Electronic Supplementary Information (ESI)

for

Encapsulating ruthenium(II) complex into metal organic frameworks to engender high sensitivity for dopamine electrochemiluminescence detection

Yang Li a, Liu Yang a, Zhewei Peng a, Chengzhi Huang b, *, Yuanfang Li a, *

a Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

b College of Pharmaceutical Science, Southwest University, Chongqing 400716, P. R. China.

E-mail: liyf@swu.edu.cn; Tel: (+86) 23-68254059; Fax: (+86) 23-68367257.

chengzhi@swu.edu.cn; Tel:(+86) 23-68254659; Fax: (+86) 23-68367257.
Supporting figures

Figure S1. TEM image (A) N₂ gas sorption isotherm (B) of Ru-MOFs

Figure S2. ECL intensities of 0.5mg/ml Ru(bpy)₃²⁺ and Ru-MOFs with 5mM TPrA as coreactant.

Figure S3. Optimization of the pH on the Ru-MOFs ECL system
Figure S4. Optimization of the concentration of TPrA on the Ru-MOFs ECL system

Table S1. A comparison of different analytical techniques for the determination of dopamine.

<table>
<thead>
<tr>
<th>Detection method</th>
<th>Materials</th>
<th>LOD</th>
<th>Linear range</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorimetry</td>
<td>AHMT-AuNPs</td>
<td>70 nM</td>
<td>0.2-1.1 μM</td>
<td>1</td>
</tr>
<tr>
<td>Colorimetry</td>
<td>AgNPs</td>
<td>60 nM</td>
<td>0-0.6 μM</td>
<td>2</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>F-CuInS₂ QDs</td>
<td>200 nM</td>
<td>0.5-40 μM</td>
<td>3</td>
</tr>
<tr>
<td>Electrochemical</td>
<td>Graphene/SnO₂</td>
<td>80 nM</td>
<td>0.1-10 μM</td>
<td>4</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>CdTe QDs</td>
<td>26 pM</td>
<td>50 pM-10 nM</td>
<td>5</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>TiO₂ NPs</td>
<td>10 pM</td>
<td>10 pM-100 nM</td>
<td>6</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>g-C3N4-PTCA</td>
<td>2.4 pM</td>
<td>6 pM - 30 nM</td>
<td>7</td>
</tr>
<tr>
<td>Electrochemiluminescence</td>
<td>Ru-MOFs</td>
<td>0.024 pM</td>
<td>0.1 pM-10 nM</td>
<td>This work</td>
</tr>
</tbody>
</table>

References

7. Fu, X.; Feng, J.; Tan, X.; Lu, Q.; Yuan, R.; Chen, S., Electrochemiluminescence sensor for dopamine with a dual molecular recognition strategy based on graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids. *RSC
Advances 2015, 5 (53), 42698-42704.