Supporting Information

of

Iron Catalyzed Efficient Synthesis of Poly-functional Primary Amines via Direct Use of Ammonia

Chaoqun Ma, Jianghui Chen, Yuan Sheng, Dong Xing, Wenhao Hu*

*Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China

E-mail: whu@chem.ecnu.edu.cn

Table of Contents

1. General Information S2
2. Experimental Procedures S2–S7
3. Characterization Data of the Products S7–S17
4. References S17
5. NMR Spectra of the Products S17–S41
6. Computational details S42-S46
1. General Information:

HRMS (ESI) Mass spectra were recorded on Bruker micrOTOF-Q 10198 mass spectrometer. NMR spectra were recorded on a Brucker Ascend-400 MHz spectrometer. All solvents and reagents were purchased from Sinopharm Chemical Reagent Co., Ltd, and directly used without any purification. Diazo compounds\(^1\) and benzyl protected isatins\(^2\) were prepared according to the literature procedure.

2. Experimental Procedures

2.1 General procedure for the three-component reaction of EDA, ammonia and \(N\)-benzyl isatin and cyclization with thiophosgen:

\[
\begin{align*}
\text{EtOOC} & + \text{Fe(TPP)Cl (1 mol\%)} \\
& \text{THF, 25 °C} \\
& \text{CSCl\(_2\) (0.3 mmol)} \\
& \text{NaHCO\(_3\) (3 mL)} \\
& \text{Eluent: ethyl acetate / petroleum ether: 1:2 to 2:1}
\end{align*}
\]

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (1.5 mL). This solution was purged with ammonia gas for 15 minutes at 25 °C. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then 5% NaHCO\(_3\) (3mL) was added to the mixture, CSCl\(_2\) (0.3 mmol) was added subsequently. After 30 minutes, the reaction was quenched with brine (2mL), extracted three times with EA (2mL*3). The organic phase was evaporated under vacuum and the crude products were passed through a short column of silica gel, which were subjected to \(^1\)H NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:2 to 2:1) to give corresponding products.

2.2 General procedure for the three-component reaction of alkyl diazoesters, ammonia and \(N\)-benzyl isatins:
To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 65 °C. To this solution was added alkyl diazocompounds (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The solvent was removed under vacuum and the crude products were passed through a short column of silica gel, which were subjected to ¹H NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products.

2.3 Experimental procedure for the cyclization of 3c:

To a solution of 3c (0.2 mmol) in DCM (2mL) was added 5% NaHCO₃ (3mL), CSCl₂ (0.3 mmol) was added subsequently. After 30 minutes, the reaction was quenched with brine (2mL), extracted three times with EA (2mL*3). The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:2 to 2:1) to give corresponding products.

2.4 Transformation of intermediate a under basic conditions:
To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 25 °C. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then 1M HCl (3mL) was added to the mixture, the reaction was quenched with brine (2mL), extracted three times with EA (2mL*3). The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give 5a in 85% yield.

2.5 Control experiments for insights into excellent chemoselectivity of the three-component reaction:

2.5.1 N-H insertion with Ethyl 2-aminopropanoate

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with nitrogen gas for 20 minutes at 65 °C. To this solution was added diazocompounds (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:8 to 1:4) to give corresponding product in 93% yield.

2.5.2 N-H insertion with three-component product
To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with nitrogen gas for 20 minutes at 65 °C. To this solution was added diazocompounds (0.3 mmol) in one portion. After the reaction, no desired product was detected.

2.6 Experimental procedure for the synthesis of 3a:

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and Methanol (1.5 mL). This solution was purged with ammonia gas for 20 minutes at rt. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The solvent was removed under vacuum and the crude products were passed through a short column of silica gel, which were subjected to 1H NMR to detect the diastereoselectivity. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:4 to 1:2) to give corresponding products in 64% yield and 50:50 dr value.

2.7 Control experiments of the formation of 5a and mechanism considerations
To a reaction tube equipped with a stir bar was added N-benzylisatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 25 °C. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, N-methylisatin (0.2 mmol) was added subsequently, then 1M HCl (3 mL) was added to the mixture, the reaction was quenched with brine (2 mL), extracted three times with EA (2 mL * 3). The organic phase was removed under vacuum. The crude products were purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products in 88% yield.

To a reaction tube equipped with a stir bar was added N-benzylisatin (0.2 mmol), N-methylisatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 25 °C. To this solution was added EDA (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute, then 1M HCl (3 mL) was added to the mixture, the reaction was quenched with brine (2 mL), extracted three times with EA (2 mL * 3). The organic phase was removed under vacuum. The crude products were passed through a short column of silica gel, which were subjected to ¹H NMR to detect the diastereoselectivity (5a:5b:5c = 1:2:1). The crude products were purified by flash
chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:10 to 1:4) to give corresponding products in 73% yield (5a, 5b and 5c).

Mechanism considerations: After completion of the three-component reaction, N-methylisatin was added to the mixture, no cross-coupling isatide was detected after acidification of the mixture with 1M HCl, indicating isatin was not the reaction intermediate. The three-component reaction proceeded if equal mole of N-methyl and N-benzyl isatins were used as reaction substrates. Acidification of the mixture afforded 5a, 5b, and 5c with a ratio of 1:2:1. According to these facts, we reasoned that a bimolecular radical mechanism might be involved.

2.8 Examine of scope of diazocompounds and carbonyl substrates

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>R</th>
<th>2</th>
<th>yield</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Me</td>
<td>[Structure]</td>
<td>NP</td>
<td>ND</td>
</tr>
<tr>
<td>2</td>
<td>Me</td>
<td>[Structure]</td>
<td>NP</td>
<td>ND</td>
</tr>
<tr>
<td>3</td>
<td>Me</td>
<td>[Structure]</td>
<td>NP</td>
<td>ND</td>
</tr>
<tr>
<td>4</td>
<td>Me</td>
<td>[Structure]</td>
<td>NP</td>
<td>ND</td>
</tr>
<tr>
<td>5</td>
<td>Ph</td>
<td>[Structure]</td>
<td>Diazocompound recovered</td>
<td></td>
</tr>
</tbody>
</table>

S7
2.9 control experiment of Fe(III)-catalyzed N-H insertion

\[
\text{EtOOC} - \text{N}_2 + \text{NH}_3 \xrightarrow{\text{Fe(TPP)Cl (3 mol\%)}} \text{EtOOC} - \text{NH}_2
\]

To a reaction tube equipped with a stir bar was added, Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 65 °C. To this solution was added alkyl diazocompounds (0.3 mmol) in one portion. Immediately nitrogen release was detected, the reaction was completed in 1 minute. The crude product was purified by flash chromatography on silica gel (eluent: ethyl acetate / petroleum ether: 1:2 to 1:1) to give corresponding product in 94% yield.

3.0 Control experiment of N-H insertion product and isatin

\[
\text{EtOOC} - \text{Me} + \begin{array}{c} \text{O} \\ \text{NH}_2 \end{array} \xrightarrow{\text{Fe(TPP)Cl (3 mol\%)}} \begin{array}{c} \text{O} \\ \text{H}_2\text{N}-\text{Me} \end{array}
\]

To a reaction tube equipped with a stir bar was added isatin (0.2 mmol), Fe(TPP)Cl (0.002 mmol) and THF (3 mL). This solution was purged with ammonia gas for 15 minutes at 65 °C. To this solution was added Ethyl 2-aminopropanoate (0.3 mmol) in one portion. No reaction was detected in 30 min.

3.1 Screen of catalyst loading
<table>
<thead>
<tr>
<th>entry</th>
<th>Catalyst loading (x mol%)</th>
<th>Yield(%)</th>
<th>dr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>48</td>
<td>59:41</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>60</td>
<td>60:40</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>72</td>
<td>60:40</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>74</td>
<td>62:38</td>
</tr>
</tbody>
</table>

3. Characterization Data of the Products

(3S,4'R)-ethyl 1-benzyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'-carboxylate (*anti*-4a)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \; \delta = 11.18 \; (s, \; 1H), \; 7.69 \; (d, \; J = 7.3, \; 1H), \; 7.44 \; (t, \; J = 7.3, \; 1H), \; 7.40 - 7.25 \; (m, \; 4H), \; 7.18 \; (t, \; J = 7.4, \; 1H), \; 7.06 \; (d, \; J = 7.9, \; 1H), \; 5.45 \; (s, \; 1H), \; 4.92 \; (s, \; 2H), \; 4.23 - 3.81 \; (m, \; 2H), \; 1.01 \; (t, \; J = 7.1, \; 3H). \\
\text{C NMR (100 MHz, DMSO)} & \; \delta = 186.68, \; 170.25, \; 166.23, \; 143.25, \; 135.39, \; 132.14, \; 128.71, \; 127.68, \; 127.25, \; 125.64, \; 124.27, \; 123.70, \; 110.26, \; 84.95, \; 63.45, \; 61.75, \; 42.95, \; 13.57. \\
\text{HRMS (ESI) m/z calcd for C}_{20}\text{H}_{18}\text{N}_{2}\text{O}_{4}\text{NaS (M+Na)}^+ & \; 405.0885, \; \text{found 405.0896.}
\end{align*}
\]

(3S,4'R)-ethyl 1-benzyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'-carboxylate (*syn*-4a)

\[
\begin{align*}
\text{H NMR (400 MHz, DMSO)} & \; \delta = 11.17 \; (s, \; 1H), \; 7.41 \; (d, \; J = 5.6, \; 4.8, \; 1.2 \; Hz, \; 1H), \; 7.38 - 7.33 \; (m, \; 4H), \; 7.33 - 7.27 \; (m, \; 1H), \; 7.18 \; (d, \; J = 7.5, \; 1.0 \; Hz, \; 1H), \; 7.11 \; (t, \; J = 7.5, \; 0.8 \; Hz, \; 1H), \; 7.07 \; (d, \; J = 7.9 \; Hz, \; 1H), \; 5.19 \; (s, \; 1H), \; 5.07 \; (d, \; J = 15.9 \; Hz, \; 1H), \; 4.92 \; (d, \; J = 15.9 \; Hz, \; 1H), \; 3.85 - 3.62 \; (m, \; 2H), \; 0.51 \; (t, \; J = 7.1 \; Hz, \; 3H). \\
\text{C NMR (100 MHz, DMSO)} & \; \delta = 192.43, \; 175.92, \; 171.07, \; 148.10, \; 140.54, \; 137.41, \; 89.
\end{align*}
\]
133.95, 132.96, 132.40, 129.69, 128.78, 127.58, 115.78, 89.53, 69.01, 68.08, 66.65, 48.45, 18.16. HRMS (ESI) m/z calcd for C$_{20}$H$_{18}$N$_2$O$_4$NaS (M+Na)$^+$ 405.0885, found 405.0883.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)propanoate (syn-3b)

![Chemical structure of (R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)propanoate](#)
\[\text{H}^1\text{NMR (400 MHz, CDCl}_3\text{)} \delta 7.40 (d, J = 7.5 \text{ Hz}, 1\text{H}), 7.37 – 7.17 (m, 6\text{H}), 7.02 (t, J = 7.6 \text{ Hz}, 1\text{H}), 6.69 (d, J = 7.9 \text{ Hz}, 1\text{H}), 4.97 (d, J = 15.7 \text{ Hz}, 1\text{H}), 4.79 (d, J = 15.7 \text{ Hz}, 1\text{H}), 4.28 – 4.12 (m, 2\text{H}), 2.00 (s, 1\text{H}), 1.63 (s, 3\text{H}), 1.22 (t, J = 7.1 \text{ Hz}, 3\text{H}).\]
\[\text{C}^{13}\text{NMR (100 MHz, CDCl}_3\text{)} \delta 176.57, 174.64, 143.87, 135.50, 129.99, 128.75, 127.90, 127.62, 127.39, 124.86, 122.68, 109.40, 78.94, 62.19, 61.78, 43.87, 22.28, 13.92. HRMS (ESI) m/z calcd for C$_{20}$H$_{22}$N$_2$O$_4$Na (M+Na)$^+$ 377.1477, found 377.1493.

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)propanoate (anti-3b)

\[\text{H}^1\text{NMR (400 MHz, CDCl}_3\text{)} \delta 7.45 (dd, J = 7.5, 0.6 \text{ Hz}, 1\text{H}), 7.36 – 7.16 (m, 6\text{H}), 7.02 (td, J = 7.6, 0.8 \text{ Hz}, 1\text{H}), 6.70 (d, J = 7.8 \text{ Hz}, 1\text{H}), 4.95 (d, J = 15.6 \text{ Hz}, 1\text{H}), 4.70 (d, J = 15.6 \text{ Hz}, 1\text{H}), 4.04 – 3.84 (m, 2\text{H}), 1.48 (s, 3\text{H}), 0.97 (t, J = 7.1 \text{ Hz}, 3\text{H}).\]
\[\text{C}^{13}\text{NMR (100 MHz, CDCl}_3\text{)} \delta 177.08, 174.60, 143.87, 135.60, 129.79, 128.74, 127.83, 127.67, 127.57, 125.32, 122.69, 109.21, 62.48, 61.50, 43.86, 20.53, 13.63. HRMS (ESI) m/z calcd for C$_{20}$H$_{22}$N$_2$O$_4$Na (M+Na)$^+$ 377.1477, found 377.1463.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)butanoate (syn-3c)

\[\text{H}^1\text{NMR (400 MHz, CDCl}_3\text{)} \delta 7.43 (dd, J = 7.5, 0.8 \text{ Hz}, 1\text{H}), 7.38 – 7.16 (m, 7\text{H}), 7.01 (td, J = 7.6, 1.0 \text{ Hz}, 1\text{H}), 6.66 (d, J = 7.8 \text{ Hz}, 1\text{H}), 5.00 (d, J = 15.8 \text{ Hz}, 1\text{H}), 4.75 (d, J = 15.8 \text{ Hz}, 1\text{H}), 4.27 (qd, J = 7.1, 0.8 \text{ Hz}, 2\text{H}), 2.56 (dq, J = 14.9, 7.5 \text{ Hz},

S10
1H), 1.82 (dq, $J = 14.8$ Hz, 1H), 1.27 (t, $J = 7.1$ Hz, 3H), 0.90 (t, $J = 7.5$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 177.17, 173.67, 144.16, 135.52, 129.94, 128.70, 127.67, 127.54, 127.32, 125.39, 122.50, 109.35, 79.87, 65.86, 62.16, 43.81, 27.27, 14.09, 7.63. HRMS (ESI) m/z calcd for C$_{21}$H$_{24}$N$_2$O$_4$Na (M+Na)$^+$ 391.1634, found 391.1648.

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)butanoate (anti-3c)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.42 – 7.16 (m, 8H), 7.02 (t, J = 7.4$ Hz, 1H), 6.70 (d, $J = 7.8$ Hz, 1H), 4.97 (d, $J = 15.5$ Hz, 1H), 4.62 (d, $J = 15.5$ Hz, 1H), 3.82 (m, 7.1 Hz, 2H), 2.28 – 2.04 (m, 2H), 0.87 (dt, $J = 11.2, 7.3$ Hz, 6H). 13C NMR (100 MHz, CDCl$_3$) δ 176.97, 173.84, 143.87, 135.63, 129.61, 128.73, 128.13, 127.70, 127.32, 125.48, 122.57, 109.05, 66.67, 61.32, 43.85, 25.27, 13.59, 7.93. HRMS (ESI) m/z calcd for C$_{21}$H$_{24}$N$_2$O$_4$Na (M+Na)$^+$ 391.1634, found 391.1814.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-ynoate (syn-3d)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.44 – 7.15 (m, 7H), 7.01 (t, J = 7.6$ Hz, 1H), 6.69 (d, $J = 7.8$ Hz, 1H), 5.02 (s, 1H), 4.94 (d, $J = 15.7$ Hz, 1H), 4.80 (d, $J = 15.7$ Hz, 1H), 4.20 – 3.99 (m, 2H), 3.46 (dd, $J = 16.9, 2.5$ Hz, 1H), 2.90 (dd, $J = 16.9, 2.5$ Hz, 1H), 2.19 – 1.86 (m, 3H), 1.09 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 175.70, 172.14, 143.59, 135.38, 130.27, 128.76, 127.69, 127.52, 124.89, 122.81, 109.48, 78.69, 77.89, 72.19, 65.13, 62.40, 44.01, 25.24, 13.87. HRMS (ESI) m/z calcd for C$_{22}$H$_{24}$N$_2$O$_4$Na (M+Na)$^+$ 401.1477, found 401.1479.

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-ynoate (anti-3d)

\[
\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 7.36 – 7.19 (m, 7H), 7.03 (t, J = 7.6$ Hz, 1H), 6.70 (d, $J = 7.8$ Hz, 1H), 5.24 (s, 1H), 5.00 (d, J =
15.5 Hz, 1H), 4.60 (d, $J = 15.5$ Hz, 1H), 4.02–3.76 (m, 2H), 3.11 (qd, $J = 16.4, 2.6$ Hz, 2H), 2.52 (s, 2H), 2.06 (t, $J = 2.6$ Hz, 1H), 0.88 (t, $J = 7.1$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.04, 172.65, 143.71, 135.40, 130.09, 128.77, 127.78, 127.69, 127.05, 125.06, 122.79, 109.33, 78.54, 72.41, 65.33, 61.81, 43.97, 23.73, 13.60. HRMS (ESI) m/z calcd for C$_{22}$H$_{22}$N$_2$O$_4$Na (M+Na)$^+$ 401.1477, found 401.1476.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (syn-3e)

1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, $J = 7.4$ Hz, 1H), 7.36 (d, $J = 7.5$ Hz, 2H), 7.30 (t, $J = 7.5$ Hz, 2H), 7.24 (m, 1H), 7.20 (t, $J = 7.8$ Hz, 2H), 7.02 (t, $J = 7.6$ Hz, 1H), 6.68 (d, $J = 7.8$ Hz, 1H), 5.74–5.52 (m, 1H), 5.20 (m, 3H), 4.98 (d, $J = 15.7$ Hz, 1H), 4.79 (d, $J = 15.7$ Hz, 1H), 4.24–4.04 (m, 2H), 3.28 (dd, $J = 13.7, 6.3$ Hz, 1H), 2.60 (dd, $J = 13.7, 8.4$ Hz, 1H), 1.72 (s, 2H), 1.16 (t, $J = 7.1$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.52, 173.34, 143.89, 135.50, 131.56, 130.02, 128.73, 127.89, 127.61, 127.43, 125.12, 122.64, 120.69, 109.37, 78.96, 65.04, 62.17, 43.91, 38.83, 13.98. HRMS (ESI) m/z calcd for C$_{22}$H$_{24}$N$_2$O$_4$Na (M+Na)$^+$ 403.1634, found 403.1652.

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3e)

1H NMR (400 MHz, CDCl$_3$) δ 7.39 (d, $J = 7.4$ Hz, 1H), 7.36–7.16 (m, 6H), 7.03 (t, $J = 7.6$ Hz, 1H), 6.71 (d, $J = 7.8$ Hz, 1H), 5.66–5.47 (m, 2H), 5.30–5.17 (m, 2H), 4.96 (d, $J = 15.5$ Hz, 1H), 4.62 (d, $J = 15.5$ Hz, 1H), 3.81 (m, 2H), 2.99 (dd, $J = 13.3, 5.4$ Hz, 1H), 2.76 (dd, $J = 13.3, 9.5$ Hz, 1H), 2.31 (s, 2H), 0.84 (t, $J = 7.1$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.78, 173.44, 143.87, 135.60, 131.52, 129.73, 128.73, 127.73, 127.71, 125.50, 122.61, 121.30, 109.10, 65.21, 61.41, 43.90, 37.18, 13.58. HRMS (ESI) m/z calcd for C$_{22}$H$_{24}$N$_2$O$_4$Na (M+Na)$^+$ 403.1634, found 403.1636.
ethyl 2-amino-2-(1-benzyl-4-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate
(syn-3f+anti-3f)

\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 7.38 – 7.24 (m, 6H, syn; m, 6H, \text{anti}; overlap), 7.03 – 6.98 (m, 1H, syn; m, 1H, \text{anti}; overlap), 6.71 – 6.66 (m, 1H, syn; m, 1H, \text{anti}; overlap), 5.70 – 5.49 (m, 1H, syn; m, 1H, \text{anti}; overlap), 5.24 (m, 2H, syn; m, 2H, \text{anti}; overlap), 4.96 (d, J = 15.8 Hz, 1H, syn), 4.94 (t, J = 15.8 Hz, 1H, anti), 4.74 (d, J = 15.8 Hz, 1H, syn), 4.58 (d, J = 15.8 Hz, 1H, anti), 4.23 – 4.08 (m, 2H, syn), 3.95 – 3.68 (m, 2H, anti), 3.25 (dd, J = 13.7, 6.4 Hz, 1H, syn), 2.92 (dd, J = 13.3, 5.4 Hz, 1H, anti), 2.72 (dd, J = 13.3, 9.5 Hz, 1H, anti), 2.55 (dd, J = 13.7, 8.4 Hz, 1H, syn)).
\end{align*}

\begin{align*}
\text{C NMR (100 MHz, CDCl}_3\text{)} & \delta 176.75, 173.28, 173.18, 145.20, 145.17, 135.88, 135.59, 135.03, 134.95, 131.25, 131.18, 128.89, 128.87, 127.94, 127.83, 127.66, 127.38, 126.43, 126.29, 126.09, 122.51, 121.56, 120.92, 109.92, 109.70, 65.11, 64.94, 62.30, 61.61, 44.01, 38.85, 37.25, 14.00, 13.67. HRMS (ESI) m/z calcd for C_{22}H_{23}N_{2}O_{4}NaCl (M+Na)^+ 437.1244, found 437.1250.
\end{align*}

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-5-methyl-2-oxoindolin-3-yl)pent-4-enoate (syn-3g)

\begin{align*}
\text{H NMR (400 MHz, CDCl}_3\text{)} & \delta 7.42 – 7.15 (m, 6H), 7.06 – 6.91 (m, 1H), 6.56 (d, J = 8.0 Hz, 1H), 5.65 (dddd, J = 16.0, 10.9, 8.3, 6.5 Hz, 1H), 5.28 – 5.12 (m, 2H), 4.94 (d, J = 15.7 Hz, 1H), 4.77 (d, J = 15.7 Hz, 1H), 4.29 – 4.03 (m, 2H), 3.27 (dd, J = 13.7, 6.5 Hz, 1H), 2.59 (dd, J = 13.7, 8.3 Hz, 1H), 2.30 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H). \text{C NMR (100 MHz, CDCl}_3\text{)} \delta 176.52, 173.47, 141.48, 135.59, 132.21, 131.59, 130.28, 128.70, 127.78, 127.55, 127.39, 125.98, 120.66, 109.17, 79.21, 64.97, 62.15, 43.88, 38.82, 21.13, 14.01. HRMS (ESI) m/z calcd for C_{23}H_{26}N_{2}O_{4}Na (M+Na)^+ 417.1790, found 417.1788.
\end{align*}

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-5-methyl-2-oxoindolin-3-yl)pent-4-enoate (anti-3g)
1H NMR (400 MHz, CDCl$_3$) δ 7.38 – 7.14 (m, 6H), 7.06 – 6.90 (m, 1H), 6.59 (d, J = 7.9 Hz, 1H), 5.71 – 5.50 (m, 1H), 5.36 – 5.13 (m, 2H), 4.92 (d, J = 15.5 Hz, 1H), 4.62 (d, J = 15.5 Hz, 1H), 3.99 – 3.67 (m, 2H), 2.99 (dd, J = 13.3, 5.4 Hz, 1H), 2.75 (dd, J = 13.3, 9.5 Hz, 1H), 2.31 (s, 3H), 0.88 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.74, 173.47, 141.45, 135.69, 132.12, 131.62, 129.97, 128.69, 127.72, 127.68, 127.64, 126.32, 121.27, 108.89, 65.18, 61.39, 43.88, 37.23, 21.15, 13.65. HRMS (ESI) m/z calcd for C$_{23}$H$_{26}$N$_2$O$_4$Na (M$+$Na)$^+$ 417.1790, found 417.1786.

ethyl 2-amino-2-(1-benzyl-5-bromo-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (syn-3h+anti-3h)

1H NMR (400 MHz, CDCl$_3$) δ 7.53 (d, J = 2.0 Hz, 1H, syn), 7.50 (d, J = 2.0 Hz, 1H, anti), 7.37 – 7.22 (m, 6H, syn; m, 6H, anti; overlap), 6.57 (d, J = 8.3 Hz, 1H, anti), 6.53 (d, J = 8.3 Hz, 1H, syn), 5.71 – 5.48 (m, 1H, syn; m, 1H, anti; overlap), 5.32 – 5.17 (m, 2H, syn; m, 2H, anti; overlap), 4.96 (d, J = 15.8 Hz, 1H, syn), 4.92 (d, J = 15.6 Hz, 1H, anti), 4.76 (d, J = 15.8 Hz, 1H, syn), 4.62 (d, J = 15.6 Hz, 1H, anti), 4.24 – 4.11 (m, 2H, syn), 3.96 – 3.72 (m, 2H, anti), 3.24 (dd, J = 13.7, 6.5 Hz, 1H, syn), 2.93 (dd, J = 13.3, 5.4 Hz, 2H, anti), 2.72 (dd, J = 13.3, 9.5 Hz, 2H, anti), 2.55 (dd, J = 13.7, 8.3 Hz, 1H, syn), 1.19 (t, J = 7.1 Hz, 3H, syn), 0.90 (t, J = 7.1 Hz, 3H, anti). 13C NMR (100 MHz, CDCl$_3$) δ 176.29, 176.05, 173.26, 173.06, 142.97, 135.08, 135.00, 132.76, 132.49, 131.18, 131.11, 129.96, 128.84, 128.74, 128.43, 127.89, 127.78, 127.64, 127.35, 121.65, 120.98, 115.38, 115.33, 110.80, 110.53, 79.03, 76.92, 65.12, 64.96, 62.34, 61.62, 43.96, 38.81, 37.26, 14.00, 13.69. HRMS (ESI) m/z calcd for C$_{22}$H$_{24}$N$_2$O$_4$Br (M$^+$) 459.0919, found 459.0918.

ethyl 2-amino-2-(1-benzyl-5-fluoro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3i+syn-3i)
ethyl 2-amino-2-(1-benzyl-6-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate

(anti-3j+syn-3j)

H NMR (400 MHz, CDCl₃) δ 7.42 – 7.23 (m, 5H, syn; m, 5H, anti; overlap), 7.17 – 7.05 (m, 1H, syn; m, 1H, anti; overlap), 6.99 (m, 1H, syn), 6.93 (m, 1H, anti), 6.63 – 6.60 (m, 1H, syn), 6.58 (dd, J = 7.8, 0.8 Hz, 1H, anti), 5.65 – 5.42 (m, 1H, syn; m, 1H, anti; overlap), 5.25 – 5.14 (m, 2H, syn; m, 2H, anti; overlap), 5.06 (d, J = 15.6 Hz, 1H, anti), 4.92 (d, J = 15.4 Hz, 1H, syn), 4.68 (d, J = 15.6 Hz, 1H, anti), 4.59 (d, J = 15.5 Hz, 1H, syn), 3.92 (m, 2H, syn), 3.85 – 3.64 (m, 2H, anti), 3.08 (ddd, J = 14.0, 5.7, 1.3 Hz, 1H, anti), 2.96 – 2.86 (m, 1H, syn), 2.75 (m, 1H, syn; m, 1H, anti; overlap), 0.97 (t, J = 7.1 Hz, 3H, anti), 0.91 (t, J = 7.2 Hz, 1H, syn).

13C NMR (100 MHz, CDCl₃) δ 176.61, 176.28, 172.88, 172.72, 145.89, 145.73, 135.21, 135.07, 131.97, 131.92, 131.78, 131.56, 130.67, 130.59, 116.19 (d, J = 23.3 Hz), 115.90 (d, J = 23.4 Hz), 113.89 (d, J = 25.3 Hz), 113.48 (d, J = 25.2 Hz), 109.91 (d, J = 8.1 Hz), 109.60 (d, J = 8.0 Hz), 79.08, 77.24, 65.14, 64.94, 62.33, 61.58, 44.03, 38.69, 37.16, 31.94, 14.00, 13.64. HRMS (ESI) m/z calcd for C₂₂H₂₃N₂O₄NaF (M+Na)⁺ 421.1540, found 421.1535.
128.82, 128.79, 127.90, 127.29, 126.05, 125.91, 124.97, 124.88, 124.56, 121.28, 121.12, 107.62, 107.52, 79.74, 79.67, 67.28, 66.46, 62.12, 61.63, 44.37, 44.29, 40.53, 39.61, 13.75, 13.66. HRMS (ESI) m/z calcd for C$_{22}$H$_{23}$N$_2$O$_4$NaCl (M+Na)$^+$ 437.1244, found 437.1248.

(R)-ethyl 2-amino-2-((S)-1-benzyl-7-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (syn-3k)

1H NMR (400 MHz, CDCl$_3$) δ 7.36 (dd, $J = 7.4$, 1.1 Hz, 1H), 7.34 – 7.15 (m, 6H), 6.97 (dd, $J = 8.2$, 7.5 Hz, 1H), 5.72 – 5.52 (m, 1H), 5.41 – 5.13 (m, 5H), 4.16 (q, $J = 7.1$ Hz, 2H), 3.24 (dd, $J = 13.7$, 6.3 Hz, 1H), 2.57 (dd, $J = 13.8$, 8.5 Hz, 1H), 1.76 (s, 2H), 1.19 (t, $J = 7.1$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 177.24, 173.13, 139.90, 137.18, 132.56, 131.34, 131.09, 128.50, 127.14, 126.68, 123.65, 123.53, 120.96, 115.66, 78.10, 65.12, 62.33, 45.07, 38.66, 13.97. HRMS (ESI) m/z calcd for C$_{22}$H$_{23}$N$_2$O$_4$NaCl (M+Na)$^+$ 437.1244, found 437.1241.

(S)-ethyl 2-amino-2-((S)-1-benzyl-7-chloro-3-hydroxy-2-oxoindolin-3-yl)pent-4-enoate (anti-3k)

1H NMR (400 MHz, CDCl$_3$) δ 7.43 – 7.16 (m, 7H), 6.99 (dd, $J = 8.2$, 7.5 Hz, 1H), 5.55 (m, 1H), 5.33 – 5.09 (m, 4H), 4.04 – 3.79 (m, 2H), 3.02 – 2.82 (m, 1H), 2.69 (dd, $J = 13.3$, 9.5 Hz, 1H), 1.00 (t, $J = 7.1$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 177.65, 173.22, 139.91, 137.04, 132.30, 131.24, 130.89, 128.49, 127.21, 126.84, 124.11, 123.45, 121.55, 115.46, 76.37, 65.27, 61.71, 44.97, 37.21, 13.72. HRMS (ESI) m/z calcd for C$_{22}$H$_{23}$N$_2$O$_4$NaCl (M+Na)$^+$ 437.1244, found 437.1239.

(3S)-ethyl 1-benzyl-4' -methyl-2-oxo-2'-thioxospiro[indoline-3,5'-oxazolidine]-4'-carboxylate (4b)

1H NMR (400 MHz, DMSO) δ 11.09 (s, 1H), 7.64 – 7.24 (m, 6H), 7.24 – 6.91 (m, 3H), 5.06 (d, $J = 15.7$ Hz, 1H), 4.85 (d, $J = 15.8$ Hz, 1H), 4.05 – 3.65 (m, 2H), 1.57 (s, 3H), 0.71 (t, $J = 6.9$ Hz, 3H).
Hz, 3H). 13C NMR (100 MHz, DMSO) δ 187.01, 169.36, 168.13, 142.82, 135.46, 132.03, 128.74, 127.71, 127.25, 124.32, 123.32, 122.40, 110.34, 86.35, 70.49, 61.91, 43.17, 19.74, 13.09. HRMS (ESI) m/z calcd for C$_{21}$H$_{20}$N$_2$O$_4$NaS (M+Na)$^+$ 419.1041, found 419.1033.

(R)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)acetate (syn-3a)

![Chemical structure](image)

1H NMR (400 MHz, CDCl$_3$) δ 7.46 – 7.13 (m, 7H), 7.04 (t, J = 7.5 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 5.00 (d, J = 15.7 Hz, 1H), 4.72 (d, J = 15.7 Hz, 1H), 3.96 (q, J = 7.1 Hz, 2H), 3.92 (s, 1H), 0.93 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.27, 172.25, 143.66, 135.47, 130.11, 128.74, 127.65, 127.44, 124.38, 122.95, 109.41, 77.35, 77.03, 76.71, 75.04, 61.33, 60.16, 43.87, 13.67. HRMS (ESI) m/z calcd for C$_{19}$H$_{20}$N$_2$O$_4$Na (M+Na)$^+$ 363.1321, found 363.1324.

(S)-ethyl 2-amino-2-((S)-1-benzyl-3-hydroxy-2-oxoindolin-3-yl)acetate (anti-3a)

1H NMR (400 MHz, CDCl$_3$) δ 7.32 (m, 6H), 7.19 (t, J = 7.7 Hz, 1H), 6.99 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 7.8 Hz, 1H), 4.90 (s, 1H), 4.13 (s, 1H), 3.86 (m, 2H), 0.80 (t, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$) δ 176.13, 171.11, 143.39, 135.49, 129.92, 128.75, 128.43, 127.76, 127.71, 123.84, 123.01, 109.36, 77.35, 77.03, 76.71, 75.03, 61.77, 58.74, 44.15, 13.55. HRMS (ESI) m/z calcd for C$_{19}$H$_{20}$N$_2$O$_4$Na (M+Na)$^+$ 363.1321, found 363.1327.

1,1'-dibenzyl-3,3'-dihydroxy-[3,3'-biindoline]-2,2'-dione (5a)

1H NMR (400 MHz, DMSO) δ 7.27 (t, J = 7.7 Hz, 2H), 7.18 (m, 6H), 7.00 (s, 4H), 6.87 (m, 2H), 6.71 (d, J = 7.8 Hz, 2H), 6.46 (s, 2H), 4.83 (d, J = 16.0 Hz, 2H), 4.66 (d, J = 16.0 Hz, 2H). 13C NMR (100 MHz, DMSO) δ 174.89, 143.17, 135.67, 130.05, 128.40, 127.08, 126.84, 126.62, 125.51, 122.19,
109.16, 77.30, 42.71. HRMS (ESI) m/z calcd for $\text{C}_{30}\text{H}_{24}\text{N}_{2}\text{O}_{4}\text{Na}$ (M+Na)$^+$ 499.1634, found 499.1646.

1-benzyl-3,3'-dihydroxy-1'-methyl-[3,3'-biindoline]-2,2'-dione

1H NMR (400 MHz, DMSO) δ 7.37 (t, $J = 7.7$ Hz, 1H), 7.26 (t, $J = 7.6$ Hz, 2H), 7.17 – 7.16 (m, 3H), 7.03 – 6.97 (m, 2H), 6.86 – 6.71 (m, 3H), 6.65 (d, $J = 7.8$ Hz, 1H), 6.55 (s, 1H), 6.35 (s, 1H), 6.20 (s, 1H), 4.76 (d, $J = 16.1$ Hz, 1H), 4.51 (d, $J = 16.1$ Hz, 1H), 3.03 (s, 3H).

13C NMR (100 MHz, DMSO) δ 180.27, 179.74, 149.32, 148.27, 140.80, 135.45, 135.25, 133.67, 132.27, 131.88, 131.80, 131.61, 131.25, 129.97, 127.43, 127.32, 114.24, 113.82, 83.52, 81.64, 47.79, 31.00. HRMS (ESI) m/z calcd for $\text{C}_{24}\text{H}_{20}\text{N}_{2}\text{O}_{4}\text{Na}$ (M+Na)$^+$ 423.1321, found 423.1329.

3,3'-dihydroxy-1,1'-dimethyl-[3,3'-biindoline]-2,2'-dione

1H NMR (400 MHz, DMSO) δ 7.33 (t, $J = 7.7$ Hz, 2H), 6.91 (t, $J = 7.6$ Hz, 4H), 6.75 (s, 1H), 6.29 (s, 2H), 5.75 (s, 1H), 2.89 (s, 6H). 13C NMR (100 MHz, DMSO) δ 174.55, 143.87, 130.07, 126.29, 125.06, 121.89, 108.35, 77.48, 54.87, 25.59. HRMS (ESI) m/z calcd for $\text{C}_{18}\text{H}_{16}\text{N}_{2}\text{O}_{4}\text{Na}$ (M+Na)$^+$ 347.1008, found 347.1016.

X-ray sturucure of derivative of product $4b$

CCDC 1502570 ($syn-4b$) contains the supplementary crystallographic data for this paper. This data can be obtained from www.ccdc.cam.ac.uk/data_request/cif.
Crystal data and structure refinement for z.

Identification code z
Empirical formula C21H20N2O4S
Formula weight 396.45
Temperature 296(2) K
Wavelength 0.71073 Å
Crystal system, space group Orthorhombic, P2(1)2(1)2(1)
Unit cell dimensions
\[a = 8.7225(7) \text{ Å} \quad \alpha = 90 \text{ deg.} \]
\[b = 10.1995(8) \text{ Å} \quad \beta = 90 \text{ deg.} \]
\[c = 22.6633(18) \text{ Å} \quad \gamma = 90 \text{deg.} \]
Volume 2016.2(3) Å³
Z, Calculated density 4, 1.306 Mg/m³
Absorption coefficient 0.189 mm⁻¹
F(000) 832
Crystal size 0.48 x 0.46 x 0.14 mm
Theta range for data collection 2.69 to 25.01 deg.
Limiting indices -10<=h<=10, -12<=k<=12, -26<=l<=26
Reflections collected / unique 23366 / 3548 [R(int) = 0.0373]
Completeness to theta = 25.01 99.9%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9740 and 0.9145
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 3548 / 8 / 253
Goodness-of-fit on F² 1.036
Final R indices [I>2sigma(I)] R1 = 0.0335, wR2 = 0.0838
R indices (all data) R1 = 0.0364, wR2 = 0.0863
Absolute structure parameter 0.52(8)
Largest diff. peak and hole 0.196 and -0.205 e.A⁻³

4. References

5. NMR spectra of the products

anti-4a

anti-4a
anti-3c

anti-3c
syn-3g

Me

H₂N

COOEt

syn-3g
anti-3j + syn-3j

anti-3j + syn-3j
anti-3k

anti-3k
6. Computational details

Methods
The density functional theory (DFT) calculations were carried out by us using the Gaussian 09 program package.[1] The geometrical structures of intermediates were optimized using the M06 functional combined with the 6-311++G**basis. [2-3] The solvent effect of THF was considered by performing the single point calculations based on the gaseous structures using the SMD solvation model. [4]

References

<table>
<thead>
<tr>
<th>Element</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>2.64620100</td>
<td>1.17553400</td>
<td>-1.11886900</td>
</tr>
<tr>
<td>O</td>
<td>0.56891000</td>
<td>0.66647900</td>
<td>-1.85298000</td>
</tr>
<tr>
<td>C</td>
<td>2.22360700</td>
<td>2.54025600</td>
<td>-0.92266000</td>
</tr>
<tr>
<td>H</td>
<td>1.86695100</td>
<td>2.93743600</td>
<td>-1.88078200</td>
</tr>
<tr>
<td>H</td>
<td>1.37536800</td>
<td>2.52957400</td>
<td>-0.22421800</td>
</tr>
<tr>
<td>C</td>
<td>3.40131300</td>
<td>3.30412900</td>
<td>-0.38274400</td>
</tr>
<tr>
<td>H</td>
<td>3.12846600</td>
<td>4.35396600</td>
<td>-0.22707600</td>
</tr>
<tr>
<td>H</td>
<td>3.72721000</td>
<td>2.89204900</td>
<td>0.58029900</td>
</tr>
<tr>
<td>H</td>
<td>4.24718300</td>
<td>3.27231800</td>
<td>-1.08010000</td>
</tr>
<tr>
<td>O</td>
<td>2.35387500</td>
<td>-2.57157700</td>
<td>0.59465300</td>
</tr>
<tr>
<td>N</td>
<td>3.49394700</td>
<td>-1.32962900</td>
<td>-1.11415300</td>
</tr>
<tr>
<td>H</td>
<td>3.95137200</td>
<td>-1.68843900</td>
<td>-1.95227800</td>
</tr>
<tr>
<td>H</td>
<td>3.95834900</td>
<td>-0.46511100</td>
<td>-0.81637300</td>
</tr>
<tr>
<td>H</td>
<td>1.63084900</td>
<td>-1.76446100</td>
<td>-2.02159300</td>
</tr>
<tr>
<td>H</td>
<td>3.47045500</td>
<td>-2.00411100</td>
<td>-0.37623600</td>
</tr>
</tbody>
</table>