Electronic Supplementary Information

An ultra-sensitive 2D electrochemical sensor based on a PtNPs@graphene/Nafion nanocomposite for determination of α1-AR antagonist silodosin in human plasma

Engin Er*a, Hüseyin Çelikkanb, Nevin Erka

a Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
b Department of Chemistry, Faculty of Science, Gazi University, Ankara, Turkey
* Corresponding author; E-mail: eer@ankara.edu.tr, Tel: +90 312 203 3180

The electroactive surface area of proposed sensor was performed by CV in 0.5 mM K3Fe(CN)6 as a probe redox system at different scan rates according to the Randles-Sevcik equation1;

\[
I_p = 2.69 \times 10^5 ACn^{3/2}D^{1/2}v^{1/2}
\]

(15)

Where \(I_p \) is the peak current (A), \(A \) is the electroactive area (cm²), \(C \) is the molar concentration of the redox species, \(n \) is the number of transferred electron in the redox reaction, \(D \) is the diffusion coefficient of redox probe (cm² s⁻¹) and \(v \) is the scan rate (V s⁻¹). The \([Fe(CN)]^{3−/4−}\) redox system is generally preferred to calculate the electroactive surface area of bare/modified electrode in electrochemical characterization.2 The number of transferred electron (\(n \)) is 1 and diffusion constant (\(D \)) is 7.6×10⁻⁶ cm² s⁻¹ for 0.50 mM probe molecule in 1 M KNO₃ electrolyte. From the slope of the linear plot of \(I_p \) vs. \(v \), the electroactive surface areas of GCE and PtNPs@GRP/NFN/GCE were calculated to be 0.33 cm² and 0.40 cm², respectively.
Fig. S1 CVs of 0.50 mM K$_3$Fe(CN)$_6$ in 0.1 M KNO$_3$ at various scan rates (a-g) (10, 25, 50, 75, 100, 150, 200 mV s$^{-1}$) on GCE (Inset: the slope of I_{pa} vs. $\nu^{1/2}$ for 0.50 mM K$_3$Fe(CN)$_6$ on GCE).

Fig. S2 CVs of 0.5 mM K$_3$Fe(CN)$_6$ in 0.1 M KNO$_3$ at various scan rates (a-g) (10, 25, 50, 75, 100, 150, 200 mV s$^{-1}$) on PtNPs@GRP/NFN/GCE (Inset: the slope of I_{pa} vs. $\nu^{1/2}$ for 0.50 mM K$_3$Fe(CN)$_6$ on PtNPs@GRP/NFN/GCE).
The heterogeneous electron transfer rate constant, k^0, was also performed on PtNPs@GRP/NFN/GCE using the Nicholson method,3 which is applicable for reversible system. According to the following equation developed by Nicholson,

$$\psi = k^0 \left[\frac{\pi D n v F}{R T} \right]^{-1/2}$$ \hspace{1cm} (2S)

Where ψ is a kinetic parameter, D is the diffusion coefficient of redox probe for $[Fe(CN)_6]^{3−/4−}$ (D=7.6×10$^{-6}$ cm2 s$^{-1}$ in supporting electrolyte solution), n is the number of transferred electron in the redox reaction, v is the scan rate (V s$^{-1}$), F, R and T is the Faraday constant, R is the gas constant and T is the temperature. k^0 was determined by cyclic voltammetry using peak potential separation vs. scan rates ($\Delta E_p - v$) in redox probe solution. k^0 value was calculated to be 3.01×10$^{-3}$ by the use of Eq. 2S for 0.5 mM $[Fe(CN)_6]^{3−/4−}$ solution.

![Graph](image_url)

Fig. S3 AdsDPVs of blank (black line) and 0.10 μM standard SLN solutions (blue line) in the presence of KNO$_3$ (red line), Na$_2$SO$_4$ (purple line), CaCl$_2$ (turquoise line), ascorbic acid (orange line), and uric acid (dark blue line) in PBS (pH 7.4) with 1.0 mM K$_3$Fe(CN)$_6$ and 10 mM K$_4$Fe(CN)$_6$. The oxidation waves of $[Fe(CN)_6]^{3−/4−}$ were assigned at 0.78 V and 0.91 V vs. Ag/AgCl (saturated KCl).
line), urea (green line) and glucose (pink line) on PtNPs@GRP/NFN/GCE (Inset: Baseline corrected voltammograms for SLN).

References

