Dehydrogenative homocoupling of tetrafluorobenzene on Pd(111) via para-selective C-H activation

Cheng-Xin Wang, Qiao Jin, Chen-Hui Shu, Xin Hua, Yi-Tao Long and Pei-Nian Liu*

Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials, State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

liupn@ecust.edu.cn

Supporting Information

1. General procedure for the calculation
2. Reagent source
3. Dehydrogenation energy and the side view of the Dimer
4. General procedure for the ToF-SIMS measurement
1. General procedure for the calculation

The calculations were carried out in the framework of DFT by using the Vienna Ab Initio Simulation Package (VASP).1,2 The projector augmented wave method was used to describe the interaction between ions and electrons.3,4 We used the generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) formulism to treat exchange–correlation interaction,5 and van der Waals (vdW) interactions were considered by using the DFT-D3 developed by Grimme.6 The structures were relaxed until the forces on all unconstrained atoms were ≤ 0.08 eV/Å. All surfaces were modeled by two layered slabs separated by at least 15 Å of vacuum. A $p(5\times5)$ surface unit cell for Pd(111) was used for C-H reaction. Calculated lattice constants of 3.90 Å for Pd was used All calculations were done with a $1\times1\times1$ k-point sampling and a 400 eV kinetic energy cutoff. Transition-state calculations according to the nudged elastic band. The climbing-image nudged elastic band was applied to locate the transition state7 and the transition path was optimized until the forces acting to the path were converged typically to ≤ 0.08 eV/Å.

2. Reagent source

1,2,4,5-Tetrafluorobenzene was bought from ALDRICH company (purity $\geq 99\%$)

3. Different views of the final state (FS) in Fig. 6b and dehydrogenation of the dimer of 1,2,4,5-tetrafluorobenzene

\textbf{Figure S1.} Different views of the final state (FS) in Fig. 6b
4. General procedure for the ToF-SIMS measurement

ToF-SIMS experiments were performed using a ToF-SIMS V spectrometer (IONTOF GmbH, Münster, Germany). A pulsed 30 keV Bi⁺ ion beam was used as the primary ion beam for all measurements. The analysis area was 500×500 µm. Target current was 1 pA. All data were obtained and analyzed using the IONTOF instrument software. Negative mass spectra were calibrated using C⁺, CH⁺, CH₂⁻ and C₂⁻ peaks.

References: