Electronic Supplementary Information (ESI) for

Highly active Fe$_3$BO$_6$ as an anode material for sodium-ion batteries

Jianliya Tiana, Baofeng Wangb,*,a, Fei Zhaoa, Xiao Maa, Yong Liuc, Hua Kun Liub and Zhenguo Huangb,*

a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, 200090, China

b Institute for Superconducting and Electronic Materials, University of Wollongong, NSW, 2522, Australia

c School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China

*Corresponding author:
E-mail: wangbaofeng@shiep.edu.cn
zhenguou@uow.edu.au
Experimental details

Preparation of Fe$_3$BO$_6$

The Fe$_3$BO$_6$ nanoparticles were synthesized via a facile solid state method. All reagents were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai) without further treatment. In a typical experiment, FeC$_2$O$_4$·2H$_2$O and H$_3$BO$_3$ were mixed by ball milling in a molar ratio of 3:1.2 with a proper amount of deionized water as a dispersant. After the grinding and mixing, the obtained rheological phase was transferred into an autoclave and kept at 80 °C for 12 h. The precursor was then calcined at 800 °C for 5 h with a heating rate of 3 °C /min in air. After cooling down to ambient temperature, the product was washed 3 times using boiling water to remove the unreacted boron oxide. In addition, the Fe$_3$BO$_6$@C sample was prepared by mixing Fe$_3$BO$_6$ with oleic acid and then heating it at 500 °C in N$_2$.

Characterization of the materials

The crystal structure of the samples was characterized by an X-ray diffractometer (XRD, Rigaku RINT 2200). XRD data were gained with Cu K$_{α1}$ radiation ($λ = 0.15406$ nm) in the $2θ$ range of 20–80° with a step size of 0.02° and a scan rate of 2° per minute. The morphologies and structure of the Fe$_3$BO$_6$ nanoparticles were investigated by scanning electron microscopy (SEM, Hitachi S-3500N) and transmission electron microscopy (TEM, JEM-2100F, JEOL, Japan). X-ray photoelectron spectroscopy (XPS) tests were carried out on a Kratos Axis UltraDLD spectrometer (Kratos Analytical - A Shimadzu Group company) with monochromatic Al Kα radiation ($hν = 1486.6$ eV).

Electrochemical measurements

The Fe$_3$BO$_6$ powders were mixed with sodium carboxymethyl cellulose (CMC, WALOCEL™ CRT 2000 PPA 12, Dow Wolff Cellulosic) and acetylene black to form a slurry with a weight ratio of 80:10:10. The working electrode was manufactured by casting the slurry on copper foil substrate, which was dried at 80°C overnight. Disks with an area of 1.54 cm2 were punched out of the foil, and the
average mass loading of active material on each disk was about 1.0 mg. In CR2016 coin cells, the Fe$_3$BO$_6$ samples and metallic sodium were using as working electrode and counter electrode, respectively. 1 M NaClO$_4$ (98% Sigma Aldrich) in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume) was used as the electrolyte. The cells were assembled in an argon-filled glove box (Mikrouna-China Super 1220/750). The electrochemical properties of the cells were tested using a battery tester (LAND CT2001A Wuhan, China) in the voltage range of 0.01-3.0 V under different current densities. The cyclic voltammetry (CV) tests were carried out on an electrochemical workstation (Autolab PGSTAT 302N) at a scan rate of 0.01 mV s$^{-1}$ in the voltage range of 0.01-3.0 V. The electrochemical impedance spectroscopy (EIS) analysis was conducted on an Autolab PGSTAT 302N electrochemical workstation from 100 kHz to 0.1 Hz with potentiostatic signal amplitude of 5 mV in the fully charged state. The working potential for EIS tests is stable at open circuit potential (about 1.7 V) after charging to 3.0 V (vs. Na$^+$/Na) and resting for 6 h.
Fig. S1 (a) Low-magnification SEM image of as-prepared Fe$_3$BO$_6$; (b) SEM image of the FeC$_2$O$_4$·2H$_2$O precursor.
Fig. S2 XPS spectra of the Fe$_3$BO$_6$ sample: (a) survey spectrum, (b) Fe 2p, (c) B 1s, and (d) O 1s.
Fig. S3 Initial three charge-discharge curves of Fe$_3$BO$_6$ electrode at 100 mA g$^{-1}$.
Table S1

Table S1: Solution resistance (R_s), charge transfer resistance (R_{ct}), and constant phase angle element (CPE) derived from the equivalent circuit model of EIS curves.

<table>
<thead>
<tr>
<th>Cycles</th>
<th>R_s/Ω</th>
<th>R_{ct}/Ω</th>
<th>Y_0/μF</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup></td>
<td>1.98</td>
<td>100</td>
<td>225</td>
<td>0.60</td>
</tr>
<tr>
<td>2<sup>nd</sup></td>
<td>2.41</td>
<td>94.4</td>
<td>213</td>
<td>0.63</td>
</tr>
<tr>
<td>30<sup>th</sup></td>
<td>2.67</td>
<td>102</td>
<td>192</td>
<td>0.63</td>
</tr>
<tr>
<td>80<sup>th</sup></td>
<td>3.24</td>
<td>125</td>
<td>190</td>
<td>0.61</td>
</tr>
</tbody>
</table>