Supplementary information

A Layered Wide-Gap Oxyhalide Semiconductor with an Infinite ZnO$_2$ Square Planar Sheet: Sr$_2$ZnO$_2$Cl$_2$

Yu Su,a,b,* Yoshihiro Tsujimoto,a,* Akira Miura,c Shinichiro Asai,d Maxim Avdeev,e Hiraku Ogino,f Miho Ako,g Alexei A. Belik,a Takatsugu Masuda,d Tetsuo Uchikoshi,a Kazunari Yamauraa,b

a Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

b Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

c Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-0808, Japan

d Institute for Solid State Physics, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

e Bragg Institute, Australian Nuclear Science and Technology Organization, Lucas Heights, New South Wales 2234, Australia

f National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

g Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
Figure S1. Rietveld structural refinement against the synchrotron diffraction patterns collected from \(\text{Sr}_2\text{ZnO}_2\text{Cl}_2 \) at room temperature. The zinc oxychloride adopts the \(\text{I}_4/\text{mmm} \) space group with \(a = 4.06981 \) Å and \(c = 15.20076(8) \) Å. Sr on 4e (0, 0, 0.39328(5)), Zn on 2a (0, 0, 0), O on 4c (0, 0.5, 0) and Cl on 4e (0, 0, 0.18260(1)). No deficiencies were found at all site occupancies. Isotropic atomic displacement parameters (\(B_{\text{iso}} \)) were 0.252(2) Å\(^2\) for Sr, 0.25(2) Å\(^2\) for Zn, 0.8(1) Å\(^2\) for O and 0.28(5) Å\(^2\) for Cl. Reliability factors were \(R_{wp} = 1.154\% \) and \(R_B = 1.451\% \).
Figure S2. Rietveld structural refinement against the neutron diffraction patterns collected from Sr$_2$ZnO$_2$Cl$_2$ at 3 K. The zinc oxychloride adopts the $I4/mmm$ space group with $a = 4.057723(1)$ Å and $c = 15.114116(4)$ Å. Sr on 4e (0, 0, 0.39208(8)), Zn on 2a (0, 0, 0), O on 4c (0, 0.5, 0), and Cl on 4e (0, 0, 0.18225(7)). The site occupancy factors (g) were fixed at those obtained from the refinements using the 300 K data, namely, g(Zn) = 0.962 and g(Cl) = 0.950. Isotropic atomic displacement parameters (B_{iso}) were 0.204(3) Å2 for Sr, 0.03(5) Å2 for Zn, 0.408(1) Å2 for O, and 0.2150(4) Å2 for Cl. Reliability factors were $R_{wp} = 8.88\%$ and $R_B = 3.83\%$, and Goodness-of-fit = 1.8.
Figure S3. Temperature evolution of the lattice constants, volume, Zn–O/Zn–Cl bond lengths, and Sr–O/Sr–Cl bond lengths, which were obtained by Rietveld structure refinements.
Figure S4. Laboratory X-ray diffraction (Cu-Kα radiation) patterns collected from Ba$_2$ZnO$_2$Cl$_2$ at room temperature, which was synthesized at 1800 °C and 6 GPa. Due to the hygroscopic nature, the powder sample was suspended in liquid paraffin for the measurement. The XRD data were readily assigned by the $I4/mmm$ space group with $a = 4.2570(2)$ Å and $c = 15.969(1)$ Å. In the XRD patterns, wurtzite ZnO and unidentified peaks were detected as impurities. Vertical lines represent expected Bragg peak positions for Ba$_2$ZnO$_2$Cl$_2$ ($I4/mmm$) and wurtzite ZnO.
Figure 5. Band dispersions for $\text{Sr}_2\text{ZnO}_2\text{Cl}_2$ calculated along high symmetry lines within the GGA framework.
Figure S6. Crystal Orbital Hamiltonian Population (COHP) for Zn-O interaction in Sr$_2$ZnO$_2$Cl$_2$. The COHP curve shows bonding state between Zn 3d and O 2p orbitals in the energy range from -8 to -6 eV, but antibonding states in the valence band maximum.