UV-visible absorption spectrum of MoS2 QDNS shows the absorption features for QDs and 

nanosheets. Inset shows the TEM image of MoS2 QDNS in which nanosheets and QDs are visible (b) 

Excitation dependent emission spectra of MoS2 QDNS depicts three region of emission that corresponds to 

QDs, bigger QDs, nanosheets and bigger nanosheets.   
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Fig. S2. Plot obtained for the quenching of PL intensity of MoS2 QDNS by nanomolar concentrations of 

DA (201000 nM). Inset shows the linear range obtained by addition of 2.5 nM to 50 nM concentration of 

DA. Deviation from the mean of values obtained from repeated experiments are represented as error bars.  

 

Fig. S3. Absorption spectra of DA as such, DA at pH 13, MoS2 QDNS and MoS2 QDNS- DA solutions.  
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Fig. S4: Mass spectra of (a) DA in acidic media (pH 5.5) showing (MH) peak for dopamine hydrochloride 

(m/z 188) and that of dopamine (m/z 152) and (b) dopamine in alkaline media (pH 13) showing peaks for 

oxidized forms of DA such as aminochrome (m/z 148) and its dimer form (m/z 295). All MS spectra were 

collected in negative ion mode.  
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Fig. S5: Comparative IR spectra of DA at pH 13 and DA as such (pH 5.5). 

 

Fig. S6 (a) Comparison of PL intensity of MoS2 QDNS and MoS2 QDNSDA complex at different 

excitation wavelength. (b) Spectral overlap of absorption spectra of MoS2 QDNS-DA solution (black) to 

that of PL spectra of MoS2 QDNS excited at different wavelength (330, 430 and 550 nm).  
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Fig. S7. Absorption spectra of AA and UA in MoS2 QDNS along with the PL spectra of MoS2 QDNS at 

pH 13 showing zero overlap. 

 

 

Fig. S8: a) UV- Vis absorption spectra of DA at different pH, showing a shift in peak position, as DA 

changes from hydroquinone form (acidic pH) to different oxidized form (neutral and basic pH). b) The 

response of DA towards PL emission of MoS2 QDNS at pH 13, 9, and 7. 
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Scheme S1: Oxidation pathway of dopamine1-6.  
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System τ1 

(ns) 

α1  

(%) 

τ2 

(ns) 

α2 

(%) 

τ3 

(ns) 

α3 

(%) 

<τ> 

(ns) 

χ2 

MoS2 QDNS 1.05 29.67 5.55 38.66 29.18 31.67 32.89 1.2 

0.2 M of DA 0.83 31.91 5.06 36.40 28.27 31.87 32.62 1.2 

0.4 M 0.60 37.98 4.52 32.44 27.44 29.58 30.20 1.2 

0.6 M 0.56 42.83 4.32 28.85 26.46 28.32 28.78 1.2 

0.8 M 0.54 45.20 4.16 27.35 25.78 27.45 27.94 1.2 

1.0 M 0.51 48.53 3.98 24.74 24.33 26.73 27.17 1.1 

1.2 M 0.50 51.77 3.87 22.99 23.84 25.23 25.91 1.1 

1.4 M 0.50 54.45 3.88 21.31 22.48 24.25 25.13 1.09 

1.6 M 0.48 56.28 3.62 20.09 21.74 23.62 24.64 1.1 

1.8 M 0.45 58.89 3.21 18.47 19.80 22.65 23.98 1.1 

2.0 M 0.45 61.00 3.14 16.85 18.82 22.15 23.73 1.02 

 

 

Table S1. The lifetime components of MoS2 QDNS and MoS2 QDNS-DA, showing concentration 

dependent lifetime values. All decay profiles are fitted into tri-exponential functions. Decrease in all the 

components and average lifetime values of MoS2 QDNS-DA complex implies to the interaction of excited 

state MoS2 QDNS with DA. (Excitation was at 344 nm and the emission was collected at 415 nm). 
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Method Sensor System LOD 

Referenc

e 

 

Colorimetry 

 

40-aminobenzo-18-crown-6 (ABCE) and 4-

mercaptophenyl boronic acid (MPBA) 

modified Au nanoparticles. 

46 nM 7 

Electrochemistry 

 

Thin layer of poly(tetrafluoroethylene) 

(PTFE) with nanoparticle arrays and an 

aluminum film 

0.5 µM 

10 µM1nM 

(S/N=3) 

8 

Electrochemistry GS-Au25 modified sol–gel electrode 0.30 µM  

9 

 

Electrochemistry 

(Enzyme catalyzed) 

Glassy carbon electrodes were 

modified by laccase. 
10 nM 10 

Electrochemistry 

(Enzyme catalyzed)  

carbon fiber microelectrode modified with 

tyrosinase immobilized in chitosan and 

ceria-based metal oxides  

1 nM 11 

Fluorimetry 

Mono-6-amino-β-cyclodextrin (NH2-β-

CD) functionalised gold nanoclusters (β-

CD-AuNC) 

2 nM 

5–1000 nM 

(S/N=3) 

12 

Fluorimetry 
Water-soluble 

silicon nanoparticles (SiNPs) 

0.3 nM 

0.005 to 10.0 μM 

13 

Fluorimetry Hierarchical CdS Spherical Aggregates 10 nM 14 

Fluorimetry Polydopamine  40 nM 15 

Fluorimetry MoS2 QDNS 
0.9 nM,  

2.5 nM- 6 M 

Present 

study 

 

Table S2. Comparison of various dopamine detection methods. 
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