Supporting Information

For

Photoredox-catalysed chloro-, bromo- and trifluoromethylthio-
trifluoromethylation of unactivated alkenes with sodium triflinate

Jing Fang,†,# Zhong-Kui Wang,†,# Shu-Wei Wu,† Wei-Guo Shen,† Gui-Zhen Ao† and Feng Liu*,†,§

†Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and
Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199
Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
§Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
#These authors contributed equally to this work.

E-mail: fliu2@suda.edu.cn

Table of Contents

1. General remarks .. S2
2. Optimization of the reaction conditions ... S2
3. Typical experimental procedure ... S3
4. Fluorescence quenching experiments .. S4
5. References for known products ... S6
6. Characterization of the substrates and products S6
7. NMR Spectra for the substrates and products S20

1. General remarks

\(^1\)H NMR spectra were recorded on 400 or 600 MHz (100 or 150 MHz for \(^1\)C NMR, 376 or 564 MHz for \(^19\)F NMR) agilent NMR spectrometer with CDCl\(_3\) as the solvent and tetramethylsilane (TMS) as the internal standard. Chemical shifts were reported in parts per million (ppm, \(\delta\) scale) downfield from TMS at 0.00 ppm and referenced to the CDCl\(_3\) at 7.26 ppm (for \(^1\)H NMR) or 77.16 ppm (for \(^13\)C NMR). Mass spectroscopy data of the products were collected on a GCT PremierTM (CI) Mass Spectrometer. Infrared (FT-IR) spectra were recorded on a Varian 1000FT-IR, \(\nu_{\text{max}}\) in cm\(^{-1}\). Melting points were measured using SGW, X-4B and values are uncorrected. All commercially available reagents and solvents were used as received unless otherwise specified. The substrates were purchased or readily prepared according to known methods (\textit{J. Org. Chem.} 2009, 74, 2854; \textit{Org. Lett.} 2016, 18, 5368; \textit{Angew. Chem., Int. Ed.} 2011, 50, 5541).

2. Screening of organic acids and solvents

![Chemical structure of reaction](image)

<table>
<thead>
<tr>
<th>Entry(^a)</th>
<th>LEDs</th>
<th>Catalyst</th>
<th>Acid (equiv)</th>
<th>Solvent</th>
<th>Yield (%)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>---</td>
<td>DCE</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>HCO(_2)H (2)</td>
<td>DCE</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>PhCO(_2)H (2)</td>
<td>DCE</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>AcOH (2)</td>
<td>DCE</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TsOH (2)</td>
<td>DCE</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TfOH (2)</td>
<td>DCE</td>
<td><5</td>
</tr>
<tr>
<td>7</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (2)</td>
<td>DCE</td>
<td>62</td>
</tr>
<tr>
<td>8</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (4)</td>
<td>DCE</td>
<td>55</td>
</tr>
<tr>
<td>9</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (8)</td>
<td>DCE</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (2)</td>
<td>DMSO</td>
<td><5</td>
</tr>
<tr>
<td>11</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (2)</td>
<td>DMF</td>
<td><5</td>
</tr>
<tr>
<td>12</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (2)</td>
<td>CH(_3)CN</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>White</td>
<td>Mes-Acr(^+)</td>
<td>TFA (2)</td>
<td>Acetone</td>
<td>27</td>
</tr>
</tbody>
</table>

\(^a\) Numbers 1-13 relate to entries in Table 1.

\(^b\) Yields are given as isolated yield.
3. Typical experimental procedure

To a suspension of 1a (80.4 mg, 0.4 mmol), CF₃SO₂Na (124.8 mg, 0.8 mmol) and N-Methyl-9-mesityl acridinium perchlorate (1.6 mg, 0.004 mmol) in DCE (4 mL) was added N-chlorophthalimide (87 mg, 0.48 mmol) and TFA (91.2 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 3a as a white solid (89.0 mg, 73% yield).

To a suspension of 1a (80.4 mg, 0.4 mmol), CF₃SO₂Na (124.8 mg, 0.8 mmol) and N-Methyl-9-mesityl acridinium perchlorate (1.6 mg, 0.004 mmol) in DCE (4 mL) was added N-bromophthalimide (108.4 mg, 0.48 mmol) and TFA (91.2 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 4a as a white solid (100.6 mg, 72% yield).

*1a (0.4 mmol), Mes-Acr⁺ (1 mol%), TsCl (0.48 mmol), CF₃SO₂Na (0.8 mmol), Acid (0.8 mmol), solvent (4 mL), Argon balloon, 5 W LEDs. †Isolated yield.
To a suspension of 1r (78.4 mg, 0.4 mmol), CF$_3$SO$_2$Na (124.8 mg, 0.8 mmol) and N-Methyl-9-mesityl acridinium perchlorate (8 mg, 0.02 mmol) in DCE (4 mL) was added N-trifluoromethylthiosaccharin (170 mg, 0.6 mmol) and TsOH (137.6 mg, 0.8 mmol) at rt. The resulting mixture was stirred upon 5W white LEDs irradiation under argon balloon. After the reaction was finished, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to give 7b as a white solid (105.4 mg, 72% yield).

4. Fluorescence quenching experiments

Emission intensities were recorded using LS55 Luminescence Spectrometer for all experiments. All Mes-Acr$^+$ solutions were excited at 450 nm and the emission intensity was collected at 500-550 nm. In a typical experiment, the CH$_3$CN solution of Mes-Acr$^+$ (0.1 mM) was added the appropriate amount of quencher in a screw-top 1.0 cm quartz cuvette. After degassing with nitrogen for 10 min, the emission spectra of the samples were collected. The results showed that CF$_3$SO$_2$Na quenched the photoexcited Mes-Acr$^+$ effectively.
5. References for known products

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reference</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. H. Oh; S. B. Han. Org. Lett., 2014, 16, 1310.</td>
<td>3a, 3k, 3q</td>
</tr>
<tr>
<td>3</td>
<td>S. Mizuta; V. Gouverneu; J. Am. Chem. Soc., 2013, 135, 2505.</td>
<td>3s</td>
</tr>
</tbody>
</table>

6. Characterization of the substrates and products

2-(But-3-en-1-yl)isoindoline-1,3-dione (1a): 1H NMR (400 MHz, CDCl$_3$) δ 7.90 – 7.77 (m, 2H), 7.75 – 7.66 (m, 2H), 5.87 – 5.70 (m, 1H), 5.14 – 4.93 (m, 2H), 3.77 (t, J = 7.1 Hz, 2H), 2.52 – 2.38 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 168.5, 134.6, 134.0, 132.2, 123.3, 117.7, 37.4, 33.0.

2-(Dec-9-en-1-yl)isoindoline-1,3-dione (1b): 1H NMR (400 MHz, CDCl$_3$) δ 7.87 – 7.77 (m, 2H), 7.75 – 7.63 (m, 2H), 5.87 – 5.69 (m, 1H), 5.03 – 4.82 (m, 2H), 3.66 (t, J = 7.3 Hz, 2H), 2.09 – 1.95 (m, 2H), 1.69 – 1.60 (m, 2H), 1.44 – 1.15 (m, 10H); 13C NMR (150 MHz, CDCl$_3$) δ 168.5, 139.3, 133.9, 132.2, 123.2, 114.2, 38.2, 33.9, 29.4, 29.2, 29.1, 29.0, 28.7, 26.9.

Hex-5-en-1-yl 2-chlorobenzoate (1c): 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, J = 7.6 Hz, 1H), 7.48 – 7.35 (m, 2H), 7.30 (t, J = 7.3 Hz, 1H), 5.90 – 5.71 (m, 1H), 5.00 (dd, J = 22.4, 13.7 Hz, 2H), 4.34 (t, J = 6.5 Hz, 2H), 2.12 (q, J = 7.0 Hz, 2H), 1.87 – 1.71 (m, 2H), 1.64 – 1.47 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 166.0, 138.4, 133.7, 132.5, 131.4, 131.1, 130.6, 126.7, 115.0, 65.6, 33.4, 28.1, 25.4.
Hex-5-en-1-yl 3-chlorobenzoate (1d): 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (s, 1H), 7.92 (d, $J = 7.7$ Hz, 1H), 7.52 (d, $J = 7.8$ Hz, 1H), 7.38 (t, $J = 7.9$ Hz, 1H), 5.94 – 5.72 (m, 1H), 5.01 (dd, $J = 21.6$, 13.7 Hz, 2H), 4.33 (t, $J = 6.6$ Hz, 2H), 2.13 (q, $J = 7.0$ Hz, 2H), 1.89 – 1.69 (m, 2H), 1.61 – 1.48 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 165.4, 138.3, 134.5, 132.9, 132.3, 129.78, 129.74, 127.7, 115.0, 65.3, 33.4, 28.2, 25.3.

Hex-5-en-1-yl 4-chlorobenzoate (1e): 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 8.1$ Hz, 2H), 7.40 (d, $J = 8.1$ Hz, 2H), 5.90 – 5.72 (m, 1H), 5.10 – 4.90 (m, 2H), 4.31 (t, $J = 6.5$ Hz, 2H), 2.12 (q, $J = 6.9$ Hz, 2H), 1.86 – 1.69 (m, 2H), 1.62 – 1.47 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 165.8, 139.4, 138.3, 131.0, 129.0, 128.8, 115.0, 65.2, 33.4, 28.2, 25.4.

But-3-en-1-yl 4-methylbenzenesulfonate (1f): 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (d, $J = 8.0$ Hz, 2H), 7.33 (d, $J = 7.9$ Hz, 2H), 5.72 – 5.56 (m, 1H), 5.10 – 4.98 (m, 2H), 4.03 (t, $J = 6.7$ Hz, 2H), 2.42 (s, 3H), 2.40 – 2.32 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 144.8, 133.1, 132.5, 129.9, 127.9, 118.2, 69.5, 33.2, 21.7.

N-allyl-4-chlorobenzamide (1g): 1H NMR (400 MHz, CDCl$_3$) δ 7.72 (d, $J = 8.3$ Hz, 2H), 7.40 (d, $J = 8.3$ Hz, 2H), 6.21 (brs, 1H), 6.02 – 5.83 (m, 1H), 5.38 – 5.10 (m, 2H), 4.08 (t, $J = 5.5$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 166.4, 137.9, 134.1, 132.9, 129.0, 128.5, 117.1, 42.7.

N-phenylpent-4-enamide (1h): 1H NMR (400 MHz, CDCl$_3$) δ 7.57 (s, 1H), 7.51 (d, $J = 7.8$ Hz, 2H), 7.29 (t, $J = 7.6$ Hz, 2H), 7.09 (t, $J = 7.2$ Hz, 1H), 5.94 – 5.76 (m, 1H), 5.20 – 4.94 (m, 2H), 2.54 – 2.36 (m, 4H); 13C NMR (150 MHz, CDCl$_3$) δ 170.9, 138.0, 137.0, 129.0, 124.4, 120.1, 116.0, 36.9, 29.6.
1-(4-Fluorophenyl)but-3-en-1-one (1i): 1H NMR (400 MHz, CDCl$_3$) δ 7.98 (dd, $J = 8.3$, 5.6 Hz, 2H), 7.12 (t, $J = 8.5$ Hz, 2H), 6.15 – 5.98 (m, 1H), 5.29 – 5.13 (m, 2H), 3.72 (d, $J = 6.6$ Hz, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 196.5, 165.9 (d, $J_{C,F} = 254.6$ Hz), 133.1 (d, $J_{C,F} = 3.0$ Hz), 131.0 (d, $J_{C,F} = 9.1$ Hz), 130.9, 119.0, 115.8 (d, $J_{C,F} = 22.0$ Hz), 43.5.

1-(3,5-Dibromo-4-methoxyphenyl)pent-4-en-1-one (1j): 1H NMR (400 MHz, CDCl$_3$) δ 8.09 (s, 2H), 5.96 – 5.77 (m, 1H), 5.16 – 4.93 (m, 2H), 3.93 (s, 3H), 3.00 (t, $J = 7.3$ Hz, 2H), 2.47 (q, $J = 6.9$ Hz, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 196.1, 158.1, 136.9, 135.0, 132.8, 118.8, 115.8, 60.9, 37.8, 28.0.

4-(Allyloxy)benzaldehyde (1k): 1H NMR (400 MHz, CDCl$_3$) δ 9.85 (s, 1H), 7.80 (d, $J = 8.4$ Hz, 2H), 6.99 (d, $J = 8.4$ Hz, 2H), 6.11 – 5.93 (m, 1H), 5.49 – 5.25 (m, 2H), 4.59 (d, $J = 4.9$ Hz, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 190.8, 163.6, 132.3, 132.0, 130.1, 118.3, 115.0, 69.0.

10-Bromodec-1-ene (1l): 1H NMR (400 MHz, CDCl$_3$) δ 5.88 – 5.70 (m, 1H), 5.07 – 4.86 (m, 2H), 3.40 (t, $J = 6.8$ Hz, 2H), 2.04 (q, $J = 13.7$, 6.8 Hz, 2H), 1.91 – 1.77 (m, 2H), 1.51 – 1.22 (m, 10H); 13C NMR (150 MHz, CDCl$_3$) δ 139.2, 114.3, 34.1, 33.9, 33.0, 29.4, 29.1, 29.0, 28.9, 28.3.

Octadec-1-ene (1m): 1H NMR (400 MHz, CDCl$_3$) δ 5.91 – 5.73 (m, 1H), 5.07 – 4.87 (m, 2H), 2.11 – 1.96 (m, 2H), 1.48 – 1.15 (m, 28H), 0.88 (t, $J = 6.5$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$, overlapping peaks) δ 139.4, 114.2, 34.0, 32.1, 29.9, 29.85, 29.81, 29.7, 29.6, 29.3, 29.1, 22.9, 14.3.
2-(2-Methylallyl)isoindoline-1,3-dione (1n): 1H NMR (400 MHz, CDCl$_3$) δ 7.91 – 7.82 (m, 2H), 7.77 – 7.69 (m, 2H), 4.89 (s, 1H), 4.82 (s, 1H), 4.22 (s, 2H), 1.78 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 168.2, 139.4, 134.1, 132.1, 123.5, 112.1, 43.4, 20.5.

![Image](https://via.placeholder.com/150)

3-Methylbut-3-en-1-yl 4-methylbenzenesulfonate (1o): 1H NMR (400 MHz, CDCl$_3$) δ 7.77 (d, $J = 8.1$ Hz, 2H), 7.33 (d, $J = 8.0$ Hz, 2H), 4.77 (s, 1H), 4.66 (s, 1H), 4.11 (t, $J = 6.8$ Hz, 2H), 2.43 (s, 3H), 2.33 (t, $J = 6.7$ Hz, 2H), 1.64 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 144.8, 140.2, 133.2, 129.9, 127.9, 113.1, 68.6, 36.8, 22.3, 21.7.

![Image](https://via.placeholder.com/150)

3-Methylbut-3-en-1-yl 4-chlorobenzoate (1p): 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 8.4$ Hz, 2H), 7.40 (d, $J = 8.4$ Hz, 2H), 4.84 (s, 2H), 4.80 (s, 2H), 4.43 (t, $J = 6.7$ Hz, 2H), 2.47 (t, $J = 6.7$ Hz, 2H), 1.80 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 165.8, 141.7, 139.4, 131.1, 129.0, 128.8, 112.6, 63.5, 36.9, 22.6.

![Image](https://via.placeholder.com/150)

1-Tosyl-2,5-dihydro-1H-pyrrole (1r): 1H NMR (400 MHz, CDCl$_3$) δ 7.71 (d, $J = 7.9$ Hz, 2H), 7.31 (d, $J = 7.8$ Hz, 2H), 5.64 (s, 2H), 4.11 (s, 4H), 2.42 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 143.6, 134.4, 129.9, 127.5, 125.6, 55.0, 21.6.

![Image](https://via.placeholder.com/150)

Diethyl 2,2-diallylmalonate (1s): 1H NMR (600 MHz, CDCl$_3$) δ 5.77 – 5.54 (m, 2H), 5.14 – 5.02 (m, 4H), 4.21 – 4.10 (m, 4H), 2.62 (d, $J = 7.4$ Hz, 4H), 1.29 – 1.17 (m, 6H); 13C NMR (150 MHz, CDCl$_3$) δ 170.9, 132.4, 119.2, 61.3, 57.4, 36.9, 14.2.

![Image](https://via.placeholder.com/150)

Allyl 4-chlorobenzoate (1t): 1H NMR (400 MHz, CDCl$_3$) δ 7.99 (d, $J = 8.4$ Hz, 2H), 7.40 (d, $J = 8.4$ Hz, 2H), 6.10 – 5.95 (m, 1H), 5.48 – 5.23 (m, 2H), 4.81 (d, $J = 5.6$ Hz, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 165.4, 139.5, 132.1, 131.1, 128.8, 128.7, 118.6, 65.9.
1-(1,1'-Biphenyl)-4-ylpent-4-en-1-one (1u): 1H NMR (400 MHz, CDCl$_3$) δ 8.05 (d, $J = 8.0$ Hz, 2H), 7.69 (d, $J = 8.1$ Hz, 2H), 7.63 (d, $J = 7.5$ Hz, 2H), 7.48 (t, $J = 7.4$ Hz, 2H), 7.44 – 7.38 (m, 1H), 6.06 – 5.85 (m, 1H), 5.24 – 4.98 (m, 2H), 3.11 (t, $J = 7.3$ Hz, 2H), 2.61 – 2.46 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 199.2, 145.8, 140.0, 137.5, 135.8, 129.1, 128.8, 128.3, 127.38, 127.36, 115.4, 37.9, 28.4.

2-(3-Chloro-5,5,5-trifluoropentyl)isoindoline-1,3-dione (3a): White solid; m.p. 64-66 °C; 73% yield (89 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.93 – 7.80 (m, 2H), 7.80 – 7.67 (m, 2H), 4.25 – 4.09 (m, 1H), 4.01 – 3.79 (m, 2H), 2.76 – 2.55 (m, 2H), 2.38 – 2.21 (m, 1H), 2.21 – 2.05 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 168.3, 134.3, 132.1, 125.2 (q, $J_{C-F}=277.6$ Hz), 123.6, 51.5 (q, $J_{C-F}=3.1$ Hz), 42.4 (q, $J_{C-F}=28.6$ Hz), 36.6, 35.2; 19F NMR (564 MHz, CDCl$_3$) δ -63.65 (t, $J = 10.1$ Hz, 3F).

2-(9-Chloro-11,11,11-trifluoropentyl)isoindoline-1,3-dione (3b): White solid; m.p. 49-51 °C; 84% yield (131 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.94 – 7.77 (m, 2H), 7.77 – 7.62 (m, 2H), 4.23 – 4.02 (m, 1H), 3.66 (t, $J = 7.1$ Hz, 2H), 2.71 – 2.41 (m, 2H), 1.91 – 1.60 (m, 4H), 1.60 – 1.38 (m, 2H), 1.36 – 1.17 (m, 8H); 13C NMR (100 MHz, CDCl$_3$) δ 168.7, 134.0, 132.3, 125.4 (q, $J_{C-F}=277.5$ Hz), 123.2, 54.3 (q, $J_{C-F}=3.1$ Hz), 42.5 (q, $J_{C-F}=28.3$ Hz), 38.12, 38.08, 29.3, 29.1, 28.8, 28.6, 26.8, 25.9; 19F NMR (376 MHz, CDCl$_3$) δ -63.83 (t, $J = 10.3$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2919, 2850, 1688, 1600, 831; HRMS (CI) calcd C$_{19}$H$_{24}$NO$_2$F$_3$Cl$_3$ $^{[\text{M + H}]}^{+}$: 390.1448, found: 390.1454.

5-Chloro-7,7,7-trifluoroheptyl 2-chlorobenzoate (3c): Colorless oil; 74% yield (101 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.81 (d, $J = 7.6$ Hz, 1H), 7.49 – 7.38 (m, 2H), 7.32 (t, $J = 7.3$ Hz, 1H), 4.36 (t, $J = 6.1$ Hz, 2H), 4.22 – 4.03 (m, 1H), 2.75 – 2.43 (m, 2H), 1.99 – 1.69 (m, 5H), 1.69 – 1.57 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 166.0, 133.7, 132.7, 131.5, 131.2, 130.4, 126.7, 125.3 (d, $J_{C-F}=277.6$ Hz), 65.2,
54.0 (q, $J_{CF} = 3.1$ Hz), 42.6 (q, $J_{CF} = 28.4$ Hz), 37.7, 28.0, 22.8; 19F NMR (376 MHz, CDCl$_3$) δ -63.78 (t, $J = 10.3$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2960, 1728, 1436, 1118, 747; HRMS (Cl) calcd C$_{14}$H$_{16}$O$_2$F$_3$Cl$_3$ $^+$ [M + H]$^+$: 343.0479, found: 343.0480.

5-Chloro-7,7,7-trifluoroheptyl 3-chlorobenzoate (3d): Colorless oil; 65% yield (90 mg); 1H NMR (400 MHz, CDCl$_3$) δ 8.01 (s, 1H), 7.92 (d, $J = 7.7$ Hz, 1H), 7.54 (d, $J = 7.9$ Hz, 1H), 7.39 (t, $J = 7.9$ Hz, 1H), 4.35 (t, $J = 6.1$ Hz, 2H), 4.21 – 4.08 (m, 1H), 2.74 – 2.47 (m, 2H), 2.00 – 1.68 (m, 5H), 1.68 – 1.54 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 165.5, 134.7, 133.1, 132.1, 129.9, 127.8, 125.3 (q, $J_{CF} = 277.6$ Hz), 65.0, 54.0 (q, $J_{CF} = 3.1$ Hz), 42.6 (q, $J_{CF} = 28.5$ Hz), 37.7, 28.1, 22.7; 19F NMR (376 MHz, CDCl$_3$) δ -63.76 (t, $J = 10.3$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2957, 1720, 1427, 1279, 748; HRMS (Cl) calcd C$_{14}$H$_{16}$O$_2$F$_3$Cl$_3$ $^+$ [M + H]$^+$: 343.0479, found: 343.0485.

5-Chloro-7,7,7-trifluoroheptyl 4-chlorobenzoate (3e): Colorless oil; 64% yield (88 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.97 (d, $J = 8.4$ Hz, 2H), 7.42 (d, $J = 8.4$ Hz, 2H), 4.34 (t, $J = 6.1$ Hz, 2H), 4.22 – 4.06 (m, 1H), 2.75 – 2.46 (m, 2H), 2.00 – 1.87 (m, 1H), 1.88 – 1.69 (m, 4H), 1.68 – 1.56 (m, 1H); 13C NMR (150 MHz, CDCl$_3$, overlapping peaks) δ 165.8, 139.5, 131.1, 128.9, 125.3 (q, $J_{CF} = 277.6$ Hz), 64.9, 54.0, 42.6 (q, $J_{CF} = 28.5$ Hz), 37.7, 28.1, 22.7; 19F NMR (564 MHz, CDCl$_3$) δ -59.07 (t, $J = 10.3$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2957, 1718, 1390, 1241, 759; HRMS (Cl) calcd C$_{14}$H$_{16}$O$_2$F$_3$Cl$_3$ $^+$ [M + H]$^+$: 343.0479, found: 343.0483.

3-Chloro-5,5,5-trifluoropentyl 4-methylbenzenesulfonate (3f): Yellow oil; 86% yield (114 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.80 (d, $J = 7.9$ Hz, 2H), 7.36 (d, $J = 7.9$ Hz, 2H), 4.29 – 4.21 (m, 2H), 4.21 – 4.14 (m, 1H), 2.68 – 2.48 (m, 2H), 2.46 (s, 3H), 2.35 – 2.18 (m, 1H), 2.03 – 1.87 (m, 1H); 13C NMR (150 MHz, CDCl$_3$) δ 145.3, 132.7, 130.1, 128.1, 125.0 (q, $J_{CF} = 277.7$ Hz), 66.4, 50.0, 42.4 (q, $J_{CF} = 28.9$ Hz), 37.2, 21.8; 19F NMR (564 MHz, CDCl$_3$) δ -63.63 (t, $J = 10.0$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2962, 2923, 1598, 1175, 775; HRMS (Cl) calcd C$_{12}$H$_{15}$O$_3$F$_3$SCl$_3$ $^+$ [M + H]$^+$: 311.0383, found: 331.0381.
4-Chloro-N-(2-chloro-4,4,4-trifluorobutyl)benzamide (3g): White solid; m.p. 132-134 °C; 69% yield (83 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.74\) (d, \(J = 8.3\) Hz, 2H), 7.44 (d, \(J = 8.4\) Hz, 2H), 6.53 (brs, 1H), 4.46 – 4.29 (m, 1H), 4.04 – 3.72 (m, 1H), 3.72 – 3.59 (m, 1H), 3.28 – 2.55 (m, 2H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta 166.8, 138.5, 132.1, 129.2, 128.6, 125.2\) (\(J_{C,F} = 277.4\) Hz), 53.7, 46.0, 40.2 (\(J_{C,F} = 29.4\) Hz); \(^{19}\)F NMR (564 MHz, CDCl\(_3\)) \(\delta -63.68\) (t, \(J = 10.1\) Hz, 3F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3302, 2922, 1637, 1185, 759; HRMS (CI) calcd C\(_{11}\)H\(_{11}\)NOF\(_3\)Cl\(_3\)\([\text{M} + \text{H}]^+\): 300.0170, found: 300.0172.

4-Chloro-6,6,6-trifluoro-N-phenylhexanamide (3h): Colorless oil; 74% yield (83 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.49\) (d, \(J = 7.8\) Hz, 2H), 7.41 (brs, 1H), 7.32 (t, \(J = 7.7\) Hz, 1H), 7.26 (t, \(J = 7.2\) Hz, 1H), 7.25 (m, 1H), 2.31 – 2.16 (m, 4H), 2.16 – 2.00 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta 169.6, 137.7, 129.2, 125.2\) (\(J_{C,F} = 277.7\) Hz), 124.7, 120.1, 53.8 (\(J_{C,F} = 3.1\) Hz), 42.8 (\(J_{C,F} = 28.7\) Hz), 33.7, 33.5; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta -63.62\) (t, \(J = 10.1\) Hz, 3F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 3301, 2924, 1773, 1543, 692; HRMS (CI) calcd C\(_{12}\)H\(_{14}\)NOF\(_3\)Cl\(_3\)\([\text{M} + \text{H}]^+\): 280.0716, found: 280.0711.

3-Chloro-5,5,5-trifluoro-1-(4-fluorophenyl)pentan-1-one (3i): Colorless oil; 54% yield (58 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.99\) (dd, \(J = 8.2, 5.6\) Hz, 2H), 7.17 (t, \(J = 8.4\) Hz, 2H), 4.82 – 4.71 (m, 1H), 3.60 (dd, \(J = 17.6, 7.0\) Hz, 1H), 3.40 (dd, \(J = 17.6, 6.0\) Hz, 1H), 2.91 – 2.63 (m, 2H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta 193.9, 166.3\) (\(J_{C,F} = 256.2\) Hz), 132.78 (d, \(J_{C,F} = 2.9\) Hz), 130.6 (d, \(J_{C,F} = 9.4\) Hz), 125.3 (q, \(J_{C,F} = 277.8\) Hz), 116.2 (d, \(J_{C,F} = 22.0\) Hz), 48.4, 46.1, 41.7 (q, \(J_{C,F} = 28.8\) Hz); \(^{19}\)F NMR (564 MHz, CDCl\(_3\)) \(\delta -63.48\) (t, \(J = 10.1\) Hz, 3F), -103.68 – - 103.74 (m, 1F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 2961, 2924, 1686, 1598, 669; HRMS (CI) calcd C\(_{11}\)H\(_{10}\)OF\(_4\)Cl\(_3\)\([\text{M} + \text{H}]^+\): 269.0356, found: 269.0351.
4-Chloro-1-(3,5-dibromo-4-methoxyphenyl)-6,6,6-trifluorohexan-1-one (3j):
Yellow oil; 53% yield (95 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 2H), 4.35–4.16 (m, 1H), 3.95 (s, 3H), 3.18 (t, J = 6.8 Hz, 2H), 2.86–2.54 (m, 2H), 2.46–2.31 (m, 1H), 2.13–1.95 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 195.2, 158.4, 134.6, 132.8, 125.2 (q, J_C-F = 277.7 Hz), 118.9, 61.0, 53.7, 42.9 (q, J_C-F = 28.7 Hz), 35.0, 32.1; ¹⁹F NMR (564 MHz, CDCl₃) δ -58.98 (t, J = 10.1 Hz, 3F); FT-IR (thin film, KBr): ν (cm⁻¹) 2930, 1689, 1382, 737; HRMS (CI) calcd C₁₃H₁₃O₂F₃Cl₃5Br₇92 [M + H]⁺: 450.8923, found: 450.8925.

4-(2-Chloro-4,4,4-trifluorobutoxy)benzaldehyde (3k): Colorless oil; 62% yield (66 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 7.87 (d, J = 8.5 Hz, 2H), 7.03 (d, J = 8.5 Hz, 2H), 4.48–4.38 (m, 1H), 4.32 (dd, J = 9.9, 4.8 Hz, 1H), 4.20 (dd, J = 9.8, 6.5 Hz, 1H), 3.05–2.84 (m, 1H), 2.79–2.56 (m, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 190.7, 162.7, 132.2, 131.0, 125.3 (q, J_C-F = 277.3 Hz), 115.0, 70.6, 50.3, 39.1 (q, J_C-F = 29.4 Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -61.32 (t, J = 10.1 Hz, 3F).

11-Bromo-3-chloro-1,1,1-trifluoroundecane (3l): Colorless oil; 65% yield (84 mg); ¹H NMR (600 MHz, CDCl₃) δ 4.15–4.07 (m, 1H), 3.40 (t, J = 6.8 Hz, 2H), 2.66–2.48 (m, 2H), 1.89–1.79 (m, 3H), 1.79–1.70 (m, 1H), 1.59–1.41 (m, 4H), 1.37–1.30 (m, 4H), 0.90–0.85 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 125.4 (q, J_C-F = 277.5 Hz), 54.3, 42.6 (q, J_C-F = 28.4 Hz), 38.2, 34.0, 32.9, 29.3, 28.9, 28.8, 28.2, 26.0; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.90 (t, J = 10.3 Hz, 3F).

3-Chloro-1,1,1-trifluorononadecane (3m): Colorless oil; 72% yield (103 mg); ¹H NMR (600 MHz, CDCl₃) δ 4.14–4.08 (m, 1H), 2.67–2.49 (m, 2H), 1.86–1.79 (m, 1H), 1.78–1.72 (m, 1H), 1.59–1.51 (m, 2H), 1.49–1.40 (m, 2H), 1.37–1.24 (m, 24H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃, overlapping peaks) δ 125.5 (q, J_C-F = 277.5 Hz), 54.3, 42.6 (q, J_C-F = 28.3 Hz), 38.3, 32.1, 29.89, 29.87, 29.81, 29.79, 29.7, 29.6, 29.5, 29.1, 26.1, 22.9, 14.3; ¹⁹F NMR (564 MHz, CDCl₃) δ -63.94 (t, J = 10.3 Hz, 3F).
2-(2-Chloro-4,4,4-trifluoro-2-methylbutyl)isoindoline-1,3-dione (3n): White solid; m.p. 104-106 °C; 60% yield (73 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.93 – 7.88 (m, 2H), 7.80 – 7.75 (m, 2H), 4.04 (s, 2H), 2.89 – 2.60 (m, 2H), 1.75 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.4, 134.6, 131.8, 125.2 (q, \(J_{C-F} = 278.4\) Hz), 123.9, 65.3, 49.5, 45.5 (q, \(J_{C-F} = 28.4\) Hz), 28.0; \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -60.00 (t, \(J = 10.5\) Hz, 3F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 2989, 1712, 1384, 1098, 715; HRMS (CI) calcd C\(_{13}\)H\(_{12}\)NO\(_2\)F\(_3\)Cl\(_3\) [M + H]\(^+\): 306.0509, found: 306.0514.

3-Chloro-5,5,5-trifluoro-3-methylpentyl 4-methylbenzenesulfonate (3o): Yellow oil; 85% yield (117 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.79 (d, \(J = 8.1\) Hz, 2H), 7.36 (d, \(J = 7.9\) Hz, 2H), 4.29 (t, \(J = 6.4\) Hz, 2H), 2.64 (q, \(J = 10.6\) Hz, 2H), 2.45 (s, 3H), 2.34 – 2.14 (m, 2H), 1.67 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 145.3, 132.8, 130.1, 128.0, 124.8 (q, \(J_{C-F} = 278.7\) Hz), 66.6, 64.9, 47.1 (q, \(J_{C-F} = 27.9\) Hz), 42.3, 30.3, 21.7; \(^{19}\)F NMR (564 MHz, CDCl\(_3\)) \(\delta\) -60.66 (t, \(J = 10.6\) Hz, 3F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 2928, 1598, 1364, 1210, 764; HRMS (CI) calcd C\(_{13}\)H\(_{17}\)O\(_3\)F\(_3\)SCl\(_3\) [M + H]\(^+\): 345.0539, found: 345.0545.

3-Chloro-5,5,5-trifluoro-3-methylpentyl 4-chlorobenzoate (3p): Colorless oil; 88% yield (115 mg); \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.95 (d, \(J = 8.4\) Hz, 2H), 7.41 (d, \(J = 8.4\) Hz, 2H), 4.68 – 4.49 (m, 2H), 2.88 – 2.65 (m, 2H), 2.48 – 2.25 (m, 2H), 1.78 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 165.7, 139.7, 131.1, 128.9, 127.7, 125.0 (q, \(J_{C-F} = 278.7\) Hz), 65.4, 61.7, 47.2 (q, \(J_{C-F} = 27.8\) Hz), 42.1, 30.5; \(^{19}\)F NMR (564 MHz, CDCl\(_3\)) \(\delta\) -60.61 (t, \(J = 10.7\) Hz, 3F); FT-IR (thin film, KBr): \(\nu\) (cm\(^{-1}\)) 2972, 1720, 1595, 1268, 758; HRMS (CI) calcd C\(_{13}\)H\(_{14}\)O\(_2\)F\(_3\)Cl\(_3\) [M + H]\(^+\): 329.0323, found: 329.0328.

5-Chloro-6-(trifluoromethyl)decane (3q): yield: 63% (1.2:1 dr); \(^1\)H NMR (600 MHz, CDCl\(_3\)) \(\delta\) 4.25 – 4.13 (m, 1H), 2.59 – 2.47 (m, 0.66H), 2.38 – 2.29 (m, 0.55H), 1.89 – 1.17 (m, 12H), 0.98 – 0.88 (m, 6H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 127.1 (q, \(J_{C-F} = 281.5\) Hz), 126.9 (q, \(J_{C-F} = 282.2\) Hz), 60.0, 59.2, 49.5 (q, \(J_{C-F} = 24.1\) Hz), 48.5 (q, \(J_{C-F} = 24.6\) Hz), 36.1, 33.7, 30.1, 29.9, 29.7, 29.3, 29.0, 24.3, 24.0, 22.7, 22.6, 22.0, 21.9, 13.9, 13.8, 13.7; \(^{19}\)F NMR (564 MHz, CDCl\(_3\)) \(\delta\) -65.66 (d, \(J = 9.4\) Hz, 1.64F), -67.44 (d, \(J = 9.2\) Hz, 1.36F).
3-Chloro-1-tosyl-4-(trifluoromethyl)pyrrolidine (3r): yield: 41%; \(^{1}H\) NMR (600 MHz, CDCl\(_3\)) \(\delta\) 7.72 (d, \(J = 8.2\) Hz, 2H), 7.36 (d, \(J = 8.2\) Hz, 2H), 4.32 (dd, \(J = 11.0, 5.3\) Hz, 1H), 3.79 (dd, \(J = 11.2, 6.2\) Hz, 1H), 3.65 (dd, \(J = 10.8, 9.1\) Hz, 1H), 3.46 (dd, \(J = 11.0, 5.5\) Hz, 1H), 3.41 (dd, \(J = 11.2, 5.1\) Hz, 1H), 3.08 – 2.98 (m, 1H), 2.45 (s, 3H); \(^{13}C\) NMR (150 MHz, CDCl\(_3\)) \(\delta\) 144.6, 132.8, 130.1, 127.8, 125.2 (q, \(J_{C-F} = 279.0\) Hz), 56.2, 52.8, 51.9 (q, \(J_{C-F} = 28.7\) Hz), 46.0, 21.7; \(^{19}F\) NMR (564 MHz, CDCl\(_3\)) \(\delta\) -70.66 (d, \(J = 8.6\) Hz, 3F).

Diethyl 3-(chloromethyl)-4(2,2,2-trifluoroethyl)cyclopentane-1,1-dicarboxylate (3s): Colorless oil; 41% yield (56 mg); \(^{1}H\) NMR (600 MHz, CDCl\(_3\)) \(\delta\) 4.19 (q, \(J = 7.1\) Hz, 4H), 3.50 (dd, \(J = 11.1, 6.2\) Hz, 1H), 3.43 (dd, \(J = 11.1, 7.5\) Hz, 1H), 2.56 – 2.46 (m, 4H), 2.34 – 2.27 (m, 2H), 2.23 – 2.07 (m, 2H), 1.27 – 1.22 (m, 6H); \(^{13}C\) NMR (150 MHz, CDCl\(_3\)) \(\delta\) 172.2, 172.1, 126.9 (q, \(J_{C-F} = 277.1\) Hz), 62.0, 61.9, 58.6, 44.4, 44.0, 38.6, 37.1, 35.6, 33.4 (q, \(J_{C-F} = 28.3\) Hz); \(^{19}F\) NMR (564 MHz, CDCl\(_3\)) \(\delta\) -64.49 (t, \(J = 10.8\) Hz, 3F).

2-(3-Bromo-5,5,5-trifluoropentyl)isoindoline-1,3-dione (4a): White solid; m.p. 58-60 °C; 72% yield (101 mg); \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.90 – 7.81 (m, 2H), 7.78 – 7.69 (m, 2H), 4.23 – 4.09 (m, 1H), 4.02 – 3.81 (m, 2H), 2.95 – 2.56 (m, 2H), 2.05 – 1.70 (m, 5H), 1.69 – 1.59 (m, 1H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.3, 134.3, 132.1, 125.2 (q, \(J_{C-F} = 278.2\) Hz), 123.5, 43.0 (q, \(J_{C-F} = 28.7\) Hz), 41.2 (q, \(J_{C-F} = 3.2\) Hz), 37.0, 36.2; \(^{19}F\) NMR (376 MHz, CDCl\(_3\)) \(\delta\) -63.61 (t, \(J = 10.1\) Hz, 3F).

5-Bromo-7,7,7-trifluoroheptyl 4-chlorobenzoate (4b): Colorless oil; 71% yield (110 mg); \(^{1}H\) NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.97 (d, \(J = 8.4\) Hz, 2H), 7.42 (d, \(J = 8.4\) Hz, 2H), 4.34 (t, \(J = 6.0\) Hz, 2H), 4.25 – 4.09 (m, 1H), 2.95 – 2.56 (m, 2H), 2.05 – 1.70 (m, 5H), 1.69 – 1.59 (m, 1H); \(^{13}C\) NMR (150 MHz, CDCl\(_3\)) \(\delta\) 165.9, 139.6, 131.1, 128.9, 128.8, 125.4 (q, \(J_{C-F} = 278.1\) Hz), 64.8, 44.8, 43.3 (q, \(J_{C-F} = 28.5\) Hz), 38.1, 28.0, 24.0; \(^{19}F\) NMR (564 MHz, CDCl\(_3\)) \(\delta\) -63.82 (t, \(J = 10.2\) Hz, 3F); FT-IR (thin film, KBr): ν
4-(2-Bromo-4,4,4-trifluorobutoxy)benzaldehyde (4c): Colorless oil; 60% yield (74 mg); 1H NMR (400 MHz, CDCl$_3$) δ 9.91 (s, 1H), 7.86 (d, $J = 7.9$ Hz, 2H), 7.03 (d, $J = 8.0$ Hz, 2H), 4.47 - 4.33 (m, 2H), 4.31 - 4.21 (m, 1H), 3.17 - 2.99 (m, 1H), 2.87 - 2.70 (m, 1H); 13C NMR (150 MHz, CDCl$_3$) δ 190.8, 162.6, 132.2, 131.0, 125.3 (q, $J_{C-F} = 277.6$ Hz), 115.5, 70.8, 39.6 (q, $J_{C-F} = 29.4$ Hz), 39.0; 19F NMR (564 MHz, CDCl$_3$) δ -63.99 (t, $J = 10.1$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 3056, 3005, 1693, 1596, 771; HRMS (CI) calcd C$_{14}$H$_{16}$O$_2$F$_3$Cl$_3$Br$_7$ [M + H]$^+$: 386.9974, found: 386.9975.

2-(2-Bromo-4,4,4-trifluoro-2-methylbutyl)isoindoline-1,3-dione (4d): White solid; m.p. 63-65 °C; 76% yield (106 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.95 - 7.87 (m, 2H), 7.82 - 7.75 (m, 2H), 4.20 - 4.09 (m, 2H), 3.06 - 2.72 (m, 2H), 1.92 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 168.4, 134.6, 131.8, 125.2 (q, $J_{C-F} = 278.8$ Hz), 123.9, 58.2, 50.4, 46.6 (q, $J_{C-F} = 28.4$ Hz), 29.6; 19F NMR (564 MHz, CDCl$_3$) δ -60.01 (t, $J = 10.6$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2933, 1774, 1387, 1260, 713; HRMS (CI) calcd C$_{13}$H$_{12}$NO$_2$F$_3$Br$_7$ [M + H]$^+$: 350.0003, found: 350.0004.

3-Bromo-5,5,5-trifluoro-3-methylpentyl 4-chlorobenzoate (4e): Colorless oil; 82% yield (122 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, $J = 8.4$ Hz, 2H), 7.42 (d, $J = 8.4$ Hz, 2H), 4.71 - 4.53 (m, 2H), 3.05 - 2.84 (m, 2H), 2.53 - 2.32 (m, 2H), 1.98 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 165.4, 139.6, 130.9, 128.8, 128.3, 124.9 (q, $J_{C-F} = 279.5$ Hz), 62.9, 59.3, 48.3 (q, $J_{C-F} = 27.7$ Hz), 42.9, 32.1; 19F NMR (564 MHz, CDCl$_3$) δ -60.52 (t, $J = 10.7$ Hz, 3F).

3-Bromo-5,5,5-trifluoro-3-methylpentyl 4-methylbenzenesulfonate (4f): Colorless oil; 75% yield (116 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.80 (d, $J = 8.0$ Hz, 2H), 7.36
(d, J = 7.9 Hz, 2H), 4.32 (t, J = 6.5 Hz, 2H), 2.80 (q, J = 10.6 Hz, 2H), 2.45 (s, 3H), 2.35 – 2.22 (m, 2H), 1.86 (s, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 145.3, 132.8, 130.1, 128.0, 124.9 (q, J$_{C-F}$ = 279.4 Hz), 67.9, 58.7, 48.3 (q, J$_{C-F}$ = 27.9 Hz), 43.3, 32.0, 21.8; 19F NMR (564 MHz, CDCl$_3$) δ -60.60 (t, J = 10.6 Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2920, 2850, 1598, 1362, 762; HRMS (CI) calcd C$_{13}$H$_{17}$O$_3$F$_3$SBr$_7$ [M + H]$^+$: 389.0034, found: 389.0024.

2-(11,11,11-Trifluoro-9-((trifluoromethyl)thio)undecyl)isoindoline-1,3-dione (7a): Colorless oil; 78% yield (142 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.83 (dd, J = 5.1, 3.1 Hz, 2H), 7.70 (dd, J = 5.2, 3.0 Hz, 2H), 3.67 (t, J = 7.2 Hz, 2H), 3.45 – 3.34 (m, 1H), 2.71 – 2.41 (m, 2H), 1.90 – 1.76 (m, 1H), 1.73 – 1.62 (m, 3H), 1.57 – 1.44 (m, 1H), 1.43 – 1.26 (m, 10H); 13C NMR (100 MHz, CDCl$_3$) δ 168.6, 134.0, 132.3, 130.8 (q, J$_{C-F}$ = 306.7 Hz), 125.6 (q, J$_{C-F}$ = 278.0 Hz), 123.3, 40.3 (q, J$_{C-F}$ = 28.1 Hz), 39.7, 38.1, 34.4, 29.3, 29.1, 29.0, 28.7, 26.9, 26.2; 19F NMR (376 MHz, CDCl$_3$) δ -39.66 (s, 3F), -63.72 (t, J = 11.1 Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2932, 2859, 1711, 1396, 718; HRMS (CI) calcd C$_{20}$H$_{24}$NO$_2$F$_6$S [M + H]$^+$: 456.1432, found: 456.1428.

4,4,4-Trifluoro-2-((trifluoromethyl)thio)butyl 4-chlorobenzoate (7b): Colorless oil; 72% yield (105 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.96 (d, J = 8.2 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 4.62 (dd, J = 11.7, 5.0 Hz, 1H), 4.53 (dd, J = 11.7, 5.5 Hz, 1H), 3.88 – 3.76 (m, 1H), 2.84 – 2.58 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 165.0, 140.4, 131.2, 130.4 (q, J$_{C-F}$ = 307.2 Hz), 129.2, 127.6, 125.3 (q, J$_{C-F}$ = 277.7 Hz), 65.7, 37.9, 37.2 (q, J$_{C-F}$ = 29.5 Hz); 19F NMR (564 MHz, CDCl$_3$) δ -40.03 (s, 3F), -64.02 (t, J = 10.2 Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2965, 1728, 1595, 1256, 757; HRMS (CI) calcd C$_{12}$H$_{10}$O$_2$F$_6$S$_3$Cl$_3$ [M + H]$^+$: 366.9994, found: 366.9987.

6,6,6-Trifluoro-N-phenyl-4-((trifluoromethyl)thio)hexanamide (7c): Yellowish solid; m.p. 67-69 °C; 64% yield (88 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.48 (d, J = 7.8 Hz, 2H), 7.32 (t, J = 7.5 Hz, 3H), 7.12 (t, J = 7.2 Hz, 1H), 3.59 – 3.46 (m, 1H), 2.79 – 2.51 (m, 4H), 2.47 – 2.33 (m, 1H), 2.04 – 1.87 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 169.4, 137.6, 130.6 (q, J$_{C-F}$ = 307.0 Hz), 129.2, 125.5 (q, J$_{C-F}$ = 278.0 Hz), 124.8, 120.2, 41.0 (q, J$_{C-F}$ = 28.4 Hz), 39.4, 34.0, 29.7; 19F NMR (376 MHz, CDCl$_3$) δ -39.29 (s, 3F), -63.41 (t, J = 11.1 Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 3245,
5,5,5-Trifluoro-3-((trifluoromethyl)thio)pentyl 4-methylbenzenesulfonate (7d): Colorless oil; 64% yield (101 mg); 1H NMR (400 MHz, CDCl$_3$) δ 7.79 (d, $J = 8.1$ Hz, 2H), 7.36 (d, $J = 8.0$ Hz, 2H), 4.22 (t, $J = 5.4$ Hz, 2H), 3.56 – 3.42 (m, 1H), 2.74 – 2.58 (m, 1H), 2.58 – 2.49 (m, 1H), 2.45 (s, 3H), 2.33 – 2.21 (m, 1H), 2.00 – 1.88 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 145.4, 132.6, 130.3 (q, $J_{C-F} = 307.4$ Hz), 130.1, 128.1, 125.3 (q, $J_{C-F} = 278.0$ Hz), 66.4, 40.3 (q, $J_{C-F} = 28.7$ Hz), 36.0, 33.5, 21.8; 19F NMR (376 MHz, CDCl$_3$) δ -39.15 (s, 3F), -63.42 (t, $J = 10.9$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2962, 1599, 1360, 1176, 757; HRMS (CI) calcd C$_{13}$H$_{14}$NOF$_6$S $[M + H]^+$: 346.0700, found: 346.0686.

1-([1,1'-Biphenyl]-4-yl)-6,6,6-trifluoro-4-((trifluoromethyl)thio)hexan-1-one (7e): White solid; m.p. 101-103 °C; 74% yield (120 mg); 1H NMR (400 MHz, CDCl$_3$) δ 8.05 (d, $J = 7.9$ Hz, 2H), 7.71 (d, $J = 7.9$ Hz, 2H), 7.64 (d, $J = 7.6$ Hz, 2H), 7.49 (t, $J = 7.3$ Hz, 2H), 7.45 – 7.38 (m, 1H), 3.67 – 3.52 (m, 1H), 3.29 (t, $J = 6.9$ Hz, 2H), 2.86 – 2.68 (m, 1H), 2.70 – 2.55 (m, 1H), 2.54 – 2.38 (m, 1H), 2.11 – 1.93 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 197.9, 146.3, 139.9, 135.3, 130.7 (q, $J_{C-F} = 307.0$ Hz), 129.1, 128.7, 128.5, 127.5, 127.4, 125.5 (q, $J_{C-F} = 278.1$ Hz), 41.1 (q, $J_{C-F} = 28.5$ Hz), 39.5, 35.3, 28.6; 19F NMR (376 MHz, CDCl$_3$) δ -39.31 (s, 3F), -63.44 (t, $J = 10.4$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2909, 1680, 1389, 1243, 697; HRMS (CI) calcd C$_{19}$H$_{17}$OF$_6$S $[M + H]^+$: 407.0904, found: 407.0912.

4-(4,4,4-Trifluoro-2-((trifluoromethyl)thio)butoxy)benzaldehyde (7f): White solid; m.p. 68-70 °C; 69% yield (92 mg); 1H NMR (400 MHz, CDCl$_3$) δ 9.91 (s, 1H), 7.87 (d, $J = 8.1$ Hz, 2H), 7.02 (d, $J = 8.2$ Hz, 2H), 4.49 – 4.16 (m, 2H), 3.88 – 3.74 (m, 1H), 3.05 – 2.56 (m, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 190.6, 162.4, 132.0, 130.9, 130.4 (q, $J_{C-F} = 307.1$ Hz), 125.2 (q, $J_{C-F} = 277.9$ Hz), 114.8, 69.2, 38.0, 36.5 (q, $J_{C-F} = 29.5$ Hz); 19F NMR (564 MHz, CDCl$_3$) δ -40.41 (s, 3F), -64.07 (t, $J = 10.3$ Hz, 3F); FT-IR (thin film, KBr): ν (cm$^{-1}$) 2949, 1673, 1425, 1148, 758; HRMS (CI) calcd C$_{12}$H$_{11}$O$_2$F$_6$S $[M + H]^+$: 333.0384, found: 333.0382.
(Trifluoromethyl)(6-(trifluoromethyl)decan-5-yl)sulfane (7g): yield: 58% (1.2:1 dr); 1H NMR (400 MHz, CDCl$_3$) δ 3.53 – 3.41 (m, 0.45H), 3.35 – 3.24 (m, 0.55H), 2.67 – 2.50 (m, 1H), 1.89 – 1.20 (m, 12H), 1.03 – 0.83 (m, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 131.3 (d, $J_{C-F} = 306.1$ Hz), 131.0 (q, $J_{C-F} = 306.5$ Hz), 127.6 (q, $J_{C-F} = 281.8$ Hz), 127.4 (q, $J_{C-F} = 282.3$ Hz), 48.6 (q, $J_{C-F} = 24.4$ Hz), 45.1, 44.4, 32.1, 30.2, 29.8, 29.7, 29.6, 26.3, 24.4, 22.7, 22.6, 22.2, 14.0, 13.9, 13.9, 13.8; 19F NMR (376 MHz, CDCl$_3$) δ -40.65 (s, 1.36F), -40.74 (s, 1.64F), -66.23 (d, $J = 10.4$ Hz, 1.36F), -66.52 (d, $J = 10.6$ Hz, 1.64F).
7. NMR Spectra for the substrates and products

\(^1\)H NMR of 1a

\[^{13}\)C NMR of 1a
1H NMR of 1b

13C NMR of 1b
1H NMR of 1c

\[
\text{Chemical Shifts:} \quad 1.05, 2.02, 1.00, 2.05, 2.16, 2.18, 2.19
\]

13C NMR of 1c

\[
\text{Chemical Shifts:} \quad 90, 120, 130, 140, 150, 160, 170, 180, 190, 200
\]
1H NMR of 1d

13C NMR of 1d
1H NMR of 1e

13C NMR of 1e
^{1}H NMR of 1f

^{13}C NMR of 1f
1H NMR of 1g

13C NMR of 1g
1H NMR of $1h$

13C NMR of $1h$
\[^1H \text{NMR of } 1i \]

\[^13C \text{NMR of } 1i \]
^{1}H NMR of 1j

^{13}C NMR of 1j
1H NMR of 1k

13C NMR of 1k
1H NMR of 11

13C NMR of 11
1H NMR of 1m

13C NMR of 1m
1H NMR of 1n

![H NMR spectrum of 1n](image)

13C NMR of 1n

![C NMR spectrum of 1n](image)
1H NMR of 10

13C NMR of 10
1H NMR of 1p

13C NMR of 1p
1H NMR of 1r

13C NMR of 1r
1H NMR of $1s$

13C NMR of $1s$
1H NMR of 1t

13C NMR of 1t
1H NMR of 1u

13C NMR of 1u
1H NMR of 3a

13C NMR of 3a
\(^{19}\text{F NMR of 3a}\)

\[
\text{Chemical Structure Image}
\]

\(^{1}\text{H NMR of 3b}\)

\[
\text{Chemical Structure Image}
\]
13C NMR of 3b

19F NMR of 3b
1H NMR of 3c

13C NMR of 3c
19F NMR of 3c

1H NMR of 3d
13C NMR of 3d

19F NMR of 3d
1H NMR of 3e

13C NMR of 3e
$^{19}\text{F NMR of 3e}$

$^{1}\text{H NMR of 3f}$
13C NMR of $3f$

19F NMR of $3f$
H NMR of 3g

13C NMR of 3g
19F NMR of 3g

1H NMR of 3h
13C NMR of 3h

19F NMR of 3h
1H NMR of 3i

13C NMR of 3i
19F NMR of 3i

1H NMR of 3j
13C NMR of 3j

19F NMR of 3j
1H NMR of 3k

13C NMR of 3k
19F NMR of 3k

1H NMR of 3l
13C NMR of 3l

19F NMR of 3l
^{1}H NMR of $3m$

\[\text{(Diagram of ^{1}H NMR spectrum of $3m$)} \]

^{13}C NMR of $3m$

\[\text{(Diagram of ^{13}C NMR spectrum of $3m$)} \]
19F NMR of 3m

1H NMR of 3n
13C NMR of 3n

19F NMR of 3n
1H NMR of 3o

13C NMR of 3o
^{19}F NMR of 3o

1H NMR of 3p
$^{13}\text{C NMR of 3p}$

$^{19}\text{F NMR of 3p}$
^{1}H NMR of 3q

^{13}C NMR of 3q
$^{19}\text{F NMR of 3q}$

$^{1}\text{H NMR of 3r}$
13C NMR of 3r

19F NMR of 3r
1H NMR of $3s$

![1H NMR spectrum of $3s$]

13C NMR of $3s$

![13C NMR spectrum of $3s$]
$^{19}\text{F NMR of 3s}$

$^{1}\text{H NMR of 4a}$
13C NMR of 4a

19F NMR of 4a
1H NMR of 4b

13C NMR of 4b
^{19}F NMR of $4b$

1H NMR of $4c$
13C NMR of 4c

19F NMR of 4c
1H NMR of 4d

\[
\text{Structure}
\]

13C NMR of 4d

\[
\text{Structure}
\]
19F NMR of 4d

1H NMR of 4e
13C NMR of 4e

19F NMR of 4e
1H NMR of 4f

13C NMR of 4f
$^{19}\text{F NMR of } 4f$

$^{1}\text{H NMR of } 7a$
13C NMR of 7a

19F NMR of 7a
1H NMR of 7b

13C NMR of 7b
19F NMR of 7b

1H NMR of 7c
13C NMR of 7c

19F NMR of 7c
1H NMR of 7d

13C NMR of 7d
19F NMR of 7d

1H NMR of 7e
13C NMR of 7e

19F NMR of 7e
1H NMR of 7f

13C NMR of 7f
19F NMR of $7f$

1H NMR of $7g$
13C NMR of 7g

19F NMR of 7g