Iodine-131-Labelled, Transferrin-Capped Polypyrrole Nanoparticles for Tumor-Targeted Synergistic Photothermal-Radioisotope Therapy

Xuejiao Song†, Chao Liang†, Liangzhu Feng, Kai Yang*, Zhuang Liu*

1, Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

2, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Medical College of Soochow University, Suzhou, Jiangsu 21513, China

† These two authors contributed equally to this work.

* kyang@suda.edu.cn, zliu@suda.edu.cn

Supporting Figure S1. (a) The labeling stability of PPy@Tf-131I and (b) PPy@BSA-131I incubated with phosphate buffer saline (PBS) and fetal bovine serum (FBS) for 5 days.
Supporting Figure S2. Characterization of BSA@PPy. (a) UV–vis–NIR absorbance spectra of BSA@PPy solutions. (b) Size distributions of BSA@PPy (insert is the TEM image of BSA@PPy).

Supporting Figure S3. (a) Flow cytometry data for 293T cells incubated with PPy@BSA-FITC or PPy@Tf-FITC. (b) Flow cytometry data for U87MG cells incubated with PPy@BSA-FITC or PPy@Tf-FITC for 2 h.
Supporting Figure S4. Relative cell viabilities of (a) U87MG cells and (b) 293T cells incubated with various concentrations of PPy@Tf for 24 h, as determined by the standard MTT assay.

Supporting Figure S5. Gamma imaging of U87MG tumor-bearing mice taken at different time point after i.v. injection of free 131I, PPy@BSA-131I, or PPy@Tf-131I.
Supporting Figure S6. H&E stained images of major organs from untreated healthy mice and treated mice with PPy@Tf-131I plus laser irradiation.