Electronic Supplementary Information

Non-enzymatic glucose sensor based on the CuS nanoflakes-reduced

graphene oxide nanocomposite

Xiaoyi Yan^a, Yue Gu^a, Cong Li^a, Bo Zheng^a, Yaru Li^a, Tingting Zhang^a, Zhiquan Zhang^{a*}, Ming Yang^{b*}

^aCollege of Chemistry, Jilin University, Changchun 130012, China

^bDepartment of Breast Surgery, First Hospital, Jilin University, Changchun 130012, China

*Corresponding author.

Tel: +86-(0)431-851683527; Fax: +86-(0)431-85168399

E-mail: zzq@jlu.edu.cn (Z. Zhang)

yangming1967@163.com (M. Yang)

Fig. S1 Element mapping images of C, Cu, and S in rGO/CuSNFs composite.

Fig. S2 XPS C 1s spectra of GO and rGO/CuSNFs composite.

Fig. S3 CVs of rGO/CuSNFs/GCE in 0.1 M NaOH in the absence of glucose.

Fig. S4 CVs of bare GCE in 0.1 M NaOH without and with 3.0 mM glucose. Scan rate: 0.1 V s $^{-1}$.

Fig. S5 Cyclic voltammograms of 0.6 mM glucose at the rGO/CuSNFs/GCE with different pH values (8.0–14.0).

Fig. S6 Plots of oxidation current versus the detection potential at the rGO/CuSNFs/GCE in 0.1 M NaOH obtained by amperometric measurements.