SUPPLEMENTARY MATERIAL

MOLECULARLY IMPRINTED POLYMER – COATED PAPER AS SUBSTRATE FOR HIGH SENSITIBILITY ANALYSIS USING PAPER SPRAY MASS SPECTROMETRY: QUANTIFICATION OF METABOLITES IN URINE.

Thais P. P. Mendes, Igor Pereira, Marcella Rodrigues Ferreira, Andréa Rodrigues Chaves, Boniek Gontijo Vaz’

Federal University of Goiás, Samambaia Campus, Chemistry Institute, Avenida Esperança, s/n Campus Universitário, 74690-900, Goiânia – GO, Brazil.

*email: boniek@ufg.br
Fig. S-1. PSI(+) mass spectra for dopamine (1000 µg L\(^{-1}\)) from artificial urine using (a) MIP-CPS and (b) NIP-CPS. PSI(-) mass spectra for butyric acid (100 µg L\(^{-1}\)) from artificial urine using (c) MIP-CPS and (d) NIP-CPS. PSI(+) mass spectra for sarcosine (100 µg L\(^{-1}\)) from artificial urine using (c) MIP-CPS and (d) NIP-CPS. Dopamine was detected as [M+H]\(^{+}\) of m/z 154 butyric acid as [M-H]\(^{-}\) of m/z 87 and sarcosine as [M+H]\(^{+}\) of m/z 90.
Fig. S-2. Molecular structure of templates (Glycine and Epinephrine) and target analytes (Butyric acid, sarcosine and dopamine).

Fig. S-3. PS (+) MS/MS for DA at 1000 μg L⁻¹ from artificial urine using MIP-CPS.
Fig. S-4. PS (+) MS/MS for DA from artificial urine using MIP-CPS and traditional paper spray.