Supporting Information

Dual-modal imaging guided highly efficient photothermal therapy using heptamethine cyanine-conjugated hyaluronic acid micelles†

Sanpeng Li,a,b Zhihong Sun,a Guanjun Deng,a,b Xiaoqing Meng,a,b Wenjun Li,a Dapeng Ni,a,b Jiali Zhang,a,b Ping Gong*a and Lintao Cai*a

aGuangdong Key Laboratory of Nanomedicine, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
bUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China.
cState Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China.
E-mail: lt.cai@siat.ac.cn; ping.gong@siat.ac.cn; Tel: +86-755-86392210
†These authors contributed equally to this work.

Fig. S1 1H-NMR spectrum of HA, HA-ADH and HA-IR808

Electronic Supplementary Material (ESI) for Biomaterials Science.
This journal is © The Royal Society of Chemistry 2017
Fig. S2 FT-IR spectrum of HA, HA-ADH and HA-IR808

Fig. S3 The critical micelle concentration (cmc) of HAIR nanoparticles
Fig. S4 Real-time thermal image of HAIR NPs and water at various concentrations with a 808nm laser irradiation (8min, 0.8W/cm²).

Fig. S5 Flow cytometry analysis uptake of A549 incubated with various concentration of HAIR NPs.

Fig. S6 The pharmacokinetic parameters of HAIR NPs in vivo.
Table: H & E Staining Images of Major Organs and Tumor

<table>
<thead>
<tr>
<th></th>
<th>Heart</th>
<th>Liver</th>
<th>Spleen</th>
<th>Lung</th>
<th>Kidneys</th>
<th>Tumor</th>
</tr>
</thead>
</table>

Fig. S7 H & E staining images of the major organs and tumor collected from the group treated by laser.