Supporting Information

P-Stereogenic Bisphosphines with a Hydrazine Backbone. From N–N Atropoisomerism to Double Nitrogen Inversion

Contribution by

Amparo Prades, Samuel Núñez-Pertíñez, Antoni Riera,* Xavier Verdaguer*

Table of contents:

Table of contents:
General Methods .. 2
Synthesis of new compounds 2
Kinetic studies .. 11
Crystal data and structure refinement parameters 14
Hydrogenation substrates and products 18
1H, 31P and 13C NMR spectra 20
General Methods. All reactions were carried out under nitrogen atmosphere in dried solvents. THF, Et₂O and CH₂Cl₂ were dried in a PureSolv purification system from Innovative Technology, Inc. Toluene and deuterated solvents were purchased from Aldrich and used without further purification. Thin layer chromatography was carried out using TLC-aluminum sheets with silica gel (Merk 60 F₂₅₄). Chromatography purifications were carried out using flash grade silica gel (SDS Chromatogel 60 ACC, 35-70 μm). NMR spectra were recorded at 23°C on a Varian Mercury 400 and on a Varian Unity 300 spectrometres. ¹H NMR and ¹³C NMR spectra were referenced either to relative internal TMS or to residual solvent peaks. ³¹P NMR spectra were referenced to phosphoric acid. Signal multiplicities in the ¹³C spectra have been assigned by HSQC experiments. Optical rotations were recorded on a Perkin Elmer polarimeter at the sodium D line at room temperature (concentration in g/mL). Melting points were determined using a Büchi melting point apparatus and were not corrected. IR spectra were recorded in a FT-IR apparatus. HRMS were recorded using an electrospray ionization spectrometer. HPLC chromatography was performed on an Agilent Technologies Series 1100 chromatograph with UV detector. NaH as dispersion oil (60%w/w), DABCO, anhydrous triethylamine, pyrrolidine, methyl iodide, allyl bromide and 3-bromo-2-bromomethyl-1-propene were purchased from Aldrich and used without further purification. [Rh(COD)₂][BF₄] and NaBARF₄ were purchased from STREM Chemicals and used without further purification. Phosphinous acid ¹¹ and [Rh(COD)₂][BARF₄]² prepared following the literature procedure.

Synthesis of new compounds

(R)-tert-butyl-2-(tert-butyl(methyl)phosphino)hydrazinecarboxylate-borane (2).

![Chemical structure of (R)-tert-butyl-2-(tert-butyl(methyl)phosphino)hydrazinecarboxylate-borane (2).]

To a Schlenk tube containing 365 mg of methanesulfonic anhydride (2.10 mmol, 1.2 eq), a solution of 233 mg of 1 (1.75 mmol, 1.0 eq) in dichloromethane (10mL) was cannulated and the mixture was cooled at -20 ºC. 878 µL of triethylamine (6.30mmol, 3.0 eq) were added dropwise over 10 minutes and the mixture was allowed to react for 1 hour at -20 ºC. Then, a dichloromethane solution of 833 mg of tert-butyl carbazate (6.30 mmol, 3.0 eq) was cannulated and the mixture was stirred at -20 ºC overnight. After that time, the solution was allowed to warm at room
temperature, the organic phase was washed with 3x20 mL of HCl (aq) 1.0 M solution and 20 mL of brine, dried over anhydrous MgSO₄, filtrated and the solvent was removed under reduced pressure. The resulting solid was dissolved in 10 mL of dichloromethane and washed with 4x10 mL of NaOH (aq) 1.0 M solution, dried over anhydrous MgSO₄, filtrated and the solvent was removed under reduced pressure. Finally the product was eluted through a SiO₂ flash column with hexane:AcOEt (8:2) as eluting phase to yield 253 mg of a white solid. Yield: 58%.

TLC (hexane:AcOEt 8:2): Rf = 0.50

¹H-NMR (400 MHz, CDCl₃) δ 6.10 (brs, 1H, CO-NH), 4.19 (brd, ²/J₆H = 19.3 Hz, 1H, PNH), 1.45 (s, 9H, (CH₃)₂CO), 1.45 (d, ²/J₆H = 8.9 Hz, 3H, PCH₃), 1.16 (d, ³/J₆H = 14.2 Hz, 9H, PC(CH₃)₃) and 0.41 ppm (q, ¹/J₆BH = 84.0 Hz, 3H, BH₃).

¹³C-NMR (101 MHz, CDCl₃) δ 156.8 (s, C=O), 81.5 (s, CO-NH), 30.8 (d, ¹/J₆PC = 39.0 Hz, PC(CH₃)₃), 28.2 (s, (CH₃)₂CO), 24.8 (d, ²/J₆PC = 2.8 Hz, PC(CH₃)₃) and 6.5 ppm (d, ¹/J₆PC = 6.5 Hz, PCH₃).

³¹P-NMR (202 MHz, CDCl₃) δ 81.2 ppm (brs).

IR film, cm⁻¹ν: 3000.4, 2971.9, 2388.5, 1708.7, 1513.1, 1160.9.

[α]₀ = +19.0º (1 g/100mL, CHCl₃).

MP (°C) = 108-110.

(R)-(tert-butyl(methyl)phosphanyl)hydrazine-borane (3)

In a Schlenk, 960 mg of 2 (3.87 mmol, 1.0 eq) were dissolved in 19 mL of a 1.25 M anhydrous solution of HCl in methanol. The mixture was stirred overnight at room temperature and NaOH (aq) 1.0 M solution was added until pH = 10. The solvent was evaporated under reduced pressure and the aqueous phase was extracted 4x12 mL of dichloromethane. The combined organic phase was washed with 20 mL of brine, dried over MgSO₄, filtrated and the solvent was removed under
reduced pressure to yield 520 mg of crude. The crude was eluted through a SiO\textsubscript{2} flash column with hexane:AcOEt (8:2) to yield 413 mg of a white pure product. Yield: 72%.

TLC (hexane:AcOEt 8:2): \(\text{Rf} = 0.69 \)

1H-NMR (400 MHz, CDCl\textsubscript{3}) \(\delta \): 3.55 (brd, \(^2J_{PH} = 22.4\) Hz, 1H, PNH), 3.37 (brs, 2H, NH\textsubscript{2}), 1.40 (d, \(^2J_{PH} = 8.9\) Hz, 3H, PCH\textsubscript{3}), 1.17 (d, \(^3J_{PH} = 14.1\) Hz, 9H, PC(CH\textsubscript{3})\textsubscript{3}) and 0.38 ppm (qd, \(^1J_{BH} = 96.0\) Hz, \(^2J_{PH} = 16.0\) Hz, 3H, BH\textsubscript{3}).

13C-NMR (101 MHz, CDCl\textsubscript{3}) \(\delta \): 31.1 (d, \(^1J_{PC} = 39.0\) Hz, PC(CH\textsubscript{3})\textsubscript{3}), 25.2 (d, \(^2J_{PC} = 2.7\) Hz, PC(CH\textsubscript{3})\textsubscript{3}) and 6.0 ppm (d, \(^1J_{PC} = 39.9\) Hz, PCH\textsubscript{3}).

31P-NMR (202 MHz, CDCl\textsubscript{3}) \(\delta \): 75.7 ppm (q, \(^1J_{BC} = 66.7\) Hz).

IR film, cm-1 \(\nu \): 3348, 3209, 2968, 2867, 2380, 2341, 1069, 889.

MS (ESI, high res., positive mode). Calcd. for [M-H]\(^+\) 147.1228, found 147.1219. Calcd. for [2M+H]\(^+\) 297.2674, found 297.2680.

\([\alpha]\)\textsubscript{D} = +1.0\(^\circ\) (1 g/100mL, CHCl\textsubscript{3}).

MP (ºC) = 129-130.

\textit{1,2-bis((R)-\textit{tert}-butyl(methyl)phosphanyl)hydrazine-bisborane (4)}

![Chemical structure of 1,2-bis((R)-\textit{tert}-butyl(methyl)phosphanyl)hydrazine-bisborane (4)](image)

Stepwise synthesis

In a Schlenk tube, 1.030 g of methanesulfonic anhydride (5.92 mmol, 1.2 eq) were dissolved in 15 mL of dichloromethane. A solution of 660 mg of 1 (4.93 mmol, 1.0 eq) in dichloromethane was cannulated over the methanesulfonic anhydride solution. The mixture was cooled at -20 ºC and 2.06 mL of triethylamine (14.79 mmol, 3.0 eq) were added dropwise during 10 min. The mixture was allowed to react for 1 hour at -20 ºC, and then, a solution of 413 mg of 3 (2.79 mmol, 0.57 eq) was cannulated. The mixture was stirred overnight at -20 ºC. The organic phase was washed with 3x15 mL of HCl (aq) 1.0 M solution, 10 mL of NaOH (aq) 1.0 M solution and 15 mL of brine, dried over MgSO\textsubscript{4}, filtered and the solvent was removed under reduced pressure. The resulting crude was purified by elution through a SiO\textsubscript{2} flash column with DCM:TEA (97.5:2.5) to yield 410 mg of a crystalline colorless solid. Yield: 56%.
One-Pot synthesis

In a Schlenk tube, 1.170 g of methanesulfonic anhydride (6.72 mmol, 1.2 eq) were dissolved in 20 mL of dichloromethane. A solution of 750 mg of 1 (5.60 mmol, 1.0 eq) in dichloromethane was cannulated over the methanesulfonic anhydride solution. The mixture was cooled at -20 ºC and 2.33 mL of triethylamine (16.75 mmol, 3.0 eq) were added dropwise during 10 min. The mixture was allowed to react for 1 hour at -20 ºC, and then, 2.25 mL of 1.0M solution of hydrazine in THF (2.25 mmol, 0.4 eq) were added dropwise. The resulting mixture was stirred for 60 hours at -20 ºC. The organic phase was washed with 2x25 mL of brine, dried with Na₂SO₄, filtered and the solvent was removed under reduced pressure. The resulting of crude were purified by elution through SiO₂ flash column with hexane:AcOEt (95:5) to (80:20) as eluting phase to yield 488 mg of pure crystalline colorless crystalline solid. Yield: 82%.

TLC (DCM:MeOH 95:5): Rf = 0.49

1H-NMR (400 MHz, CDCl₃): δ 3.77 (dbr, 2JPH =18.7 Hz, 2H, NH-NH), 1.43 (d, 3JPH = 8.8 Hz, 6H, PCH₃), 1.20 (d, 3JPH = 14.0 Hz, 18H, PC(CH₃)₃) and 0.85-0.04 ppm (m, 6H, BH₃).

13C-NMR (101 MHz, CDCl₃): δ 31.1 (d, 1JPC = 33.8 Hz, PC(CH₃)₃), 25.4 (d, 2J = 2.8 Hz, PC(CH₃)₃) and 6.6 ppm (d, 1JPC = 39.0 Hz, PCH₃).

31P-NMR (202 MHz, CDCl₃): δ 81.7 ppm (q, 1JPB = 92.9 Hz).

IR film, cm⁻¹: 3302, 2959, 2377, 2343, 1462, 129, 1069.

[α]D = -59.7 º (1 g/100mL, CHCl₃).

MP (ºC) = 159-160.

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1,2-dimethylhydrazinebisborane (5)

A solution of 75 mg of 1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-methylhydrazine-bisborane (0.27 mmol, 1.0 eq) in 2 mL of THF was cannulated over a suspension of 44 mg of 60% NaH (1.08 mmol, 4.0 eq) in THF. The mixture was stirred at 55 ºC for 45 min. Then, 134 μL of MeI (2.16 mmol, 8.0 eq) were added and the resulting mixture was stirred at 55 ºC for 4h. The reaction
was followed by silica TLC (hexane:AcOEt 8:2) until the monomethylated product disappeared. Finally, the mixture was allowed to cool at room temperature and 5 mL of Et₂O were added. The excess of hydride was destroyed by a very slow addition of 4 mL of water. The organic phase was washed with 2x5 mL of brine, dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure to yield 75 mg of a pure colorless crystalline solid. During the TLC analysis two different spots were observed corresponding to two different atropoisomers undergoing rapid exchange. Yield: 95%.

TLC (hexane:AcOEt 8:2): Rf = 0.3 and 0.5

¹H-NMR (500 MHz, CDCl₃): Atropoisomer-(RₐRₐPₐSₐ) δ 2.93 (dd, 3Jₚₚₚ = 4.0 and 4Jₚₚₚ = 0.9 Hz, 6H, NCH₃), 1.55 (d, 2Jₚₚₚ = 8.7 Hz, 6H, PCH₃), 1.19 (d, 3Jₚₚₚ = 13.7 Hz, 18H, PC(CH₃)₃) and 0.95-0.25 ppm (m, 6H, BH₃). Atropoisomer-(RₐRₐPₐ) δ 2.90 (d, 3Jₚₚₚ = 5.3 Hz, 6H, NCH₃), 1.41 (d, 2Jₚₚₚ = 7.7 Hz, 6H, PCH₃), 1.23 (d, 3Jₚₚₚ = 14.2 Hz, 18H, PC(CH₃)₃) and 0.95-0.25 ppm (m, 6H, BH₃).

¹³C-NMR (101 MHz, CDCl₃) Atropoisomer-(RₐRₐPₐSₐ) δ 39.3 (dd, 2Jₚₚₚ = 5 and 3Jₚₚₚ = 1.2 Hz, NCH₃), 33.2 (d, 1Jₚₚₚ = 33.3 Hz, PC(CH₃)₃), 26.8 (d, 2Jₚₚₚ = 3.1 Hz, PC(CH₃)₃) and 7.7 ppm (d, 1Jₚₚₚ = 38.5 Hz, PCH₃). Atropoisomer-(RₐRₐPₐRₐ) δ 37.3 (d, 2Jₚₚₙ = 1.9 Hz, NCH₃), 33.7 (d, 1Jₚₚₚ = 37.3 Hz, PC(CH₃)₃), 25.8 (d, 2Jₚₚₚ = 2.6 Hz, PC(CH₃)₃) and 8.67 ppm (d, 1Jₚₚₚ = 36.0 Hz, PCH₃).

³¹P-NMR (202 MHz, CDCl₃) δ 94.2 (q, 1Jₚₚ = 60.6 Hz) and 92.8 ppm (q, 1Jₚₚ = 72.7 Hz).

IR film, cm⁻¹: 2958, 2870, 2390, 1294, 1072, 1054, 895.

[α]₀ = +34.1 ° (1 g/100mL, CHCl₃).

MP (°C) = 171-172.

1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-allylhydrazine-bisborane (6)

A solution of 70 mg of 5 (0.27 mmol, 1.0 eq) in 2 mL of THF was cannulated over a suspension of 44 mg of 60% NaH (1.08 mmol, 4.0 eq) in THF. The mixture was stirred at 55 °C for 30 min.
70 μL of allyl bromide (0.8 mmol, 3.0 eq) were added and the mixture was stirred for 3h. After that time, the reaction mixture was allowed to cool at room temperature and 5 mL of Et₂O were added. The excess of hydride was destroyed by a slow addition of 4 mL of water. The organic phase was washed with 2x5 mL of brine, dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure to yield 40 mg of pure white solid. Yield: 49%.

TLC (hexane:AcOEt 8:2): Rf = 0.30

^1H-NMR (400 MHz, CDCl₃): δ 5.89 (dddd, J_HH = 17.2, 10.3, 7.8, 5.2 Hz, 1H, CH), 5.30 (m, 2H, CH₂), 4.28 (ddd, J_HH = 16.5, 6.6, 5.2 Hz, 1H, NCH₂), 3.81 (ddd, J_HH = 17.2, 11.3, 8.2 Hz, 1H, NCH₂), 3.75 (d, J_PH = 5.0 Hz, 1H, NH), 1.57 (d, J_PH = 8.7 Hz, 3H, PCH₃), 1.44 (d, J_PH = 8.4 Hz, 3H, PCH₃), 1.22 (d, J_PH = 13.8 Hz, 9H, PC(CH₃)₃), 1.18 (d, J_PH = 13.8 Hz, 9H, PC(CH₃)₃), and 0.95-0.25 ppm (m, 6H, BH₃).

^13C-NMR (101 MHz, CDCl₃): δ 133.9 (s, CH), 120.2 (s, CH₂), 56.5 (d, J_PC = 12.2 Hz, NCH₂), 33.1 (d, J_PC = 33.1 Hz, PC(CH₃)₃), 31.0 (d, J_PC = 41.8 Hz, PC(CH₃)₃), 26.6 (d, J_PC = 2.9 Hz, PC(CH₃)₃), 24.9 (d, J_PC = 2.4 Hz, PC(CH₃)₃), 12.7 (d, J_PC = 27.8 Hz, PCH₃) and 8.6 ppm (d, J_PC = 43.6 Hz, PCH₃).

^31P-NMR (202 MHz, CDCl₃): δ 94.6 (q, J_PB = 131.6 Hz) and 81.1 ppm (q, J_PB = 122.7 Hz).

IR film, cm⁻¹: 3256, 2979, 2930, 2904, 2868, 2382, 2350, 1474, 1416, 1071, 884.

MS (ESI, high res., positive mode). Calcd. for [M+H]+ 305.2500, found 305.25011.

[α]D = -33.5 ° (1 g/100mL, CHCl₃).

MP (°C) = 116-117.

1,2-bis(tert-butyl(methyl)phosphanyl)-4-methylene.pyrazolidine (7)

A solution of 100 mg of 4 (0.38 mmol, 1.0 eq) in 15 mL of THF was cannulated over a suspension of 91 mg of 60% NaH (2.28 mmol, 6.0 eq) in THF. The mixture was stirred at 55 °C for 1 h. Then, 130 μL (1.14 mmol, 3.0 eq) of 3-bromo-2-(bromomethyl)prop-1-ene were added and the resulting mixture was stirred at 55 °C for 4h. The reaction was followed by silica TLC (hexane:AcOEt 8:2) until the substrate disappeared. Finally, the mixture was allowed to cool at room temperature and 5 mL of Et₂O were added. The excess of hydride was destroyed by a very slow addition of 4 mL
of water. The organic phase was washed with 2x5 mL of brine, dried over anhydrous MgSO₄, filtered and the solvent was removed under reduced pressure. The crude was crystallized in ether at -25°C to yield 92 mg of a pure colorless crystalline solid (8-RPNRPNR). During the TLC analysis two different spots were observed corresponding to two different N-inversion isomers undergoing rapid exchange. Yield: 77%.

TLC (hexane:AcOEt 8:2): Rf = 0.4 and 0.6

1H-NMR (400 MHz, CDCl₃): Isomer-(RPNRPNR) δ 5.14 (quint., 4JHH = 2.3 Hz, 2H, CH₂), 3.96 (m, 2H, NCH₂), 3.86 (m, 2H, NCH₂), 1.42 (d, 3JPH = 13.8 Hz, 6H, PCH₃), 1.22 (d, 3JPH = 13.8 Hz, 18H, PC(CH₃)₃) and 0.88-0.22 ppm (m, 6H, BH₃). Isomer-(RPNRPNR) δ 5.12 (quint. 4JHH = 2.3 Hz, 2H, CH₂), 3.96 (m, 2H, NCH₂), 3.92 (m, 2H, NCH₂), 1.51 (d, 2JPH = 8.6 Hz, 6H, PCH₃), 1.21 (d, 3JPH = 13.3 Hz, 18H, PC(CH₃)₃) and 0.80-0.22 ppm (m, 6H, BH₃).

13C-NMR (101 MHz, CDCl₃): Isomer-(RPNRPNR) δ 147.9 (s, CH2), 105.3 (s, CCH2), 56.2 (s, NCH2), 32.6 (d, 1JPC = 35.3 Hz, PC(CH3)₃), 25.6 (s, PC(CH3)₃) and 8.5 ppm (d, 1JPC = 33.6 Hz, PCH₃). Isomer-(RPNRPNR) δ 147.8 (s, CCH2), 104.8 (s, CCH2), 56.1 (d, 2JPC = 6.1 Hz, NCH2), 32.3 (d, 1JPC = 30.1 Hz, PC(CH3)₃), 25.9 (d, 2JPC = 2.3 Hz, PC(CH3)₃) and 8.3 ppm (d, 1JPC = 33.6 Hz, PCH₃).

31P-NMR (202 MHz, CDCl₃): Isomer-(RPNRPNR) δ 95.4 ppm (br q, 1JPB = 83.8 Hz). Isomer-(RPNRPNR) δ 101.7 ppm (br q, 1JPB = 70.9 Hz).

IR film, cm⁻¹: 2950, 2927, 2870, 2378, 1470, 1394, 1293, 1069, 1054, 886.

[α]D = +6.5 ° (1 g/100mL, CHCl₃).

MP (ºC) = 186-187.

1,2-bis((R)-tert-butyl(methyl)phosphino)hydrazine

\[
\text{H} \quad \text{H} \\
\text{t-Bu} \quad \text{P} \quad \text{N} \quad \text{N} \quad \text{P} \quad \text{t-Bu}
\]

In a Schlenk flask, 75 mg of 4 (0.28 mmol, 1.0 eq) were dissolved with 128 mg of DABCO (1.14 mmol, 4.0 eq) in 2 mL of toluene (or were dissolved in 2 mL of anhydrous pyrrolidine). The mixture was stirred for 6 h at 90 ºC. The solvent was removed under reduced pressure and the reaction crude was eluted with two eluting phases: hexane:AcOEt (75:25) and DCM:MeOH.
(90:10) to yield 100 mg of a mixture DABCO·BH$_3$ (or pyrrolidine·BH$_3$) and the product in a (1:1) molar proportion.

TLC (hexane:AcOEt 8:2) Rf ~ 0.05

1H NMR (400 MHz, CDCl$_3$): δ 6.50 (dq, 1J$_{PH}$ = 445.7, 3.8 Hz, 2H, PH), 1.40 (dd, 2J$_{PH}$ = 12.8, 3.8 Hz, 6H, PCH$_3$) and 1.08 ppm (d, 2J$_{PH}$ = 16.6 Hz, 18H, PC(CH$_3$)$_3$).

31P NMR (162 MHz, CDCl$_3$) δ 45.45 ppm.

General procedure to Rh(I) complexes. In a Schlenk flask, 0.16 mmol of 5 or 7 were dissolved in 2 mL of anhydrous pyrrolidine and the mixture was stirred at 80 ºC for 2 h. Pyrrolidine was evaporated under reduced pressure and 2mL of dichloromethane were added. The deprotected diphosphine was cannulated over a solution of 167 mg [Rh(COD)$_2$]BArF$_4$ (0.15 mmol, 0.95 eq.) in dichloromethane under N$_2$ atmosphere at -20ºC. The crude was eluted through SiO$_2$ under nitrogen positive pressure with degassed solvent dcm:hexane (1:1). The solvent was removed under reduced pressure and the orange solid was washed with hexane.

[Rh(5)(COD)]BArF$_4$ (8)

Yield: 82%

1H-NMR (400 MHz, CDCl$_3$) δ 7.71 (br, 8H, CH$_{ArF}$), 7.53 (br, 4H, CH$_{ArF}$), 5.52 (m, 2H, CH$_{COD}$), 5.07 (m, 2H, CH$_{COD}$), 2.72 (m, 6H, NCH$_3$), 2.59-2.53 (m, 2H, CH$_2$COD), 2.43-2.33 (m, 2H, CH$_2$COD), 2.26-2.09 (m, 4H, CH$_2$COD), 1.50 (d, 2J$_{PH}$ = 6.3 Hz, 6H, PCH$_3$) and 1.12 ppm (d, 3J$_{PH}$ = 14.9 Hz, 18H, PC(CH$_3$)$_3$).

13C-NMR (101 MHz, CDCl$_3$) δ 161.7 (q, 1J$_{BC}$ = 40 Hz, CB$_{BArF4}$), 134.7 (s, CH$_{BArF4}$), 128.8 (qq, 2J$_{FC}$ = 31.5 Hz, 3J$_{BC}$ = 2.7 Hz, C$_{BArF4}$), 124.5 (q, 1J$_{FC}$ = 272 Hz, CF$_{BArF4}$), 117.4 (m, CH$_{BArF4}$), 103.2 (dt, 1J$_{Rhb}$ = 7 Hz, 2J$_{PC}$ = 3.6 Hz, CH$_{COD}$), 96.0 (m, CH$_{COD}$), 39.0 (m, PC(CH$_3$)$_3$), 37.1 (m, NCH$_3$), 32.6 (s, CH$_2$COD), 27.3 (s, CH$_2$COD), 27.2 (m, PC(CH$_3$)$_3$) and 9.6 ppm (m, PCH$_3$).

31P-NMR (202MHz, CDCl$_3$) δ 136.0 ppm (d, 1J$_{Rhp}$ = 164 Hz)

[Rh(7)(COD)]BArF$_4$ (9)

Yield: 75%

1H-NMR (400 MHz, CDCl$_3$) δ 7.71 (br, 8H, CH$_{ArF}$), δ 7.53 (br, 4H, CH$_{ArF}$), 5.63 (m, 2H, CH$_{COD}$), 5.07 (m, 2H, CH$_2$), 4.96 (m, 2H, CH$_{COD}$), 3.73 (m, 4H, PCH$_2$), 2.61-2.55 (m, 2H, CH$_2$COD), 2.47-
2.36 (m, 2H, CH$_2$COD), 2.14-2.10 (m, 4H, CH$_2$COD), 1.52 (d, $^2J_{PH} = 6.3$ Hz, 6H, PCH$_3$) and 1.20 ppm (d, $^3J_{PH} = 14.7$ Hz, 18H, C(CH$_3$)$_3$).

13C-NMR (101 MHz, CDCl$_3$) δ 161.7 (q, $^1J_{BC} = 40$ Hz, C$_{BArF_4}$), 134.7 (s, CH$_{BArF_4}$), 128.8 (qq, $^2J_{FC} = 31.5$ Hz, $^3J_{BC} = 2.7$ Hz, C$_{BArF_4}$), 124.5 (q, $^1J_{FC} = 272$ Hz, CF$_{BArF_4}$), 119.4 (s, CCH$_2$), 116.4 (m, CH$_{BArF_4}$), 105.8 (s, CCH$_2$), 101.9 (dt, $^1J_{Rhc} = 6.8$ Hz, $^2J_{PC} = 3.1$ Hz, CH$_{COD}$), 93.3 (m, CH$_{COD}$), 52.3 (s, NCH$_2$), 38.6 (m, C(CH$_3$)$_3$), 33.9 (s, CH$_2$COD), 27.3 (d, $^2J_{PC} = 2.7$ Hz, C(CH$_3$)$_3$), 26.5 (s, CH$_2$COD), and 9.9 (d, $^1J_{PC} = 23.7$ Hz, PCH$_3$).

31P-NMR (202MHz, CDCl$_3$) δ 128.7 (d, $^1J_{Rhp} = 164$ Hz)

MS ESI (high res., positive mode). Calcd. for [M-BaF$_4$]+ 499.192, found 499.190
Kinetic studies

15 mg of pure crystals of 5 and 7 were dissolved in deuterated chloroform in a NMR tube and successive 1H-NMR spectra were collected at controlled times.

Table 1. Kinetics data for the equilibrium 5-($R_pR_pS_a$)/5-($R_pR_pR_a$)

<table>
<thead>
<tr>
<th>Entry</th>
<th>time (min)</th>
<th>Molar fraction 5-($R_pR_pS_a$)</th>
<th>Molar Fraction 5-($R_pR_pR_a$)</th>
<th>ln ([Sa]-[Sa]eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-0,693147181</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0,781</td>
<td>0,219</td>
<td>-1,26940061</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>0,592</td>
<td>0,408</td>
<td>-2,38596702</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>0,535</td>
<td>0,465</td>
<td>-3,352407217</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0,518</td>
<td>0,482</td>
<td>-4,017383521</td>
</tr>
<tr>
<td>5</td>
<td>25</td>
<td>0,505</td>
<td>0,495</td>
<td>-5,298317367</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>0,505</td>
<td>0,495</td>
<td>-5,298317367</td>
</tr>
<tr>
<td>7</td>
<td>35</td>
<td>0,503</td>
<td>0,497</td>
<td>-5,80914299</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>0,503</td>
<td>0,497</td>
<td>-5,80914299</td>
</tr>
<tr>
<td>9</td>
<td>45</td>
<td>0,5</td>
<td>0,5</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Reaction profile for the equilibrium 5-($R_pR_pS_a$)/5-($R_pR_pR_a$) starting from 5-($R_pR_pS_a$) in CDCl$_3$.
Figure 2. First order plot of $\ln([5-(R_P R_P S_a)]-[5-(R_P R_P S_a)_{eq}$) during time reaction (until concentration are equal).

$k = 1.47 \cdot 10^{-3} \text{ s}^{-1}$

$\Delta G^\ddagger = 21 \text{ Kcal} \cdot \text{mol}^{-1} = 88 \text{ KJ} \cdot \text{mol}^{-1}$

Table 2. Kinetics data for the equilibrium $7-(R_P R_N R_P)/7-(R_P S_N S_P R_P)$

<table>
<thead>
<tr>
<th>Entry</th>
<th>time (h)</th>
<th>Molar fraction $7-(R_P R_N R_P)$</th>
<th>Molar Fraction $7-(R_P S_N S_P R_P)$</th>
<th>$\ln ([R_N R_N]-[R_P R_P]_{eq}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-0.693147181</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.98</td>
<td>0.02</td>
<td>-0.733969175</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.96</td>
<td>0.04</td>
<td>-0.776528789</td>
</tr>
<tr>
<td>4</td>
<td>1.63</td>
<td>0.92</td>
<td>0.08</td>
<td>-0.867500568</td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>0.893</td>
<td>0.107</td>
<td>-0.933945667</td>
</tr>
<tr>
<td>6</td>
<td>4.13</td>
<td>0.847</td>
<td>0.153</td>
<td>-1.058430499</td>
</tr>
<tr>
<td>7</td>
<td>6.61</td>
<td>0.787</td>
<td>0.213</td>
<td>-1.248273063</td>
</tr>
<tr>
<td>8</td>
<td>7.85</td>
<td>0.763</td>
<td>0.237</td>
<td>-1.335601247</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>0.699</td>
<td>0.301</td>
<td>-1.614450454</td>
</tr>
<tr>
<td>10</td>
<td>13.3</td>
<td>0.675</td>
<td>0.325</td>
<td>-1.742969305</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>0.58</td>
<td>0.42</td>
<td>-2.525728644</td>
</tr>
</tbody>
</table>
Figure 3. Reaction profile for the equilibrium \(7-(R_P R_N R_P) / 8-(R_P S_N S_N R_P) \) starting from \(7-(R_P R_N R_P) \) in CDCl₃.

Figure 4. First order plot of \(\ln([7-(R_P R_N R_P)] - [7-(R_P R_N R_P)])_{eq} \) during time reaction (until concentration are equal).

\[
\begin{align*}
 k &= 1.045 \cdot 10^{-5} \text{ s}^{-1} \\
 \Delta G^{\dagger} &= 24 \text{ Kcal} \cdot \text{mol}^{-1} = 100.4 \text{ KJ} \cdot \text{mol}^{-1}
\end{align*}
\]
Crystal data and structure refinement parameters

Crystal data and structure refinement for 5.

Empirical formula: C12 H36 B2 N2 P2
Formula weight: 291.99
Temperature: 100(2) K
Wavelength: 0.71073 Å
Crystal system: Monoclinic
Space group: P2(1)
Unit cell dimensions:
\[a = 6.7712(4) \text{ Å}, \alpha = 90^\circ\]
\[b = 21.3766(14) \text{ Å}, \beta = 114.0523(16)^\circ\]
\[c = 6.9819(4) \text{ Å}, \gamma = 90^\circ\]
Volume: 922.85(10) Å³
Z: 2
Density (calculated): 1.051 Mg/m³
Absorption coefficient: 0.224 mm⁻¹
F(000): 324
Crystal size: 0.55 x 0.30 x 0.10 mm³
Theta range for data collection: 1.905 to 32.566°
Index ranges: -10 ≤ h ≤ 7, -31 ≤ k ≤ 31, -5 ≤ l ≤ 10
Reflections collected: 10290
Independent reflections: 5570 [R(int) = 0.0257]
Completeness to theta = 32.566°: 90.4%
Absorption correction: Empirical
Max. and min. transmission: 0.978 and 0.899
Refinement method: Full-matrix least-squares on F²
Data / restraints / parameters: 5570 / 1 / 175
Goodness-of-fit on F²: 1.053
Final R indices [I>2sigma(I)]: R1 = 0.0353, wR2 = 0.0856
R indices (all data): R1 = 0.0389, wR2 = 0.0881
Flack parameter: x = -0.01(4)
Largest diff. peak and hole: 0.405 and -0.331 e Å⁻³
Crystal data and structure refinement for 7.

Empirical formula C14 H36 B2 N2 P2
Formula weight 316.01
Temperature 100(2) K
Wavelength 0.71073 Å
Crystal system Orthorhombic
Space group P2(1)2(1)2(1)
Unit cell dimensions
\[a = 10.4260(10)\text{Å} \quad \alpha = 90^\circ.\]
\[b = 13.8793(12)\text{Å} \quad \beta = 90^\circ.\]
\[c = 27.409(2)\text{Å} \quad \gamma = 90^\circ.\]
Volume 3966.2(6) Å³
Z 8
Density (calculated) 1.058 Mg/m³
Absorption coefficient 0.213 mm⁻¹
F(000) 1392
Crystal size 0.25 x 0.25 x 0.06 mm³
Theta range for data collection 1.486 to 25.565°.
Index ranges -12 <= h <= 12, -15 <= k <= 16, -33 <= l <= 24
Reflections collected 25315
Independent reflections 7282 [R(int) = 0.0541]
Completeness to theta = 25.565° 97.9%
Absorption correction Multi-scan
Max. and min. transmission 0.987 and 0.833
Refinement method Full-matrix least-squares on F²
Data / restraints / parameters 7282/ 180/ 429
Goodness-of-fit on F² 0.810
Final R indices [I>2σ(I)]
R1 = 0.0376, wR2 = 0.1032
R indices (all data)
R1 = 0.0441, wR2 = 0.1112
Flack parameter x =0.06(4)
Largest diff. peak and hole 0.328 and -0.234 e.Å⁻³
Crystal data and structure refinement for 9.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C54 H54 B24 N2 P2 Rh</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1362.65</td>
</tr>
<tr>
<td>Temperature</td>
<td>100(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 12.9259(14)Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 12.42237(13)Å, β = 107.0548(12)°</td>
</tr>
<tr>
<td></td>
<td>c = 18.1785(2)Å, γ = 90°</td>
</tr>
<tr>
<td>Volume</td>
<td>2790.56(6) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.622 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.484 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1376</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.15 x 0.15 x 0.1 mm³</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.015 to 35.492°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-21<=h<=20,-20<=k<=20,-28<=l<=29</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>84093</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>23935[R(int) = 0.0177]</td>
</tr>
<tr>
<td>Completeness to theta =35.492°</td>
<td>96.100006%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.953 and 0.733</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>23935/ 85/ 819</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.052</td>
</tr>
<tr>
<td>Final R indices [$I>2\sigma(I)$]</td>
<td>R1 = 0.0198, wR2 = 0.0529</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0204, wR2 = 0.0531</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>x = -0.022(2)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.574 and -0.305 eÅ⁻³</td>
</tr>
</tbody>
</table>
General Procedure for the Rh-Catalysed Asymmetric Hydrogenations

Substrates (0.37, 3.7 or 18.5 mmol), and catalyst (0.0037 mmol) were weighed and placed into a pressure vessel. Anhydrous MeOH (1 or 2.5 mL) was added to the reaction mixture. The pressure vessel was pressure with 3 or 5 bar of H₂, the reaction mixtures were stirred overnight at room temperature. The autoclave was depressurized; the reaction mixture was filtered through a short pad of SiO₂ and subsequently eluted with EtOAc. The resulting solution was concentrated under vacuum. The conversion was determined by ¹H NMR and the enantiomeric excess was determined by GC or HPLC analysis on chiral stationary phases.

Pressure vessels for hydrogenations: Ace® glass pressure tube with Teflon screw-cap equipped with pressure gauge and valve.

Hydrogenation substrates

Methyl 2-acetamidoacrylate and dimethyl itaconate were commercially available (Sigma-Aldrich®). (Z)-Methyl 2-acetamido-3-phenylacrylate,³ and N-(1-Phenylvinyl)acetamide⁴ were prepared according to the cited literature procedures.

Hydrogenation products:

\[
\text{(R)-Methyl 2-acetamidopropanoate (MAA):} \quad \text{GC conditions: Supelco Beta DEX™ 120 (30 m x 0.25 mm x 0.25 µm), isothermal 90 °C, 15 psi He, } t_R(S) = 63.4 \text{ min, } t_R(R) = 65.2 \text{ min (major peak).}
\]

\[
\text{(R)-Methyl 2-acetamido-3-phenylpropanoate (Z-MAC):} \quad \text{HPLC conditions: Chiralpak® ADH (250 x 4.6 mm), 5µ (COL-HP-51), 90:10 } n \text{-heptane/2-propanol, 1.0 mL/min, 210 nm, } t_R(R) = 10.0 \text{ min (major peak) and } t_S(S) = 13.8 \text{ min.}
\]

\[
\text{(R)-Methyl 2-acetamido-3-(3,4,5-trimethylphenyl)propanoate:} \quad \text{HPLC conditions: Chiralpak® IA (250 x 4.6 mm), 5µ (COL-HP-90) 95:5 heptane/2-propanol, 1 mL/min, 254 nm, } t_R(R) = 15.9 \text{ min (major peak), } t_S(S) = 20.4 \text{ min}
\]
(R)-N-(1-Phenylethyl)acetamide (PVA): Chiralpak® ADH (250 x 4.6 mm), 5µ (COL-HP-51), 95:5 n-heptane/2-propanol, 1.0 mL/min, 216 nm, \(t_R(R) = 11.9 \) min (major peak), \(t_R(S) = 15.4 \) min.

(S)-Dimethyl 2-methylsuccinate (DMI): GC conditions: Chiraldex B-DM (30 m x 0.25 mm), isothermal 80 ºC, 15 psi He, \(t_R(S) = 22.5 \) min (major peak), \(t_R(R) = 22.7 \) min.

(R)-tert-butyl 2-(tert-butyl(methyl)phosphino)hydrazinecarboxylate-borane

1H NMR (400 MHz, CDCl$_3$) of 2

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 2
(R)-(tert-butyl(methyl)phosphanyl)hydrazine-borane

1H NMR (400 MHz, CDCl$_3$) of 3

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 3
1,2-bis((R)-tert-butyl(methyl)phosphanyl)hydrazine-bisborane

1H NMR (400 MHz, CDCl$_3$) of 4

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 4
1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1,2-dimethylhydrazinebisborane

1H NMR (400 MHz, CDCl$_3$) of 5

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 5
1,2-bis((R)-tert-butyl(methyl)phosphanyl)-1-allyhydrazine-bisborane

1H NMR (400 MHz, CDCl$_3$) of 6

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 6

31P NMR
1,2-bis(tert-butyl(methyl)phosphanyl)-4-methylenePYrazolidine

1H NMR (400 MHz, CDCl$_3$) of 7

13C NMR (101 MHz, CDCl$_3$) and 31P NMR (121 MHz, CDCl$_3$) of 7
1,2-bis((R)-tert-butyl(methyl)phosphino)hydrazine + DABCO-BH$_3$

1H NMR (400 MHz, CDCl$_3$)
[Rh(5)(COD)]BArF₄

1H NMR (400 MHz, CDCl₃) of 8

13C NMR (101 MHz, CDCl₃) and 31P NMR (121 MHz, CDCl₃) of 8
[Rh(7)(COD)]BArF₄

1H NMR (400 MHz, CDCl₃) of 9

13C NMR (101 MHz, CDCl₃) and 31P NMR (121 MHz, CDCl₃) of 9