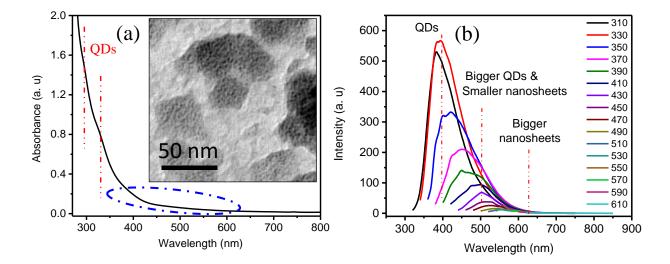
Electronic Supplementary Information

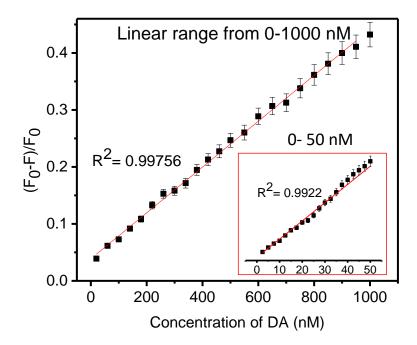
MoS₂ nanohybrid as a fluorescence sensor for highly selective detection of dopamine

Neema Pallikkarathodi Mani, Manjunatha Ganiga and Jobin Cyriac* Department of Chemistry, Indian Institute of Space Science and Technology Thiruvananthapuram – 695 547, INDIA Email: iobincyriac@iist.ac.in

Email: jobincyriac@iist.ac.in


Sl. No.	Content	Page No:
1	Materials and Methods	S 1
2	UV- visible absorption spectra and PL emission spectra of MoS_2 QDNS and the TEM	S2
3	Sensitivity study at lower range	S 3
4	Comparison of absorbance spectra of DA at pH 5.5 and 13, MoS_2 QDNS and MoS_2 QDNS–DA solution	S 3
5	Mass spectra of DA at pH 5.5 and 13	S 4
6	Comparison of IR spectra of DA at pH 5.5 and 13.	S5
7	Comparison of PL intensity of fluorophore with and without quencher at three different excitation wavelengths and spectral overlap at these wavelengths	85
8	Spectral overlap of absorption spectra of AA and UA in MoS_2 QDNS with the emission spectra of MoS_2 QDNS	S6
9	Absorption spectra of DA at different pH and Response of DA towards the PL emission of MoS_2 QDNS at different pH	S6
10	Scheme of oxidation pathway of DA	S 7
11	The lifetime results	S 8
12	Comparison of different methods reported in literature	S 9

Materials and Methods


Materials and Reagents: MoS₂ powder, Dopamine (DA), Adenine (Ade), Tyrosine (Tyr) were purchased from Sigma-Aldrich, USA. Fructose (Fru), Galactose (Gal), Creatinine (Cre), Thymine (Thy), Uric acid (UA) were purchased from SRL Pvt. Ltd, India. Tryptophan(Try), Tyramine (Tym), Cadmium chloride (CdCl₂) were purchased from Alfa Aesar, UK. Lead nitrate (PbNO₃) was purchased from Otto Chemicals, India. Glucose (Glu), Glutathione (GSH), Cobalt sulphate (CoSO₄), Ascorbic acid (AA), Tin chloride (SnCl₂), Lysin (Lys), glycin (Gly), Sodium carbonate(NaCO₃), Potassium chloride (KCl), Silver nitrate

(AgNO₃), Ferrous sulphate (FeSO₄), Ferric chloride (FeCl₃), Nickel sulphate (NiSO₄), Copper sulphate (CuSO₄), Magnesium sulphate (MgSO₄), Calcium carbonate (CaCO₃), Aluminum nitrate Al₂(NO)₃, Zinc Sulphate (ZnSO₄) Sodium hydroxide (NaOH), Hydrochloric acid (HCl) were from Merck, India. Double distilled water was used throughout the experiments. All reagents purchased were of analytical grade and used without further purification.

Characterization: UV-visible experiments were done using a Carry-100 UV-visible spectrophotometer. Fluorescence measurements were carried out using FluoroMax-4C spectrofluorometer (Horiba Instruments, USA), by fixing excitation and emission slit width at 5 nm with an integration time of 0.1 ns. Time resolved fluorescence measurements were executed using time-correlated single-photon counting (TCSPC). For TCSPC measurements, excitation wavelength was fixed at 330 nm and decay profile were collected at 415 nm (laser pulse width <1ns). FTIR spectra were recorded/acquired in a Spectrum 100T Perkin-Elmer FTIR spectrometer in transmission mode by KBr pellet method. pH measurements were conducted using EUTECH instruments, Malvern, UK. Mass spectra was recorded in a Bruker Q-TOF (COMPACT) mass spectrometer. Methanol-water mixture (50:50) was used as the electrospray solvent.

Fig. S1. (a) UV-visible absorption spectrum of MoS_2 QDNS shows the absorption features for QDs and nanosheets. Inset shows the TEM image of MoS_2 QDNS in which nanosheets and QDs are visible (b) Excitation dependent emission spectra of MoS_2 QDNS depicts three region of emission that corresponds to QDs, bigger QDs, nanosheets and bigger nanosheets.

Fig. S2. Plot obtained for the quenching of PL intensity of MoS_2 QDNS by nanomolar concentrations of DA (20–1000 nM). Inset shows the linear range obtained by addition of 2.5 nM to 50 nM concentration of DA. Deviation from the mean of values obtained from repeated experiments are represented as error bars.

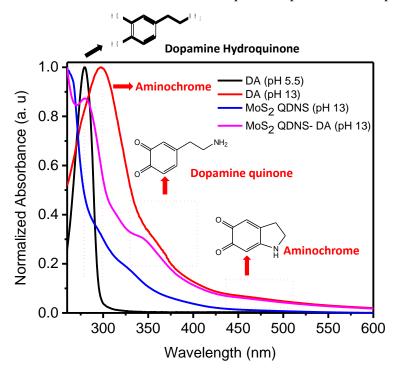
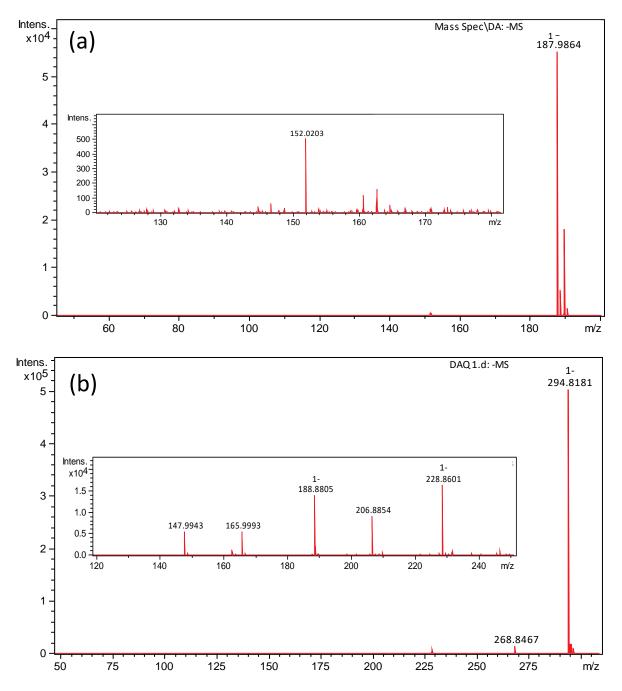
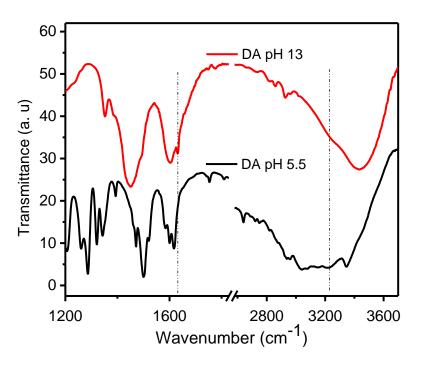
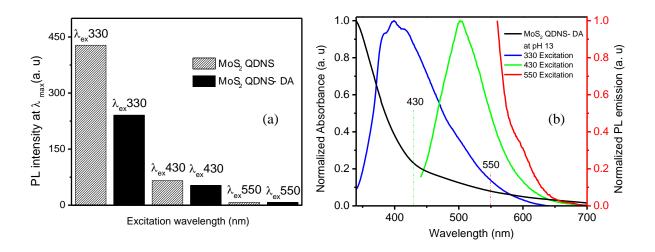
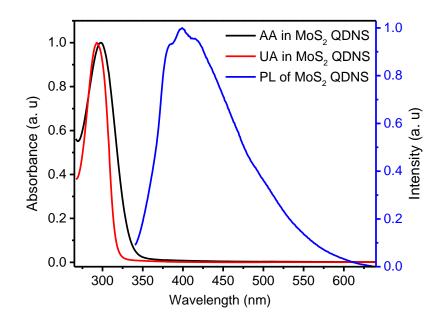
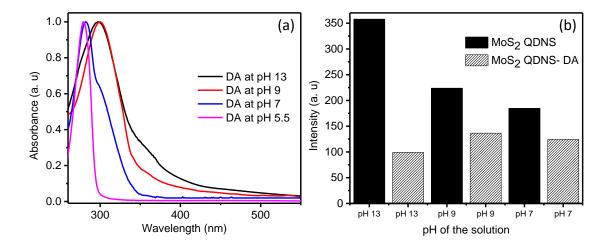



Fig. S3. Absorption spectra of DA as such, DA at pH 13, MoS₂ QDNS and MoS₂ QDNS- DA solutions.

Fig. S4: Mass spectra of (a) DA in acidic media (pH 5.5) showing $(M-H)^-$ peak for dopamine hydrochloride (m/z 188) and that of dopamine (m/z 152) and (b) dopamine in alkaline media (pH 13) showing peaks for oxidized forms of DA such as aminochrome (m/z 148) and its dimer form (m/z 295). All MS spectra were collected in negative ion mode.


Fig. S5: Comparative IR spectra of DA at pH 13 and DA as such (pH 5.5).

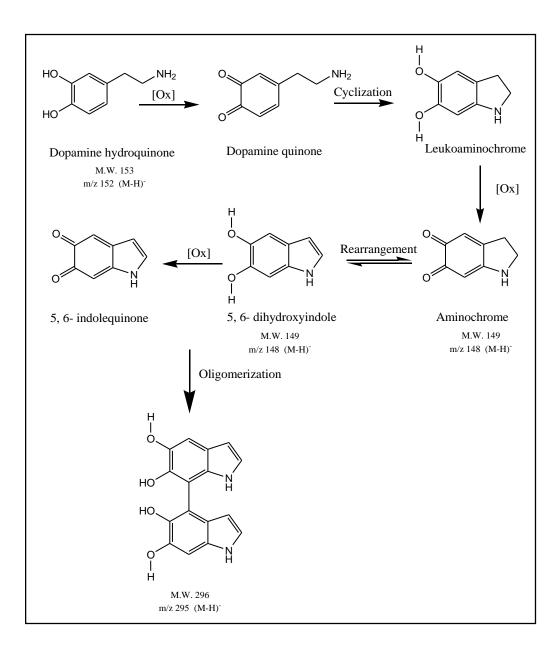

Fig. S6 (a) Comparison of PL intensity of MoS_2 QDNS and MoS_2 QDNS–DA complex at different excitation wavelength. (b) Spectral overlap of absorption spectra of MoS_2 QDNS-DA solution (black) to that of PL spectra of MoS_2 QDNS excited at different wavelength (330, 430 and 550 nm).

Fig. S7. Absorption spectra of AA and UA in MoS_2 QDNS along with the PL spectra of MoS_2 QDNS at pH 13 showing zero overlap.

Fig. S8: a) UV- Vis absorption spectra of DA at different pH, showing a shift in peak position, as DA changes from hydroquinone form (acidic pH) to different oxidized form (neutral and basic pH). **b**) The response of DA towards PL emission of MoS_2 QDNS at pH 13, 9, and 7.

Scheme S1: Oxidation pathway of dopamine¹⁻⁶.

System	τ ₁ (ns)	α ₁ (%)	τ ₂ (ns)	a2 (%)	τ ₃ (ns)	a3 (%)	<τ> (ns)	χ^2
MoS ₂ QDNS	1.05	29.67	5.55	38.66	29.18	31.67	32.89	1.2
0.2 µM of DA	0.83	31.91	5.06	36.40	28.27	31.87	32.62	1.2
0.4 μΜ	0.60	37.98	4.52	32.44	27.44	29.58	30.20	1.2
0.6 μΜ	0.56	42.83	4.32	28.85	26.46	28.32	28.78	1.2
0.8 μΜ	0.54	45.20	4.16	27.35	25.78	27.45	27.94	1.2
1.0 μΜ	0.51	48.53	3.98	24.74	24.33	26.73	27.17	1.1
1.2 μΜ	0.50	51.77	3.87	22.99	23.84	25.23	25.91	1.1
1.4 μM	0.50	54.45	3.88	21.31	22.48	24.25	25.13	1.09
1.6 μΜ	0.48	56.28	3.62	20.09	21.74	23.62	24.64	1.1
1.8 μΜ	0.45	58.89	3.21	18.47	19.80	22.65	23.98	1.1
2.0 μΜ	0.45	61.00	3.14	16.85	18.82	22.15	23.73	1.02

Table S1. The lifetime components of MoS_2 QDNS and MoS_2 QDNS-DA, showing concentration dependent lifetime values. All decay profiles are fitted into tri-exponential functions. Decrease in all the components and average lifetime values of MoS_2 QDNS-DA complex implies to the interaction of excited state MoS_2 QDNS with DA. (Excitation was at 344 nm and the emission was collected at 415 nm).

Method	Sensor System	LOD	Referenc e
Colorimetry	40-aminobenzo-18-crown-6 (ABCE) and 4- mercaptophenyl boronic acid (MPBA) modified Au nanoparticles.	46 nM	7
Electrochemistry	Thin layer of poly(tetrafluoroethylene) (PTFE) with nanoparticle arrays and an aluminum film	0.5 μM 10 μM–1nM (S/N=3)	8
Electrochemistry	GS-Au ₂₅ modified sol-gel electrode	0.30 μΜ	9
Electrochemistry (Enzyme catalyzed)	Glassy carbon electrodes were modified by laccase.	10 nM	10
Electrochemistry (Enzyme catalyzed)	carbon fiber microelectrode modified with tyrosinase immobilized in chitosan and ceria-based metal oxides	1 nM	11
Fluorimetry	Mono-6-amino-β-cyclodextrin (NH2-β- CD) functionalised gold nanoclusters (β- CD-AuNC)	2 nM 5–1000 nM (S/N=3)	12
Fluorimetry	Water-soluble silicon nanoparticles (SiNPs)	0.3 nM 0.005 to 10.0 μM	13
Fluorimetry	Hierarchical CdS Spherical Aggregates	10 nM	14
Fluorimetry	Polydopamine	40 nM	15
Fluorimetry	MoS ₂ QDNS	0.9 nM, 2.5 nM- 6 μM	Present study

Table S2. Comparison of various dopamine detection methods.

References:

(1) Xu, C.; Tian, M.; Liu, L.; Zou, H.; Zhang, L.; Wang, W. Journal of The Electrochemical Society **2012**, *159*, D217-D224.

(2) Wang, L.; Hu, L.; Gao, S.; Zhao, D.; Zhang, L.; Wang, W. RSC Advances 2015, 5, 9314-9324.

(3) Li, Y.; Liu, M.; Xiang, C.; Xie, Q.; Yao, S. Thin Solid Films 2006, 497, 270-278.

(4) Bisaglia, M.; Mammi, S.; Bubacco, L. Journal of Biological Chemistry 2007, 282, 15597-15605.

(5) Ding, Y.; Floren, M.; Tan, W. Biosurface and Biotribology 2016, 2, 121-136.

(6) Turcheniuk, K.; Tarasevych, A. V.; Kukhar, V. P.; Boukherroub, R.; Szunerits, S. *Nanoscale* **2013**, *5*, 10729-10752.

- (7) Palanisamy, S.; Zhang, X.; He, T. Journal of Materials Chemistry B 2015, 3, 6019-6025.
- (8) Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X.; Wang, Z. L. ACS Nano 2015, 9, 8376-8383.
- (9) Kwak, K.; Kumar, S. S.; Lee, D. Nanoscale 2012, 4, 4240-4246.
- (10) Lisdat, F.; Wollenberger, U.; Makower, A.; Hörtnagl, H.; Pfeiffer, D.; Scheller, F. W. *Biosensors and Bioelectronics* **1997**, *12*, 1199-1211.
- (11) Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Analytical Chemistry 2010, 82, 989-996.
- (12) Ban, R.; Abdel-Halim, E. S.; Zhang, J.; Zhu, J.-J. Analyst 2015, 140, 1046-1053.
- (13) Zhang, X.; Chen, X.; Kai, S.; Wang, H.-Y.; Yang, J.; Wu, F.-G.; Chen, Z. Analytical Chemistry **2015**, 87, 3360-3365.
- (14) Sun, B.; Wang, C. Journal of Nanomaterials 2012, 2012, 1.
- (15) Yildirim, A.; Bayindir, M. Analytical Chemistry 2014, 86, 5508-5512.