Electronic Supporting Information (ESI)

Three-Component Nanorotors Generated from Fusion of Complexes and Post-Fusion Metal-Metal Exchange

Abir Goswami, Indrajit Paul, Michael Schmittel*

Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.

E-mail: schmittel@chemie.uni-siegen.de

Fax: (+49) 271-740-3270

Table of Contents

1. Synthesis... S2-S10
2. Synthesis and characterization of complexes.. S10-S16
3. Model study.. S16-S18
4. NMR spectra... S19-S39
5. DOSY NMR spectra.. S40-S41
6. Variable temperature study and determination of kinetic parameters........ S42-S45
7. ESI-MS spectra... S46-S53
8. UV-Vis Data.. S54-S56
9. Energy minimized structures.. S56-S70
10. References.. S71
1. Synthesis

General Remarks

All solvents were dried by distillation prior to use while commercial reagents (1, 3, 5, 10, 12, 13, hexacyclen) were used without any further purification. Bruker Avance (400 MHz) and Varian (600 MHz) spectrometers were used to measure 1H and 13C NMR spectra using a deuterated solvent as the lock and residual protiated solvent as internal reference (CDCl$_3$: δ_H 7.26 ppm, δ_C 77.0 ppm; CD$_2$Cl$_2$: δ_H 5.32 ppm, δ_C 53.8 ppm, THF-d$_8$: δ_H 1.72 ppm, 3.58 ppm, δ_C 25.3 ppm, 67.2 ppm). The following abbreviations were used to define NMR peak pattern: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of doublets of doublets, td = triplet of doublets, br = broad, m= multiplet. The coupling constant values are given in Hertz (Hz) and, wherever possible, assignment of protons is provided. The numbering of different carbons in different molecular skeletons does not necessarily follow IUPAC nomenclature rules; it was exclusively implemented for assigning NMR signals. All electrospray ionization (ESI-MS) spectra were recorded on a Thermo-Quest LCQ deca and the theoretical isotopic distributions of the mass signals were calculated using IsoPro 3.0 software. Melting points of compounds were measured on a BÜCHI 510 instrument and are not corrected. Infrared spectra were recorded on a Varian 1000 FT-IR instrument. Elemental analysis was performed using the EA-3000 CHNS analyzer. UV-vis spectra were recorded on a Cary Win 50 (298 K) spectrometer. Binding constants were determined through UV-vis titrations in combination with a 1:1 binding formula of two ligands or with SPECFIT/32TM global analysis system by Spectrum Software Associates (Marlborough, MA). Column chromatography was performed either on silica gel (60-400 mesh) or neutral alumina (Fluka, 0.05-0.15 mm, Brockmann Activity 1). Merck silica gel (60 F254) or neutral alumina (150 F254) sheets were used for thin layer chromatography (TLC). All rotor preparations were performed directly in the NMR tube using CD$_2$Cl$_2$ as solvent. Compounds 61, 7, 9, 17 were synthesized according to the literature known procedures.
Scheme S1. Synthesis of stator S and rotator R.
An ethereal solution of boron trifluoride (0.25 ml, 2.0 mmol) was added dropwise to a solution of mesitaldehyde (5) (1.02 g, 6.90 mmol), di(1H-pyrrol-2-yl)methane (6) (2.02 g, 13.8 mmol) and 4-(3-hydroxy-3-methylbut-1-ynyl) benzaldehyde (7) (1.30 g, 6.90 mmol) in 1.0 L of chloroform over 10 min. The resultant solution was allowed to stir at room temperature for 4 h in the dark. Then DDQ (2.04 g, 8.99 mmol) was added and stirring was continued for another 2 h. The solution was concentrated to 50 mL, then Zn(OAc)₂•2H₂O (1.50 g, 6.80 mmol) in 15 mL of CH₃OH was added. After stirring the reaction mixture for 3 h, the solution was evaporated to dryness and the crude black product was purified by column chromatography (silica gel, CH₂Cl₂, \(R_f = 0.2 \)) providing 240 mg of 8 as a pink solid (369 μmol, 5%). Mp > 250 °C. IR (KBr): \(\tilde{\nu} = 416, 570, 701, 719, 733, 783, 814, 832, 839, 852, 904, 995, 1058, 1141, 1157, 1209, 1282, 1309, 1349, 1391, 1433, 1479, 1503, 1519, 1545, 1620, 2220, 2940, 3079, 3442 \) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): \(\delta = 1.77 \) (s, 6H, i-H), 1.83 (s, 6H, n-H), 2.13 (s, 1H, j-H), 2.67 (s, 3H, o-H), 7.33 (s, 2H, m-H), 7.85 (d, \(^3 J = 8.4 \) Hz, 2H, k-H), 8.20 (d, \(^3 J = 8.4 \) Hz, 2H, l-H), 8.99 (d, \(^3 J = 4.5 \) Hz, 2H, p-H), 9.09 (d, \(^3 J = 4.5 \) Hz, 2H, t-H), 9.40 (d, \(^3 J = 4.5 \) Hz, 2H, q-H), 9.43 (d, \(^3 J = 4.5 \) Hz, 2H, s-H), 10.29 (s, 2H, r-H) ppm. ¹³C NMR (100 MHz, CDCl₃): \(\delta = 21.5, 21.7, 31.6, 65.8, 82.3, 94.7, 106.0, 118.6, 119.0, 121.9, 127.7, 129.9, 131.5, 131.8, 132.0, 132.3, 134.5, 137.6, 138.7, 139.3, 142.8, 149.4, 149.6, 149.7, 150.0 \) ppm. Elemental analysis: Calculated for C₄₀H₃₂N₄OZn: C, 73.90; H, 4.96; N, 8.62. Found: C, 73.61; H, 5.09; N, 8.75.

Zinc(II)-5-(4-ethynylphenyl)-15-(2,4,6-trimethylphenyl)porphyrin (4)
NaOH granules (148 mg, 3.69 mmol) were added to a solution of porphyrin 8 (240 mg, 369 µmol) in toluene (30 mL), which was then refluxed for 3 h. The resulting reaction mixture was cooled, washed with water and evaporated to dryness furnishing a purple solid as crude product. The crude material was chromatographed (silica gel, CH₂Cl₂/hexane = 3:7, Rₖ = 0.3) to yield 200 mg of 4 as pink solid (338 µmol, 92%). **Mp > 250 °C. **IR (KBr): ν = 410, 434, 507, 547, 564, 607, 633, 702, 720, 734, 784, 812, 832, 858, 906, 995, 1059, 1102, 1141, 1162, 1178, 1211, 1286, 1315, 1372, 1390, 1437, 1491, 1521, 1552, 1609, 1712, 1800, 2110, 2240, 2914, 3031, 3079 cm⁻¹. **¹H NMR (400 MHz, CDCl₃): δ = 1.83 (s, 6H, n-H), 2.67 (s, 3H, o-H), 3.34 (s, 1H, i-H), 7.33 (s, 2H, m-H), 7.93 (d, 3J = 8.4 Hz, 2H, k-H), 8.23 (d, 3J = 8.4 Hz, 2H, l-H), 8.99 (d, 3J = 4.5 Hz, 2H, p-H), 9.10 (d, 3J = 4.5 Hz, 2H, t-H), 9.40 (d, 3J = 4.5 Hz, 2H, q-H), 9.44 (d, 3J = 4.5 Hz, 2H, s-H), 10.29 (s, 2H, r-H) ppm. **¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 21.7, 78.0, 83.8, 106.0, 118.6, 118.8, 121.3, 127.7, 130.4, 131.5, 131.9, 132.0, 132.3, 134.5, 137.6, 138.7, 139.3, 143.4, 149.4, 149.6, 150.0 ppm. **Elemental analysis: **Calculated for CₙHₙNₙZn: C, 75.06; H, 4.43; N, 9.46. Found: C, 75.16; H, 4.53; N, 9.67.

4’-(4-((2,6-Dibromo-4-methylphenyl)ethynyl)phenyl)-2,2’;6’,2’’-terpyridine (11)

In an oven-dried 100 mL sealed tube, a mixture of 1,3-dibromo-2-iodo-5-methylbenzene (10) (676 mg, 1.80 mmol) and 4’-(4-ethynylphenyl)-2,2’;6’,2’’-terpyridine (9) (200 mg, 600 µmol) were dissolved in dry DMF (20 mL) and Et₃N (20 mL) and degassed thoroughly. Then Pd(PPh₃)₄ (70.0 mg, 60.0 µmol) was added and the mixture was refluxed at 80 °C for 18 h for completion of the coupling reaction. The reaction mixture was cooled down to room temperature and the solvents were removed. The residue was subjected to column chromatography (silica gel, ethyl acetate/hexane = 3:7, Rₖ = 0.3) to afford 230 mg of compound 9 as brown solid (0.40 mmol, 67%). **Mp = 216 °C. **IR (KBr): ν = 528, 565, 577, 621, 653, 660, 696, 710, 734, 742, 791, 832, 848, 857, 893, 905, 990, 1037, 1075, 1087, 1109, 1121, 1191, 1263, 1387, 1411, 1442, 1460, 1466, 1516, 1538, 1565, 1584, 1602, 2223, 2920, 3052 cm⁻¹. **¹H NMR (400 MHz, CD₂Cl₂): δ = 2.35 (s, 3H, i-H), 7.39 (ddd, 3J = 7.8 Hz, 3J = 4.8 Hz, 4J = 1.2 Hz, 2H, b-H), 7.47 (s, 2H, h-H), 7.91 (d, 3J = 8.4 Hz, 2H, c-H), 8.24 (d, 3J = 8.4 Hz, 2H, d-H), 8.37 (d, 3J = 8.4 Hz, 2H, e-H), 8.89 (d, 3J = 4.5 Hz, 2H, f-H), 9.00 (d, 3J = 4.5 Hz, 2H, g-H), 9.44 (d, 3J = 4.5 Hz, 2H, h-H), 10.30 (s, 2H, r-H) ppm.
7.77 (d, $^3J = 8.8$ Hz, 2H, g-H), 7.91 (td, $^3J = 7.8$ Hz, $^4J = 1.2$ Hz, 2H, c-H), 7.95 (d, $^3J = 8.8$ Hz, 2H, f-H), 8.69 (ddd, $^3J = 7.8$ Hz, $^4J = 1.2$ Hz, $^5J = 0.8$ Hz, 2H, d-H), 8.73 (ddd, $^3J = 4.8$ Hz, $^4J = 1.2$ Hz, $^5J = 0.8$ Hz, 2H, a-H), 8.79 (s, 2H, e-H), 13C NMR (100 MHz, CD2Cl2): $\delta = 21.1$, 89.2, 97.4, 118.9, 121.5, 123.8, 124.2, 124.4, 126.2, 127.7, 132.6, 132.6, 137.3, 139.4, 141.8, 149.5, 149.6, 156.3, 156.5 ppm. ESI-MS: m/z (%) 582.3 (100) [12 + H]$^+$; Elemental analysis: Calculated for C30H19Br2N3: C, 61.99; H, 3.29; N, 7.23. Found: C, 61.73; H, 3.24; N, 7.15.

Stator S

In an oven-dried 100 mL sealed tube, compounds 11 (100 mg, 172 µmol) and 4 (500 mg, 844 µmol) were dissolved in dry DMF (20 mL) and Et3N (20 mL) and degassed thoroughly. Then Pd(PPh3)4 (20.0 mg, 17.3 µmol) was added and the mixture was refluxed at 80 °C for 48 h for completion of the coupling reaction. The reaction mixture was cooled down to room temperature and the solvents were removed. The obtained residue was subjected to column chromatography (silica gel, ethyl acetate/CH2Cl2 = 3:7, $R_f = 0.2$) to afford 150 mg of compound S as brown solid (93.6 µmol, 54%). Mp: > 250 °C. IR (KBr): $\tilde{\nu} = 564, 608, 634, 702, 734, 785, 813, 833, 858, 906, 995, 1059, 1142, 1212, 1287, 1315, 1391, 1439, 1496, 1521, 1608, 2227, 2915$ cm$^{-1}$. 1H NMR (400 MHz, CD2Cl2): $\delta = 1.82$ (s, 12H, n-H), 2.62 (s, 3H, i-H), 2.70 (s, 6H, c-H), 7.11 (ddd, $^3J = 8.0$ Hz, $^3J = 5.0$ Hz, $^4J = 1.2$ Hz, 2H, b-H), 7.38 (s, 4H, m-H), 7.70 (td, $^3J = 8.0$ Hz, $^4J = 1.2$ Hz, 2H, c-H), 7.73 (s, 2H, h-H), 8.11 (d, $^3J = 8.4$ Hz, 2H, g/f-H), 8.15 (d, $^3J = 8.4$ Hz, 2H, f/g-H), 8.19 (d, $^3J = 8.0$ Hz, 4H, k-H), 8.33 (ddd, $^3J = 5.0$ Hz, $^4J = 1.2$ Hz, $^5J = 0.8$ Hz, 2H, a-H), 8.38 (d, $^3J = 8.0$ Hz, 4H, l-H), 8.47 (ddd, $^3J = 8.0$ Hz, $^4J = 1.2$ Hz, $^5J = 0.8$ Hz, 2H, d-H),
8.75 (s, 2H, e-H), 8.95 (d, 3J = 4.4 Hz, 4H, p-H), 9.23 (d, 3J = 4.4 Hz, 4H, t-H), 9.43 (d, 3J = 4.4 Hz, 4H, q-H), 9.51 (d, 3J = 4.4 Hz, 4H, s-H), 10.28 (s, 4H, r-H). **13C NMR (100 MHz, d8-THF:CD2Cl2 = 8:2):** δ = 20.6, 21.0, 21.5, 89.2, 89.5, 94.3, 97.3, 105.6, 117.7, 118.4, 118.6, 120.9, 122.5, 124.0, 125.0, 125.6, 126.8, 127.7, 127.9, 130.1, 130.7, 131.7, 131.9, 132.1, 132.7, 132.7, 135.3, 136.7, 137.5, 138.9, 139.0, 139.3, 139.8, 144.5, 149.2, 149.3, 149.8, 149.9, 149.9, 156.1, 156.4 ppm. **ESI-MS:** m/z (%) 1604.7 (100) [S + H]+. **Elemental analysis:** Calculated for C104H69N11Zn2•H2O: C, 77.03; H, 4.41; N, 9.50. Found: C, 77.04; H, 4.15; N, 9.40.

4-((3-Iodophenyl)ethynyl)pyridine (14)

A solution of 4-ethynylpyridine hydrochloride (12) (280 mg, 2.01 mmol), 1,3-diiodobenzene (13) (825 mg, 2.50 mmol), Pd(PPh3)2Cl2 (140 mg, 199 µmol) and CuI (38.0 mg, 199 µmol), in benzene (60 mL) and Et2NH (30 mL), was placed in a three-neck flask equipped with a condenser. The solution was refluxed for 8 h and then evaporated to dryness. The crude product was purified by column chromatography (silica gel, CH2Cl2, RF = 0.3) providing 500 mg of 14 as white solid (1.64 mmol, 82%). **Mp** = 120 °C; **IR (KBr):** ν = 435, 471, 533, 539, 563, 656, 684, 725, 790, 816, 869, 895, 908, 991, 1059, 1089, 1145, 1207, 1311, 1394, 1402, 1413, 1466, 1486, 1529, 1544, 1551, 1589, 1686, 1795, 1936, 2220, 3052 cm⁻¹. **1H NMR (400 MHz, CDCl3):** δ = 7.07 (t, 3J = 8.0 Hz, 1H, d’-H), 7.33 (d, 3J = 6.2 Hz, 2H, b’-H), 7.48 (ddd, 3J = 8.0 Hz, 4J = 1.6 Hz, 4J = 1.2 Hz, 1H, c’-H), 7.69 (ddd, 3J = 8.0 Hz, 4J = 1.6 Hz, 4J = 1.2 Hz, 1H, c’-H), 7.88 (t, 3J = 1.6 Hz, 1H, f’-H), 8.59 (d, 3J = 6.2 Hz, 2H, a’-H), ppm. **13C NMR (100 MHz, CDCl3):** δ = 87.7, 91.9, 93.7, 124.0, 125.4, 129.9, 130.8, 130.8, 138.1, 140.2, 149.7 ppm. **ESI-MS:** m/z (%) 306.2 (100) [15 + H]+. **Elemental analysis:** Calculated for C13H8IN: C, 51.17; H, 2.64; N, 4.59. Found: C, 50.85; H, 2.49; N, 4.47.
2-(4-Bromo-2,3,5,6-tetramethylphenyl)-3-ethynyl-9-(2,4,6-trimethoxyphenyl)-1,10-phenanthroline (15).

Under N$_2$ atmosphere a solution of n-BuLi (2.5 M) in n-hexane (1.72 mL, 4.30 mmol) was added dropwise to a solution of 2-bromo-1,3,5-trimethoxybenzene (1.06 g, 4.30 mmol) in dry Et$_2$O (20 mL) over a period of 10 min at 0 °C. After stirring at room temperature for 6 h, 2-(4-bromo-2,3,5,6-tetramethylphenyl)-3-((trimethylsilyl)ethynyl)-1,10-phenanthroline (17) (700 mg, 1.44 mmol) was added under N$_2$ atmosphere. The resulting brown solution was stirred at room temperature for 12 h for completion of the reaction. The solution was neutralized with aqueous NH$_4$Cl (100 mL) and extracted with dichloromethane (3 × 50 mL). The combined organic layer was then dried over anhydrous MgSO$_4$ and concentrated to yield a brown solid. The crude product was subsequently dissolved in 20 mL of THF-CH$_3$OH (1:1) and treated with 2 N aqueous KOH solution (20 mL). The resulting solution was stirred for another 3 h and then extracted with dichloromethane (3 × 50 mL). The combined organic layer was concentrated to dryness and purified by column chromatography (silica gel, n-hexane/ethyl acetate = 7:3, R_f = 0.2) to afford 420 mg of compound 15 as yellow solid (722 μmol, 50%). Mp > 250 °C; IR (KBr): $\tilde{\nu}$ = 529, 593, 613, 640, 665, 722, 759, 771, 811, 848, 896, 918, 948, 983, 1013, 1037, 1052, 1073, 1126, 1156, 1185, 1205, 1225, 1276, 1335, 1356, 1370, 1384, 1414, 1438, 1460, 1489, 1535, 1585, 1607, 2112, 2836, 2935, 2995, cm$^{-1}$. 1H NMR (400 MHz, CD$_2$Cl$_2$): δ = 1.97 (s, 6H, 13-H), 2.46 (s, 6H, 12-H), 3.21 (s, 1H, 14-H), 3.68 (s, 6H, 10-H), 3.87 (s, 3H, 11-H), 6.26 (s, 2H, 9-H), 7.59 (d, $^3J = 8.2$ Hz, 1H, 8-H), 7.83 (d, $^3J = 8.8$ Hz, 1H, 5/6-H), 7.90 (d, $^3J = 8.8$ Hz, 1H, 6/5-H), 8.27 (d, $^3J = 8.2$ Hz, 1H, 7-H), 8.51 (s, 1H, 4-H) ppm. 13C NMR (100 MHz, CD$_2$Cl$_2$): δ = 18.5, 21.1, 55.8, 56.3, 80.6, 83.0, 91.3, 112.9, 118.8, 125.7, 127.1, 127.2, 127.8, 128.5, 129.4, 133.7, 134.3, 135.8, 139.5, 140.9, 145.7, 146.2, 156.2, 159.3, 162.0, 162.4 ppm; ESI-MS: m/z (%) 583.4 (100) [12 + H]$^+$. **Elemental analysis:** Calculated for C$_{33}$H$_{28}$BrN$_2$O$_3$: C, 68.16; H, 5.03; N, 4.82. Found: C, 67.93; H, 5.23; N, 4.75.
2-(4-Bromo-2,3,5,6-tetramethylphenyl)-3-(((pyridin-4-yl-ethynyl)phen-3-yl)ethynyl)-9-(2,4,6-trimethoxyphenyl)-1,10-phenanthroline = rotator R.

A N₂-purged sealed tube was loaded with 14 (94.0 mg, 308 µmol), 15 (90.0 mg, 155 µmol), 20 mL of dry DMF, and 20 mL of dry Et₃N. The solution was degassed thoroughly to remove oxygen. The catalyst, Pd(PPh₃)₄ (20.0 mg, 17.3 µmol), was then added to the reaction mixture that was stirred at 70 °C for 16 hours to complete the coupling reaction. Solvents were removed from the reaction mixture under reduced pressure yielding a brown residue, which was purified by column chromatography (silica gel, CH₂Cl₂/ethyl acetate = 9:1, Rₚ = 0.3) affording 83.0 mg of compound R as yellow solid (0.11 mmol, 73%). Mp > 220 °C. IR (KBr): ν = 533, 613, 640, 663, 678, 773, 792, 821, 848, 887, 895, 919, 947, 988, 1015, 1049, 1072, 1132, 1159, 1207, 1226, 1277, 1334, 1384, 1412, 1432, 1460, 1490, 1535, 1588, 1596, 2211, 2836, 2935 cm⁻¹. ¹H NMR (400 MHz, CD₂Cl₂): δ = 2.02 (s, 6H, 12-H), 2.51 (s, 6H, 13-H), 3.70 (s, 6H, 10-H), 3.87 (s, 3H, 11-H), 6.26 (s, 2H, 9-H), 7.17 (ddd, 3J = 7.8 Hz, 4J = 1.6 Hz, 4J = 1.2 Hz, 1H, c'/c'-H), 7.21 (t, 3J = 1.2 Hz, 1H, f'-H), 7.33 (t, 3J = 7.8 Hz, 1H, d'-H), 7.44 (d, 3J = 6.0 Hz, 2H, b'-H), 7.50 (ddd, 3J = 7.8 Hz, 4J = 1.6 Hz, 4J = 1.2 Hz, 1H, c'/c'-H), 7.59 (d, 3J = 8.0 Hz, 1H, 8-H), 7.87 (d, 3J = 8.8 Hz, 1H, 5/6-H), 7.92 (d, 3J = 8.8 Hz, 1H, 6/5-H), 8.28 (d, 3J = 8.0 Hz, 1H, 7-H), 8.51 (s, 1H, 4-H), 8.61 (d, 3J = 6.0 Hz, 2H, a'-H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 18.6, 21.1, 55.9, 56.3, 87.6, 87.9, 91.3, 92.8, 94.5, 113.0, 119.7, 123.0, 123.6, 125.9, 125.9, 127.2, 127.3, 127.7, 128.4, 129.2, 129.4, 131.3, 132.1, 132.2, 133.8, 134.3, 135.1, 135.8, 138.9, 139.7, 145.5, 146.3, 150.3, 156.2, 159.3, 162.0, 162.7 ppm. ESI-MS: m/z (%) 760.4 (100) [R + H]+; Elemental analysis: Calculated for C₄₆H₃₆BrN₃O₃•0.4 H₂O: C, 72.14; H, 4.84; N, 5.49. Found: C, 71.83; H, 4.78; N, 5.87.
Characterization of 2-(4-iodo-2,3,5,6-tetramethylphenyl)-9-(2,4,6-trimethoxyphenyl)-1,10-phenanthroline (2)

Data for 2: Mp > 200 ºC. IR (KBr): $\tilde{\nu} =$ 535, 610, 640, 690, 727, 751, 809, 848, 836, 909, 948, 1008, 1027, 1064, 1128, 1143, 1158, 1182, 1205, 1228, 1278, 1301, 1334, 1351, 1372, 1385, 1415, 1435, 1452, 1465, 1486, 1497, 1512, 1539, 1587, 1612, 2837, 2935, 3001 cm$^{-1}$. 1H NMR (CD$_2$Cl$_2$, 400 MHz): $\delta =$ 2.00 (s, 6H, 13-H), 2.55 (s, 6H, 12-H), 3.68 (s, 6H, 10-H), 3.87 (s, 3H, 11-H), 6.26 (s, 3H, 9-H), 7.51 (d, $^3J = 8.0$ Hz, 1H, 8-H), 7.58 (d, $^3J = 8.0$ Hz, 1H, 3-H), 7.88 (s, 2H, 5+6-H), 8.33 (d, $^3J = 8.0$ Hz, 1H, 7-H), 8.42 (d, $^3J = 8.0$ Hz, 1H, 4-H) ppm. 13C NMR (100 MHz, CD$_2$Cl$_2$): $\delta =$ 19.6, 27.7, 55.8, 56.3, 91.2, 111.6, 113.1, 124.6, 126.4, 126.8, 126.9, 127.6, 128.0, 132.9, 135.8, 136.7, 138.0, 142.0, 146.5, 146.7, 155.7, 159.3, 161.2, 162.0. ESI-MS: m/z (%) 605.2 (100) [M + H]$^+$. Elemental analysis: Calculated for C$_{31}$H$_{29}$IN$_2$O$_3$$ \cdot $0.8CH$_2Cl_2$: C, 56.80; H, 4.59; N, 4.17. Found: C, 56.89; H, 4.44; N, 4.15.

2. Synthesis and characterization of complexes:

Complex C1 = [3•4]

In an NMR tube, porphyrin 4 (0.456 mg, 0.770 µmol) and 4-iodopyridine (3) (0.158 mg, 0.771 µmol) were dissolved in 500 µL of CD$_2$Cl$_2$ and NMR spectra were recorded. Yield: quantitative; Mp > 200 ºC; IR (KBr): $\tilde{\nu} =$ 558, 614, 697, 721, 787, 809, 838, 886, 909, 995, 1057, 1121, 1143, 1158, 1182, 1209, 1228, 1288, 1313, 1374, 1395, 1437, 1522, 1559, 1612, 2137, 2915, 3051, 3079 cm$^{-1}$. 1H NMR (400 MHz, CD$_2$Cl$_2$): $\delta =$ 1.77 (s, 6H, n-H), 2.66 (s, 3H, o-H), 3.02 (brs, 2H, a-H), 3.40 (s, 1H, i-H), 6.12 (d, $^3J = 5.6$ Hz, 2H, b-H), 7.33 (s, 2H, m-H), 7.93 (d, $^3J =$
8.0 Hz, 2H, k-H), 8.25 (d, $^3J = 8.0$ Hz, 2H, l-H), 8.88 (d, $^3J = 4.5$ Hz, 2H, p-H), 9.06 (d, $^3J = 4.5$ Hz, 2H, t-H), 9.36 (d, $^3J = 4.5$ Hz, 2H, q-H), 9.41 (d, $^3J = 4.5$ Hz, 2H, s-H), 10.21 (s, 2H, r-H) ppm. **Elemental analysis:** Calculated for C1 (C$_{42}$H$_{30}$IN$_5$Zn): C, 63.29; H, 3.79; N, 8.79. Found: C, 63.43; H, 3.82; N, 8.91.

C2 = [Zn(1)(2)]$^{2+}$

In an NMR tube, phenanthroline 2 (0.469 mg, 0.776 µmol), terpyridine (1) (0.181 mg, 0.776 µmol), and Zn(OTf)$_2$ (0.282 mg, 0.776 µmol) were dissolved in 500 µL of CD$_2$Cl$_2$:CD$_3$CN = 10:1. After heating the sample at 50 °C for 2 h, NMR spectra were recorded showing exclusive formation of the zinc HETTAP complex (> 95%). **IR (KBr):** $\tilde{\nu}$ = 580, 613, 637, 779, 1031, 1129, 1159, 1227, 1268, 1382, 1430, 1460, 1560, 1603, 2221, 2853, 2924 cm$^{-1}$. **1H NMR (400 MHz, CD$_2$Cl$_2$:CD$_3$CN = 10:1) δ = 0.86 (s, 6H, 13-H), 1.94 (s, 6H, 12-H), 2.91 (s, 6H, 10-H), 3.48 (s, 3H, 11-H), 5.58 (s, 2H, 9-H), 7.49 (ddd, $^3J = 7.6$ Hz, $^3J = 5.6$ Hz, $^4J = 1.6$ Hz, 2H, b-H), 7.59 (ddd, $^3J = 5.6$ Hz, $^4J = 1.6$ Hz, $^5J = 0.8$ Hz, 2H, a-H), 7.87 (d, $^3J = 8.4$ Hz, 1H, 8-H), 8.08 (d, $^3J = 8.4$ Hz, 1H, 3-H), 8.25 (td, $^3J = 7.6$ Hz, $^4J = 1.6$ Hz, 2H, c-H), 8.41 – 8.49 (m, 6H, d-, e-, 5- & 6-H), 8.59 (dd, $^3J = 8.4$ Hz, $^3J = 7.8$ Hz, 1H, f-H), 8.97 (d, $^3J = 8.4$ Hz, 1H, 7-H), 9.00 (d, $^3J = 8.4$ Hz, 1H, 4-H) ppm. **ESI-MS:** m/z (%) 450.8 (20) [C2], 1049.8 (100) [C2 + OTf$^-$. **Elemental analysis:** Calculated for C$_{48}$H$_{40}$F$_{30}$IN$_5$O$_9$S$_2$Zn•0.7CH$_2$Cl$_2$: C, 46.39; H, 3.31; N, 5.55; S, 5.09. Found: C, 46.74; H, 2.92; N, 5.64; S, 5.27.
Complex C3 = [Cu(1)(2)]⁺.

In an NMR tube, phenanthroline 2 (0.469 mg, 0.776 µmol), terpyridine 1 (0.181 mg, 0.776 µmol), and [Cu(CH₃CN)₄]PF₆ (0.289 mg, 0.776 µmol) were dissolved in 500 of µL CD₂Cl₂. NMR spectra were recorded showing quantitative formation of the copper(I) HETTAP complex.

IR (KBr): \(\tilde{\nu} = 558, 610, 651, 768, 843, 949, 992, 1031, 1067, 1128, 1158, 1184, 1206, 1228, 1338, 1384, 1429, 1456, 1486, 1585, 1608, 2931 \text{ cm}^{-1}. \)

\(^1\text{H} \text{ NMR (400 MHz, CD}_2\text{Cl}_2)\) \(\delta = 1.39 \) (s, 6H, 13-H), 1.93 (s, 6H, 12-H), 3.21 (s, 6H, 10-H), 3.56 (s, 3H, 11-H), 5.65 (s, 2H, 9-H), 7.08 (ddd, \(^3\text{J} = 7.4 \text{ Hz, } ^3\text{J} = 5.6 \text{ Hz, } ^4\text{J} = 1.6 \text{ Hz, 2H, c-H}), 7.32 (td, \(^3\text{J} = 7.4 \text{ Hz, } ^4\text{J} = 1.6 \text{ Hz, 2H, c-H}), 7.62 (d, \(^3\text{J} = 8.4 \text{ Hz, 1H, 8-H}), 7.90 (d, \(^3\text{J} = 8.4 \text{ Hz, 1H, 3-H}), 8.01 (ddd, \(^3\text{J} = 5.6 \text{ Hz, } ^4\text{J} = 1.6 \text{ Hz, } ^5\text{J} = 0.8 \text{ Hz, 2H, a-H}), 8.04 – 8.18 (m, 7H, d-, e-, F-, 5- & 6-H), \) 8.49 (d, \(^3\text{J} = 8.4 \text{ Hz, 1H, 7-H}), 8.62 (d, \(^3\text{J} = 8.4 \text{ Hz, 1H, 4-H}) \text{ ppm.}\)

\(^{13}\text{C} \text{ NMR (400 MHz, CD}_2\text{Cl}_2)\) \(\delta = 19.5, 27.2, 55.4, 55.7, 90.0, 110.0, 112.4, 121.5, 122.9, 124.8, 126.7, 126.7, 127.2, 127.8, 128.5, 129.5, 131.9, 136.5, 136.7, 137.0, 137.3, 137.9, 140.6, 143.8, 143.9, 148.6, 152.7, 152.8, 155.2, 158.6, 158.9, 162.4. \)

ESI-MS: \(m/z \) (%): 900.1 (100) [C3].

Elemental analysis: Calculated for C_{46}H_{40}CuF_{6}N_{5}O_{3}P\cdot0.5\text{CH}_2\text{Cl}_2: C, 51.30; H, 3.80; N, 6.43. Found: C, 51.29; H, 3.63; N, 6.35.

Complex C4 = [Zn(S)₂]²⁺.
In an NMR tube, stator S (0.706 mg, 0.440 µmol) was dissolved in 500 µL of CD₂Cl₂, then Zn(OTf)₂ (80.0 µg, 0.220 µmol) was added as a standard solution in CD₃OD. After 5 min of sonication, quantitative formation of complex C⁴ was observed in ESI-MS and ¹H NMR. IR (KBr): \(\nu = 456, 527, 571, 638, 702, 727, 733, 789, 812, 833, 857, 997, 1015, 1030, 1066, 1213, 1281, 1340, 1392, 1437, 1495, 1528, 1547, 1606, 2219, 2923, 3016 \text{ cm}^{-1} \). ¹H NMR (400 MHz, CD₂Cl₂:CD₃OD = 4:1): \(\delta = 1.76 \text{ (s, 24H, n-H)}, 2.59 \text{ (s, 6H, i-H)}, 2.62 \text{ (s, 12H, o-H)}, 6.71 \text{ (ddd, } J = 8.0 \text{ Hz, } J = 5.4 \text{ Hz, } J = 1.2 \text{ Hz, 4H, b-H}), 7.19 \text{ (td, } J = 8.0 \text{ Hz, } J = 1.2 \text{ Hz, 4H, c-H}), 7.27 \text{ (ddd, } J = 5.4 \text{ Hz, } J = 1.2 \text{ Hz, } J = 0.8 \text{ Hz, 4H, a-H}), 7.30 \text{ (s, 8H, m-H)}, 7.70 \text{ (s, 4H, h-H)}, 7.99 \text{ (d, } J = 8.0 \text{ Hz, } J = 1.2 \text{ Hz, } J = 0.8 \text{ Hz, 4H, f/g-H}), 8.08 \text{ (d, } J = 8.6 \text{ Hz, 4H, g/f-H}), 8.33 \text{ (d, } J = 8.0 \text{ Hz, 8H, l-H}), 8.57 \text{ (s, 4H, e-H)}, 8.84 \text{ (d, } J = 4.6 \text{ Hz, 8H, p-H}), 9.12 \text{ (d, } J = 4.6 \text{ Hz, 8H, t-H}), 9.27 \text{ (d, } J = 4.6 \text{ Hz, 8H, q-H}), 9.39 \text{ (d, } J = 4.6 \text{ Hz, 8H, s-H}), 10.13 \text{ (s, 8H, r-H) ppm. ESI-MS: m/z (%) 1637.1 (100) [C⁴].}

Elemental analysis: Calculated for C₂₁₀H₁₃₈F₆N₂₂O₆S₂Zn₅•CH₂Cl₂: C, 69.34; H, 3.83; N, 8.43; S, 1.75. Found: C, 69.11; H, 3.65; N, 8.42; S, 1.47.

Complex C⁵ = [Zn(R)₂]²⁺

In an NMR tube, rotator R (0.334 mg, 0.440 µmol) was dissolved in 500 µL of CD₂Cl₂, then Zn(OTf)₂ (80.0 µg, 0.220 µmol) was added as a standard solution in CD₃CN. After 5 min of sonication, exclusive formation (>95%) of complex C⁵ was observed in ESI-MS and ¹H NMR. IR (KBr): \(\nu = 452, 613, 725, 819, 991, 1021, 1103, 1188, 1214, 1261, 1348, 1403, 1472, 1506, 1591, 1683, 2221, 2360, 2538, 2853, 2922 \text{ cm}^{-1} \). ¹H NMR (400 MHz, CD₂Cl₂:CH₃CN = 4:1): \(\delta = 0.89 \text{ (s, 6H, 13'-H)}, 1.62 \text{ (s, 6H, 13-H)}, 2.07 \text{ (s, 6H, 12'-H)}, 2.10 \text{ (s, 6H, 12-H)}, 2.75 \text{ (s, 6H, 10'-H)}, 3.80 \text{ (s, 6H, 11-H)}, 3.82 \text{ (s, 6H, 10-H)}, 5.51 \text{ (s, 2H, 9'-H)}, 6.30 \text{ (s, 2H, 9-H)}, 6.73 \text{ (t, } J = 1.2 \text{ Hz, 2H, f'-H}), 6.93 \text{ (ddd, } J = 7.8 \text{ Hz, } J = 1.4 \text{ Hz, } J = 1.2 \text{ Hz, 2H, c'/c'-H}), 7.25 \text{ (td, } J = 7.8 \text{ Hz, } J = 1.2 \text{ Hz, 2H, d'-H)}, 7.39 \text{ (d, } J = 6.0 \text{ Hz, 4H, b'-H}), 7.47 \text{ (ddd, } J = 7.8 \text{ Hz, } J = 1.4 \text{ Hz, } J = 1.2 \text{ Hz, 2H, e'/c'-H}), 8.17 \text{ (d, } J = 8.6 \text{ Hz, 2H, 8-H}), 8.21 \text{ (d, } J = 8.8 \text{ Hz, 2H, 5/6-H}), 8.24 \text{ (d, } J = 8.8 \text{ Hz, 2H, 6/5-H}), 8.59 \text{ (d, } J = 6.0 \text{ Hz, 4H, a'-H}), 8.64 \text{ (d, } J = 8.6 \text{ Hz, 2H, 7-H}), 9.89 \text{ (d, } J = 8.6 \text{ Hz, 2H, 6-H}).
8.92 (s, 2H, 4-H) ppm. **ESI-MS:** m/z (%) 760.5 (20) [R+H'], 791.3 (100) [C5], 972.1 (20) [C5−R+OTf']. **Elemental analysis:** Calculated for C₉₄H₇₂Br₂F₆O₁₂S₂Zn•2CH₂Cl₂•H₂O: C, 55.73; H, 3.80; N, 4.06; S, 3.10. Found: C, 55.80; H, 3.53; N, 3.86; S, 2.87.

Synthesis of nanorotor C6= [Zn(S)(R)]²⁺ :

Both complexes C4 and C5 (1:1) were dissolved in 5 mL of CH₃OH / CH₂Cl₂ / CH₃CN (1:2:1). The nanorotor C6 was prepared quantitatively after 3 min of mixing at room temperature (concluded from UV/Vis measurement, Figure S71). **Mp:** > 250 °C. **IR (KBr):** ăŕ = 413, 517, 571, 638, 702, 720, 733, 786, 812, 832, 851, 991, 1015, 1030, 1056, 1223, 1260, 1340, 1392, 1427, 1475, 1492, 1518, 1547, 1603, 1655, 2209, 2923 cm⁻¹. **¹H NMR (600 MHz, CD₂Cl₂):** δ = 0.71 (s, 6H, 13-H), 1.64 (s, 6H, 12-H), 1.80 (s, 12H, n-H), 2.19 (d, 3J = 6.4 Hz, 2H, a'-H), 2.61 (s, 3H, i-H), 2.66 (s, 6H, o-H), 2.69 (s, 3H, 11-H), 2.72 (s, 6H, 10-H), 5.17 (s, 2H, 9-H), 5.33 (merged with CDHCl₂, 2H, b'-H), 5.98 (s, 1H, f'-H), 6.94 (dd, 3J = 7.8 Hz, 4J = 1.4 Hz, 4J = 1.2 Hz, 1H, c'/c'-H), 7.03 (t, 3J = 7.8 Hz, 1H, d'-H), 7.21 (dd, 3J = 7.8 Hz, 4J = 1.4 Hz, 4J = 1.2 Hz, 1H, c'/c'-H), 7.34 (s, 4H, m-H), 7.43 (dd, 3J = 7.8 Hz, 4J = 5.2 Hz, 4J = 1.2 Hz, 2H, b-H), 7.57 (ddd, 3J = 5.2 Hz, 4J = 1.2 Hz, 5J = 0.8 Hz, 2H, a-H), 7.74 (s, 2H, b-H), 7.90 (d, 3J = 8.4 Hz, 1H, 8-H), 8.09 (br, 2H, f/H), 8.14-8.17 (m, 6H, k-H + c-H), 8.28 (d, 3J = 8.8 Hz, 1H, 5/6-H), 8.38 (d, 3J = 8.8 Hz, 1H, 6/5-H), 8.39 (d, 3J = 8.0 Hz, 4H, l-H), 8.47 (br, 2H, f/g-H), 8.55 (d, 3J = 8.0 Hz, 4J = 1.2 Hz, 5J = 0.8 Hz, 2H, d-H), 8.83 (s, 1H, 4-H), 8.86 (d, 3J = 8.4 Hz, 1H, 7-H), 8.91 (d, 3J = 4.4 Hz, 4H, p-H), 8.97 (s, 2H, e-H), 9.18 (d, 3J = 4.4 Hz, 4H, t-H), 9.37 (d, 3J = 4.4 Hz, 4H, q-H), 9.45 (d, 3J = 4.4 Hz, 4H, s-H), 10.25 (s, 4H, r-H) ppm. **ESI-MS:** m/z (%) 1213.2
(100) [[Zn(S)(R)]^{2+}]. **Elemental analysis:** Calculated for C_{152}H_{105}BrF_{6}N_{14}O_{9}S_{2}Zn_{3}•CH_{2}Cl_{2}•H_{2}O: C, 64.96; H, 3.88; N, 6.93; S, 2.27. Found: C, 65.29; H, 3.86; N, 6.59; S, 2.34.

Synthesis of nanorotor C7= [Cu(S)(R)]^{+} :

Complex C6 was mixed with the separately prepared chelate complex, [Cu(hexacyclen)]PF6 (0.88 µmol). The resulting solution was heated at 50 °C for 2 h. NMR and ESI-MS spectra confirm the quantitative formation of nanorotor [Cu(S)(R)]PF6. **IR (KBr):** \(\nu = 417, 478, 523, 758, 663, 704, 726, 736, 787, 815, 832, 856, 996, 1024, 1037, 1066, 1158, 1236, 1346, 1389, 1435, 1486, 1506, 1536, 1605, 1684, 2216, 2936, 3012\ \text{cm}^{-1}.

^1H NMR (600 MHz, CD_{2}Cl_{2}) \(\delta = 1.10\ \text{(s, 6H, 13-H)}, 1.57\ \text{(s, 6H, 12-H)}, 1.80\ \text{(s, 12H, n-H)}, 2.18\ \text{(d, \(J = 6.6\ \text{Hz}, 2H, a^-\text{-H})}, 2.60\ \text{(s, 3H, i-H)}, 2.66\ \text{(s, 6H, o-H)}, 2.89\ \text{(s, 6H, 10-H)}, 2.93\ \text{(s, 3H, 11-H)}, 5.23\ \text{(s, 2H, 9-H), 5.39\ \text{(d, \(J = 6.6\ \text{Hz}, 2H, b^-\text{-H})}, 6.04\ \text{(t, \(J = 1.2\ \text{Hz}, 1H, f^-\text{-H})}, 6.95\ \text{(ddd, \(J = 7.8\ \text{Hz}, 4J = 1.4\ \text{Hz, 4J = 1.2\ \text{Hz}, 2H, b-H})}, 7.00\ \text{(td, \(J = 7.8\ \text{Hz, 4J = 1.2\ \text{Hz}, 1H, c'/c^-\text{-H})}, 7.22\ \text{(td, \(J = 7.8\ \text{Hz, 4J = 1.2\ \text{Hz}, 4J = 1.4\ \text{Hz, 4J = 1.2\ \text{Hz, 1H, c'/c^-\text{-H})}}}, 7.71\ \text{(ddd, \(J = 7.8\ \text{Hz, 4J = 1.4\ \text{Hz, 4J = 1.2\ \text{Hz, 1H, d'/d^-\text{-H})}}}, 7.91\ \text{(ddd, \(J = 4.8\ \text{Hz, 4J = 1.2\ \text{Hz, 5J = 0.8\ \text{Hz, 2H, a-H})}, 7.95\ \text{(d, \(J = 8.8\ \text{Hz, 1H, 5/6-H})}, 7.97\ \text{(ddd, \(J = 7.8\ \text{Hz, 4J = 1.2\ \text{Hz, 5J = 0.8\ \text{Hz, 2H, d-H})}, 8.01\ \text{(d, \(J = 8.0\ \text{Hz, 2H, g/f-H})}, 8.08\ \text{(d, \(J = 8.8\ \text{Hz, 1H, 6/5-H})}, 8.15\ \text{(d, \(J = 8.0\ \text{Hz, 2H, k-H})}, 8.17\ \text{(d, \(J = 8.0\ \text{Hz, 2H, f/g-H})}, 8.26\ \text{(s, 2H, e-H)}, 8.37\ \text{(d, \(J = 8.0\ \text{Hz, 2H, l-H})}, 8.46\ \text{(s, 1H, 4-H)}, 8.51\ \text{(d, \(J = 8.8\ \text{Hz, 1H, 7-H})}, 8.91\ \text{(d, \(J = 4.4\ \text{Hz, 4H, p-H})}, 9.17\ \text{(d, \(J = 4.4\ \text{Hz, 4H, t-H})}, 9.37\ \text{(d, \(J = 4.4\ \text{Hz, 4H, q-H})}, 9.45\ \text{(d, \(J = 4.4\ \text{Hz, 4H, s-H})}, 10.23\ \text{(s, 4H, r-H) ppm. **ESI-MS:** \(m/z\ (%)) 2473.6 (100)**
[Cu(S)(R)(CH₃OH)(H₂O)]⁺; **Elemental analysis:** Calculated for C₁₅₀H₁₀₅BrCuF₆N₁₄O₃PZn₂•4CH₃OH: C, 68.53; H, 4.52; N, 7.27. Found: C, 68.28; H, 4.24; N, 6.91.

3. Model Study:

Model Study 1.
An equimolar (0.77 µmol) mixture of ligands 1, 2, 3, 4 and Zn(OTf)₂ (1:1:1:1:1) was refluxed at 50 °C in 500 µL of CD₂Cl₂:CD₃CN = 10:1 for 3 h. The ¹H NMR spectrum was compared with those of the individual complexes.

![Figure S1. ¹H NMR (400 MHz, 298 K) Comparison of (C₁ + C₂) with individually prepared C₁ and C₂ in CD₂Cl₂:CD₃CN = 10:1. Complexes C₁ + C₂ in a mixture (c) showed exactly the superposition of the two individual spectra indicating orthogonality among C₁ (a) and C₂ (b).](image)

Model Study 2.
In an NMR tube ligands 1, 2, 3, 4 and [Cu(CH₃CN)]PF₆ (each 0.77 µmol) were placed and dissolved in 500 µL of CD₂Cl₂. The ¹H NMR spectrum was compared with those of the individual complexes.
Figure S2. 1H NMR (400 MHz, 298 K) Comparison of (C1 + C3) with individually prepared C1 and C3 in CD$_2$Cl$_2$:CD$_3$CN = 10:1. Complexes C1 + C3 in a mixture (c) showed exactly the superposition of the two individual spectra indicating orthogonality among C1 (a) and C3 (b).

Model Study 3.
An equimolar amount (0.77 µmol) of [Cu(hexacyclen)]PF$_6$ was added to C2 at room temperature. Immediately the color of the solution changed from yellow to deep brown. 1H NMR and ESI-MS investigations (Fig. S45) confirm complete metal exchange process.
Model Study 4

Upon addition of 1 equivalent of 3 to 4 (both 0.77 µmol) a characteristic 1H NMR shift occurred from 10.32 to 10.21 ppm due to the N$_{py}$ → ZnPor interaction in 3•4. Upon mixing of 3 (0.77 µmol) and 4 in (1:2) ratio the meso-proton signal shifted to 10.25 ppm suggesting fast exchange of 4-iodopyridine between different zinc porphyrins 4.
4. NMR Spectra: 1H, 13C, 1H-1H COSY, 1H-1H NOESY

Figure S5. 1H NMR spectrum of 2 in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S6. 13C NMR spectrum of 2 in CD$_2$Cl$_2$ (100 MHz, 298 K).
Figure S7. 1H NMR spectrum of C1 (3•4) in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S8. 1H NMR spectrum of C2 in CD$_2$Cl$_2$:CD$_3$CN (9:1) (400 MHz, 298 K). Corresponding homoleptic complexes are present in minor amounts (<5%).
Figure S9. 1H-1H COSY spectrum of C2 in CD$_2$Cl$_2$:CD$_3$CN (9:1) (400 MHz, 298 K).

Figure S10. 1H NMR spectrum of C3 in CD$_2$Cl$_2$ (400 MHz, 298 K).
Figure S11. 1H-1H COSY spectrum of C3 in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S12. 13C NMR spectrum of C3 in CD$_2$Cl$_2$ (100 MHz, 298 K).
Figure S13. 1H NMR spectrum of 15 in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S14. 13C NMR spectrum of 15 in CD$_2$Cl$_2$ (100 MHz, 298 K).
Figure 15. 1H NMR spectrum of 14 in CDCl$_3$ (400 MHz, 298 K).

Figure 16. 1H-1H COSY spectrum of 14 in CDCl$_3$ (400 MHz, 298 K).
Figure 17. 13C NMR spectrum of 14 in CDCl$_3$ (100 MHz, 298 K).

Figure S18. 1H NMR spectrum of R in CD$_2$Cl$_2$ (400 MHz, 298 K).
Figure S19. 1H-1H COSY spectrum of R in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S20. 13C NMR spectrum of R in CD$_2$Cl$_2$ (100 MHz, 298 K).
Figure S21. 1H NMR spectrum of 8 in CDCl$_3$ (400 MHz, 298 K).

Figure S22. 1H-1H COSY spectrum of 8 in CDCl$_3$ (400 MHz, 298 K).
Figure S23. 13C NMR spectrum of 8 in CDCl$_3$ (100 MHz, 298 K).

Figure S24. 1H NMR spectrum of 4 in CDCl$_3$ (400 MHz, 298 K).
Figure S25. 1H-1H COSY spectrum of 4 in CDCl$_3$ (400 MHz, 298 K).

Figure S26. 1H-1H NOESY spectrum of 4 in CDCl$_3$ (400 MHz, 298 K).
Figure S27. 13C NMR spectrum of 4 in CDCl$_3$ (100 MHz, 298 K).

Figure S28. 1H NMR spectrum of 11 in CD$_2$Cl$_2$ (400 MHz, 298 K).
Figure S29. 1H–1H COSY spectrum of 11 in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S30. 13C NMR spectrum of 11 in CD$_2$Cl$_2$ (100 MHz, 298 K).
Figure S31. 1H NMR spectrum of S in CD$_2$Cl$_2$ (400 MHz, 298 K).
Figure S32. 1H-1H COSY spectrum of S in CD$_2$Cl$_2$ (400 MHz, 298 K).

Figure S33. 13C NMR spectrum of S in THF-d$_8$:CD$_2$Cl$_2$ (9:1) (100 MHz, 298 K).
Figure S34. 1H NMR spectrum of [Zn(R)$_2$]$^{2+}$ in CD$_2$Cl$_2$:CD$_3$CN (8:2) (400 MHz, 298 K).

Figure S35. 1H-1H COSY spectrum of [Zn(R)$_2$]$^{2+}$ in CD$_2$Cl$_2$:CD$_3$CN (8:2) (400 MHz, 298 K).
Figure S36. 1H NMR spectrum of $[\text{Zn}(\text{S})_2]^2+$ in CD$_2$Cl$_2$: CD$_3$OD (8:2) (400 MHz, 298 K).

Figure S37. 1H-1H COSY spectrum of $[\text{Zn}(\text{S})_2]^2+$ in CD$_2$Cl$_2$: CD$_3$OD (8:2) (400 MHz, 298 K).
Figure S38. 1H NMR spectrum of [Zn(S)(R)]$^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298 K).

Figure S39. 1H-1H COSY spectrum of [Zn(S)(R)]$^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298 K)
Figure S40. Full 1H-1H COSY spectrum of [Zn(S)(R)]$^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298 K). Pyridyl proton b'-H is merged with residual solvent signal (CDHCl$_2$) at 5.33 ppm.
Figure S41. 1H NMR spectrum of [Cu(S)(R)]$^+$ in CD$_2$Cl$_2$ (600 MHz, 298 K).

Figure S42. 1H-1H COSY spectrum of [Cu(S)(R)]$^+$ in CD$_2$Cl$_2$ (400 MHz, 298 K).
Figure S43. Change in chemical shift in 1H NMR after metal-metal exchange by [Cu(hexacyclen)]PF$_6$ in CD$_2$Cl$_2$: CD$_3$CN = 4:1 (400 MHz, 298 K).

Figure S44. Comparison of 1H NMR spectra of [Cu(S)(R)]$^+$ at two concentrations in CD$_2$Cl$_2$ (400 MHz, 298 K).
5. DOSY NMR spectra

Calculation of hydrodynamic radius from:

a) **DOSY**: The diffusion coefficient D for $\left[\text{Zn}(S)(R) \right]^{2+}$ and $\left[\text{Cu}(S)(R) \right]^+$ was obtained from their DOSY spectrum. The corresponding hydrodynamic radius was calculated by using the Stokes-Einstein equation

$$ r = \frac{k_B T}{6 \pi \eta D} $$

b) **Optimized structure**: Radius of $\left[\text{Zn}(S)(R) \right]^{2+}$ was calculated from their optimized structures at PM6 level. First a circle around the structure was considered and its radius approximated as hydrodynamic radius of the rotor. It is denoted as r_{com}.

![Figure S45. 1H-DOSY NMR of $[\text{Zn}(S)(R)]^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298K). Diffusion coefficient $D = 4.35 \times 10^{-10}$ m2 s$^{-1}$, Hydrodynamic radius $r = 12.1$ Å and the computed value $r_{\text{com}} = 13.0$ Å.](image)

Figure S45. 1H-DOSY NMR of $[\text{Zn}(S)(R)]^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298K). Diffusion coefficient $D = 4.35 \times 10^{-10}$ m2 s$^{-1}$, Hydrodynamic radius $r = 12.1$ Å and the computed value $r_{\text{com}} = 13.0$ Å.
Figure S46. 1H-DOSY NMR of [Cu(S)(R)]$^{2+}$ in CD$_2$Cl$_2$ (600 MHz, 298K). Diffusion coefficient $D = 4.61 \times 10^{-10}$ m2 s$^{-1}$, Hydrodynamic radius $r = 11.5$ Å and the computed value $r_{com} = 12.5$ Å.
6. Variable temperature studies and determination of kinetic parameters

Model complex 3•4(1:2):

In an NMR tube, 4 (0.521 mg, 0.880 µmol) was dissolved in CD₂Cl₂ and 3 (0.090 mg, 0.439 µmol) was added. NMR spectra of the mixture were recorded at different temperature.

\[\text{meso-H} \quad \text{m-H} \quad \text{n-H}\]

Figure S47. Partial 1H VT-NMR (CD₂Cl₂, 600 MHz) of 3•4(1:2) shows the splitting of meso-H, m-H, and n-H (red asterisk marked) in aromatic and aliphatic region. Upon lowering the temperature meso-H splits into two sets in 1:1 ratio. Signal at 10.32 ppm corresponds to 3•4, and the free porphyrin 4 shows a singlet at 10.19 ppm. In contrast, m-H splits into two sets at 1:3 ratio. Signal at 7.28 ppm corresponds to one m-H of 3•4 and the other is merged with two m-H of 4 at 7.31 ppm. Similarly, upon lowering the temperature protons n-H split into three sets in 1:2:1 ratio. Singlet at 1.74 ppm corresponds to free 4, while the signals for the coordinated porphyrin arise at 1.78 and 1.64 ppm. Broadening and splitting of other aromatic protons is also observed.
Figure S48. Partial 1H VT-NMR spectra (CD$_2$Cl$_2$, 600 MHz) of 3•4(1:2) at different temperatures showing experimental and theoretical splitting of (a) meso-H and (b) m-H with corresponding rate constants. (c) Eyring plot for the exchange process.
Figure S49. Partial 1H VT-NMR (CD$_2$Cl$_2$, 600 MHz) of [Zn(S)(R)]$^{2+}$ with (a) aromatic and (b) aliphatic region showing the splitting of r-H, and n-H (red asterisk marked).

Figure S50. Partial 1H VT-NMR of [Zn(S)(R)]$^{2+}$ (CD$_2$Cl$_2$, 600 MHz) at different temperatures showing experimental and theoretical splitting of r-H with corresponding rate constants. (b) Eyring plot for rotational dynamics in [Zn(S)(R)]$^{2+}$.

$$y = -6.32x + 25.721$$
$$R^2 = 0.9971$$
Figure S51. Partial 1H VT-NMR (CD$_2$Cl$_2$, 600 MHz) of [Cu(S)(R)]$^+$ with (a) aromatic and (b) aliphatic region showing the splitting of m-H, and n-H (red asterisk marked). The splitting pattern is similar as in the model exchange process (Figure S43). In contrast, protons r-H are not well separated upon lowering the temperature.

Figure S52. Partial 1H VT-NMR of [Cu(S)(R)]$^+$ (CD$_2$Cl$_2$, 600 MHz) at different temperatures showing experimental and theoretical splitting of m-H with corresponding rate constants. (b) Eyring plot for rotational dynamics in [Cu(S)(R)]$^+$.
7. ESI-MS Spectra:

Figure S53. ESI-MS of compound 2 after protonation.

Figure S54. ESI-MS of C2.
Figure S55. ESI-MS of C3.

Figure S56. ESI-MS of [Zn(hexacyclen)OTf]^+.
Figure 57. ESI-MS of [Cu(hexacyclen)]⁺.

Figure S58. ESI MS investigation for metal-metal exchange process, furnishing C3 and [Zn(hexacyclen)OTf]²⁺ from C2 after treating with [Cu(hexacyclen)]⁺.
Figure S59. ESI-MS of compound 15 after protonation.

Figure S60. ESI-MS of compound 14 after protonation.
Figure S61. ESI-MS of compound R after protonation.

Figure S62. ESI-MS of compound 11 after protonation.
Figure S63. ESI-MS of compound S after protonation.

Figure S64. ESI-MS of $[\text{Zn(S)}_2]^{2+}$.
Figure S65. ESI-MS of [Zn(R)$_2$]$^{2+}$.

Figure S66. ESI-MS of nanorotor [Zn(R)(S)]$^{2+}$.
Figure S67. ESI-MS of nanorotor [[Cu(R)(S)]].
8. UV-Vis data

Measurement of Binding Constant:
A UV-Vis titration was used to measure binding constant of complex C1

![UV-Vis spectrum](image.png)

Figure S68. UV-vis titration of porphyrin 4 (1.2 × 10⁻⁵ M) vs. 3 (1.1×10⁻³ M) in CH₂Cl₂ at 298 K. The binding constant was determined as log K = 4.45 ± 0.04 using SPECFIT software.

![Change in UV-vis](image.png)

Figure S69. Change in UV-vis from [Zn(S)(R)]²⁺ (10⁻⁵ M) to [Cu(S)(R)]⁺ after metal-metal exchange.
Figure S70. Change in UV-vis of nanorotor \([\text{Cu}(S)(R)]^+\) at different concentrations.

Figure S71. UV-vis spectra of fusion experiment, addition of \([\text{Zn}(R)_2]^{2+}\) (10\(^{-3}\) M) to \([\text{Zn}(S)_2]^{2+}\) (10\(^{-5}\) M), taken in 1-min intervals. The fusion process is fast and completed after 3 min.
9. Computational Results:

Figure S72. Hydrodynamic radius of \([\text{Zn}(\text{S})(\text{R})]^2+\) from computed structure calculated using PM6 level. Radius \(r_{\text{com}} = (16+10)/2 = 13.0 \text{ Å}.\)

Figure S73. Hydrodynamic radius of \([\text{Cu}(\text{S})(\text{R})]^+\) from computed structure calculated using PM6 level. Radius \(r_{\text{com}} = (15.5+9.5)/2 = 12.5 \text{ Å}.\)
Figure S74. Perspective view of partial supramolecular nanorotor \([\text{Cu(S)(R)}]^+\) obtained as energy minimized structure, calculated using Gaussian 09 at B3LYP/6-31G (d) level.

The x, y, z cartesian coordinates:

<table>
<thead>
<tr>
<th>C</th>
<th>1.601956000</th>
<th>10.275534000</th>
<th>-0.371600000</th>
<th>C</th>
<th>-4.461837000</th>
<th>0.799936000</th>
<th>1.090030000</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>2.199924000</td>
<td>11.552533000</td>
<td>-0.419428000</td>
<td>H</td>
<td>-2.926440000</td>
<td>2.176079000</td>
<td>1.713221000</td>
</tr>
<tr>
<td>C</td>
<td>0.037720000</td>
<td>12.600754000</td>
<td>-0.732262000</td>
<td>C</td>
<td>-5.731392000</td>
<td>1.410174000</td>
<td>-0.787526000</td>
</tr>
<tr>
<td>C</td>
<td>-0.576877000</td>
<td>11.356585000</td>
<td>-0.685359000</td>
<td>H</td>
<td>-5.259273000</td>
<td>3.255515000</td>
<td>-1.731905000</td>
</tr>
<tr>
<td>C</td>
<td>0.181367000</td>
<td>10.174210000</td>
<td>-0.503013000</td>
<td>C</td>
<td>-6.835372000</td>
<td>1.149411000</td>
<td>-1.745859000</td>
</tr>
<tr>
<td>H</td>
<td>3.276935000</td>
<td>11.625528000</td>
<td>-0.318738000</td>
<td>C</td>
<td>-7.931544000</td>
<td>0.335816000</td>
<td>-1.428279000</td>
</tr>
<tr>
<td>H</td>
<td>-0.562955000</td>
<td>13.493038000</td>
<td>-0.872065000</td>
<td>C</td>
<td>-8.947995000</td>
<td>0.172728000</td>
<td>-2.375486000</td>
</tr>
<tr>
<td>C</td>
<td>-0.473458000</td>
<td>8.912411000</td>
<td>-0.440185000</td>
<td>H</td>
<td>-7.995990000</td>
<td>-0.122266000</td>
<td>-0.451829000</td>
</tr>
<tr>
<td>C</td>
<td>-1.051746000</td>
<td>7.838520000</td>
<td>-0.375204000</td>
<td>C</td>
<td>-7.725750000</td>
<td>1.628368000</td>
<td>-3.844558000</td>
</tr>
<tr>
<td>C</td>
<td>1.429538000</td>
<td>12.701045000</td>
<td>-0.596593000</td>
<td>C</td>
<td>-8.845022000</td>
<td>0.820923000</td>
<td>-3.610334000</td>
</tr>
<tr>
<td>C</td>
<td>-1.758149000</td>
<td>6.606620000</td>
<td>-0.299964000</td>
<td>H</td>
<td>-9.810818000</td>
<td>-0.443130000</td>
<td>-2.144834000</td>
</tr>
<tr>
<td>C</td>
<td>-3.140281000</td>
<td>6.557210000</td>
<td>-0.597707000</td>
<td>H</td>
<td>-7.605427000</td>
<td>2.161670000</td>
<td>-4.781376000</td>
</tr>
<tr>
<td>C</td>
<td>-1.110659000</td>
<td>5.404758000</td>
<td>0.072203000</td>
<td>H</td>
<td>-9.612739000</td>
<td>0.716573000</td>
<td>-4.368407000</td>
</tr>
<tr>
<td>C</td>
<td>-3.841931000</td>
<td>5.359896000</td>
<td>-0.517930000</td>
<td>C</td>
<td>-4.234993000</td>
<td>-0.193031000</td>
<td>2.159167000</td>
</tr>
<tr>
<td>H</td>
<td>-3.651011000</td>
<td>7.470293000</td>
<td>-0.881904000</td>
<td>C</td>
<td>-3.450497000</td>
<td>0.050177000</td>
<td>3.296469000</td>
</tr>
<tr>
<td>C</td>
<td>-1.818927000</td>
<td>4.208213000</td>
<td>0.154338000</td>
<td>C</td>
<td>-4.725820000</td>
<td>-2.356931000</td>
<td>2.930332000</td>
</tr>
<tr>
<td>H</td>
<td>-0.493111000</td>
<td>5.424150000</td>
<td>0.292235000</td>
<td>C</td>
<td>-3.296830000</td>
<td>-0.950857000</td>
<td>4.255333000</td>
</tr>
<tr>
<td>C</td>
<td>-3.199545000</td>
<td>4.165255000</td>
<td>-0.132062000</td>
<td>H</td>
<td>-2.975792000</td>
<td>1.011505000</td>
<td>3.442693000</td>
</tr>
<tr>
<td>H</td>
<td>-4.906766000</td>
<td>5.354596000</td>
<td>-0.726817000</td>
<td>C</td>
<td>-3.947919000</td>
<td>-2.177511000</td>
<td>4.071351000</td>
</tr>
<tr>
<td>H</td>
<td>-1.289760000</td>
<td>3.290133000</td>
<td>0.393970000</td>
<td>H</td>
<td>-5.272458000</td>
<td>-3.274211000</td>
<td>2.753630000</td>
</tr>
<tr>
<td>C</td>
<td>-3.968557000</td>
<td>2.907655000</td>
<td>-0.020185000</td>
<td>H</td>
<td>-2.688157000</td>
<td>-0.774049000</td>
<td>5.135014000</td>
</tr>
<tr>
<td>C</td>
<td>-3.710843000</td>
<td>1.972412000</td>
<td>0.996768000</td>
<td>H</td>
<td>-3.854289000</td>
<td>-2.977102000</td>
<td>4.796527000</td>
</tr>
<tr>
<td>C</td>
<td>-5.007877000</td>
<td>2.600439000</td>
<td>-0.911494000</td>
<td>N</td>
<td>-5.456893000</td>
<td>0.497557000</td>
<td>0.191806000</td>
</tr>
<tr>
<td>Element</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-4.860779</td>
<td>-1.394693</td>
<td>1.985164</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-6.743716</td>
<td>1.795626</td>
<td>-2.937733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.855567</td>
<td>-3.335072</td>
<td>-1.553087</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.657624</td>
<td>-2.709188</td>
<td>-2.132735</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-6.988298</td>
<td>-4.161348</td>
<td>-2.697293</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-7.915098</td>
<td>-3.271064</td>
<td>-0.587910</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-4.715691</td>
<td>-3.536767</td>
<td>-3.305583</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5.893118</td>
<td>-4.238631</td>
<td>-3.578890</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-8.204824</td>
<td>-4.904130</td>
<td>-2.889360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-5.950033</td>
<td>-4.460296</td>
<td>-4.467584</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-9.209247</td>
<td>-4.854314</td>
<td>-1.964676</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-8.299967</td>
<td>-5.520360</td>
<td>-0.777120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-10.068487</td>
<td>-4.004886</td>
<td>0.235599</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-8.665703</td>
<td>-2.464312</td>
<td>1.486409</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-10.117335</td>
<td>-5.416030</td>
<td>0.531874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-9.848191</td>
<td>-3.232531</td>
<td>1.360624</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-10.575847</td>
<td>-3.196010</td>
<td>0.271208</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-5.710656</td>
<td>-2.614353</td>
<td>-1.296441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-7.727947</td>
<td>-2.465937</td>
<td>0.513874</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-5.352846</td>
<td>-3.652214</td>
<td>-4.139533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-2.548133</td>
<td>-3.731918</td>
<td>-4.796697</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>-1.266543</td>
<td>-3.756237</td>
<td>-5.419849</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-1.048298</td>
<td>-4.310486</td>
<td>-6.699518</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-0.178995</td>
<td>-3.212842</td>
<td>-4.709940</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.238195</td>
<td>-3.430116</td>
<td>-7.244392</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-1.881712</td>
<td>-4.730074</td>
<td>-7.251520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.118893</td>
<td>-3.228879</td>
<td>-5.251764</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.342046</td>
<td>-2.786793</td>
<td>-3.727083</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.401568</td>
<td>-4.741172</td>
<td>-8.228636</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.318777</td>
<td>-3.786333</td>
<td>-6.533860</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.315897</td>
<td>-3.801568</td>
<td>-6.958840</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>2.189186</td>
<td>-2.702942</td>
<td>-4.407359</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.027409</td>
<td>-2.256464</td>
<td>-3.705625</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.977324</td>
<td>-1.766807</td>
<td>-2.766182</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>5.351377</td>
<td>-2.069545</td>
<td>-2.882986</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>3.564890</td>
<td>-0.983484</td>
<td>-1.665762</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>6.238307</td>
<td>-1.605928</td>
<td>-1.916134</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>5.711962</td>
<td>-2.663522</td>
<td>-3.713701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.517212</td>
<td>-0.563107</td>
<td>-0.743035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>2.528468</td>
<td>-0.701464</td>
<td>-1.528346</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S58
C 10.754648000 -2.420103000 -0.567649000 C 7.955976000 -1.594622000 5.125389000
C 9.097837000 -3.062797000 1.246833000 C -8.197182000 -0.215324000 5.121458000
H 11.706275000 -2.078510000 4.671443000 Br 0.399768000 0.548647000 -0.464187000
H 11.369129000 -3.326274000 0.738328000 C -0.544935000 -2.253456000 0.459878000
C 9.812452000 -4.360510000 1.430013000 H -0.078932000 -3.206090000 0.886114000
H 12.546699000 -4.475980000 2.327566000 H -3.722893000 -4.284790000 -0.493440000
C 10.066327000 -6.734809000 0.895497000 C -1.991302000 -4.467202000 -0.208757000
C 8.226128000 -6.440100000 -0.253672000 H -2.999542000 -3.667641000 0.992384000
C 11.549669000 -5.709787000 2.484753000 C -1.538676000 1.181932000 -2.914151000
C 11.377602000 -3.272437000 3.116856000 H -2.254691000 1.995114000 -2.739530000
C 11.150256000 -6.815065000 1.776949000 H -0.552017000 1.538082000 -2.625960000
H 9.735243000 -7.609248000 0.340641000 H -1.535324000 0.984312000 -3.991541000
H 7.305550000 -5.129191000 0.281720000 C -3.931377000 -0.266249000 -3.625550000
H 8.414912000 -4.726690000 -1.059940000 H -4.206521000 0.783826000 -3.848251000
H 8.041124000 -6.424226000 -0.714289000 H -3.397701000 -0.336061000 -4.582008000
H 12.384110000 -5.779253000 3.178010000 H -4.860254000 -0.828651000 -3.727617000
H 11.716597000 -2.465408000 2.456450000 O -8.101224000 0.587652000 6.242913000
H 12.209970000 -3.542625000 3.773703000 O -9.087557000 0.298490000 1.562281000
C 11.883766000 -8.164387000 1.939564000 C -7.785650000 -0.015225000 7.530366000
H 12.290682000 -8.272746000 2.950717000 H -7.797283000 0.815109000 8.237457000
H 11.225330000 -9.018007000 1.746124000 H -8.540019000 -0.754149000 7.815413000
H 12.727956000 -8.239297000 1.240349000 H -6.792088000 -0.479418000 7.518330000
H 1.911582000 13.672286000 -0.631232000 C -7.675583000 -4.455216000 5.024065000
C -3.410375000 -1.957743000 -1.781653000 H -7.610978000 -5.487164000 4.682200000
C -2.569658000 -2.458393000 -0.761841000 H -6.751348000 -4.179994000 5.544489000
C -3.074373000 -0.781413000 -2.488405000 H -8.529329000 -4.338991000 5.699166000
C -1.420265000 -1.726887000 -0.375464000 C -9.469072000 1.706365000 1.542175000
C -1.908386000 -0.058730000 -2.136049000 H -8.623385000 2.346392000 1.813703000
C -1.142937000 -0.538433000 -1.064512000 H -9.765219000 1.902471000 0.513264000
C -8.445554000 -1.660363000 2.719138000 H -10.309955000 1.889844000 2.218473000
C -8.689367000 -0.272324000 2.763037000 H -1.653355000 11.265772000 -0.785572000
C -8.086578000 -2.296984000 3.919855000 Cu -5.972144000 -1.460842000 0.33934100
C -8.561925000 0.454457000 3.945855000

S59
Figure S75. Perspective view of partial supramolecular nanorotor \([\text{Zn(S)(R)}]^{2+}\) obtained from energy minimized structure, calculated using Gaussian 09 at B3LYP/6-31G (d) level

The x, y, z cartesian coordinates:

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.351384000</td>
<td>9.821790000</td>
<td>-0.694802000</td>
</tr>
<tr>
<td>C</td>
<td>1.975541000</td>
<td>11.087837000</td>
<td>-0.681642000</td>
</tr>
<tr>
<td>C</td>
<td>-0.140482000</td>
<td>12.186746000</td>
<td>-1.122370000</td>
</tr>
<tr>
<td>C</td>
<td>-0.781405000</td>
<td>10.950668000</td>
<td>-1.134103000</td>
</tr>
<tr>
<td>C</td>
<td>-0.059051000</td>
<td>9.755530000</td>
<td>-0.917651000</td>
</tr>
<tr>
<td>H</td>
<td>3.044905000</td>
<td>11.137593000</td>
<td>-0.511784000</td>
</tr>
<tr>
<td>C</td>
<td>-0.752261000</td>
<td>8.515910000</td>
<td>-0.894806000</td>
</tr>
<tr>
<td>C</td>
<td>-1.387210000</td>
<td>7.472464000</td>
<td>-0.848848000</td>
</tr>
<tr>
<td>C</td>
<td>1.241530000</td>
<td>12.254149000</td>
<td>-0.891228000</td>
</tr>
<tr>
<td>C</td>
<td>-2.163315000</td>
<td>6.289174000</td>
<td>-0.769913000</td>
</tr>
<tr>
<td>C</td>
<td>-3.528140000</td>
<td>6.301251000</td>
<td>-1.151743000</td>
</tr>
<tr>
<td>C</td>
<td>-1.607135000</td>
<td>5.072129000</td>
<td>-0.303325000</td>
</tr>
<tr>
<td>C</td>
<td>-4.305110000</td>
<td>5.154366000</td>
<td>-1.047164000</td>
</tr>
<tr>
<td>H</td>
<td>-3.963855000</td>
<td>7.224359000</td>
<td>-1.516114000</td>
</tr>
<tr>
<td>C</td>
<td>-2.391021000</td>
<td>3.929609000</td>
<td>-0.181628000</td>
</tr>
<tr>
<td>H</td>
<td>-0.554049000</td>
<td>5.041039000</td>
<td>-0.047804000</td>
</tr>
<tr>
<td>C</td>
<td>-3.757698000</td>
<td>3.958149000</td>
<td>-0.537466000</td>
</tr>
<tr>
<td>H</td>
<td>-5.356467000</td>
<td>5.196883000</td>
<td>-1.315954000</td>
</tr>
<tr>
<td>H</td>
<td>-1.932722000</td>
<td>2.984696000</td>
<td>0.092620000</td>
</tr>
<tr>
<td>C</td>
<td>-4.593031000</td>
<td>2.758474000</td>
<td>-0.368926000</td>
</tr>
<tr>
<td>C</td>
<td>-4.541642000</td>
<td>2.005254000</td>
<td>0.825212000</td>
</tr>
</tbody>
</table>

C | -5.472067000 | 2.321071000 | -1.383979000 |
C | -5.339086000 | 0.872170000 | 0.968732000 |
H | -3.898197000 | 2.342690000 | 1.626770000 |
C | -6.198698000 | 1.144211000 | -1.213953000 |
H | -5.525799000 | 2.881699000 | -2.307805000 |
C | -7.072071000 | 0.536922000 | -2.242425000 |
C | -7.343313500 | 1.128479000 | -3.483810000 |
C | -8.166886000 | 0.462432000 | -4.394699000 |
H | -6.921321000 | 2.091311000 | -3.741824000 |
C | -8.415851000 | -1.304592000 | -2.786258000 |
C | -8.713685000 | -0.777491000 | -4.043339000 |
H | -8.378784000 | 0.904611000 | -5.361480000 |
H | -8.831962000 | -2.249401000 | -2.462372000 |
H | -9.354655000 | -1.322481000 | -4.725358000 |
C | -5.453099000 | 0.065454000 | 2.202820000 |
C | -4.840703000 | 0.403257000 | 3.416882000 |
C | -6.449720000 | -1.820370000 | 3.190053000 |
C | -5.046973000 | -0.406428000 | 4.537138000 |
H | -4.223140000 | 1.288637000 | 3.495314000 |
C | -5.866764000 | -1.536752000 | 4.426105000 |
H | -7.107019000 | -2.668574000 | 3.056747000 |
H | -4.580670000 | -0.154882000 | 5.482956000 |
H | -6.048767000 | -2.183596000 | 5.275406000 |
N | -6.118488000 | 0.442417000 | -0.056180000 |
N | -6.246251000 | -1.043018000 | 2.104265000 |
N | -7.610339000 | -0.670997000 | -1.908163000 |
H | -7.129584000 | -4.199812000 | -0.458517000 |
C | -4.877974000 | -3.538982000 | 0.769399000 |
C | -6.861380000 | -5.523629000 | -0.889670000 |
C | -8.454925000 | -3.844989000 | -0.020107000 |
C | -4.534030000 | -4.858647000 | -1.225657000 |
C | -5.543168000 | -5.826116000 | -1.285814000 |
C | -7.922647000 | -6.494424000 | -0.893918000 |
H | -9.476830000 | -4.828564000 | -0.020545000 |
H | -5.300298000 | -6.826684000 | -1.625867000 |
C | -9.179164000 | -6.159600000 | -0.473757000 |
H | -7.702720000 | -7.501293000 | -1.213636000 |
C | -10.757110000 | -4.433099000 | 0.438813000 |
C | -9.907328000 | -2.193582000 | 0.840563000 |
H | -9.974434000 | -6.897089000 | -0.471815000 |
H | -11.566180000 | -5.155855000 | 0.454284000 |
C | -10.965582000 | -3.135584000 | 0.866077000 |
Figure S76. Perspective view of supramolecular nanorotor \([\text{Zn(S}(\text{R})])^{2+}\) obtained from energy minimized structure, calculated using PM6 level.

The x, y, z cartesian coordinates:

C 2.929968000 10.530007000 0.261264000 C 0.532636000 10.892992000 0.421901000 C 0.306753000 9.518474000 0.278853000 C 4.265854000 10.0090000 0.365380000
<table>
<thead>
<tr>
<th>Atoms</th>
<th>X-Coordinate</th>
<th>Y-Coordinate</th>
<th>Z-Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>10.138900000</td>
<td>-0.069317000</td>
<td>2.519641000</td>
</tr>
<tr>
<td>H</td>
<td>9.431190000</td>
<td>-1.253421000</td>
<td>-1.466265000</td>
</tr>
<tr>
<td>N</td>
<td>9.850896000</td>
<td>-0.573496000</td>
<td>0.488775000</td>
</tr>
<tr>
<td>C</td>
<td>3.823073000</td>
<td>8.250440000</td>
<td>0.004844000</td>
</tr>
<tr>
<td>C</td>
<td>4.738828000</td>
<td>7.469390000</td>
<td>-0.069932000</td>
</tr>
<tr>
<td>C</td>
<td>5.780935000</td>
<td>6.514439000</td>
<td>-1.136622000</td>
</tr>
<tr>
<td>C</td>
<td>7.130340000</td>
<td>6.915419000</td>
<td>-0.152727000</td>
</tr>
<tr>
<td>C</td>
<td>5.457797000</td>
<td>5.143262000</td>
<td>-0.171613000</td>
</tr>
<tr>
<td>H</td>
<td>7.381731000</td>
<td>7.976306000</td>
<td>-0.136824000</td>
</tr>
<tr>
<td>C</td>
<td>6.471556000</td>
<td>4.189397000</td>
<td>-0.207871000</td>
</tr>
<tr>
<td>H</td>
<td>4.413690000</td>
<td>4.836071000</td>
<td>-0.165996000</td>
</tr>
<tr>
<td>C</td>
<td>7.821885000</td>
<td>4.586307300</td>
<td>-0.209971000</td>
</tr>
<tr>
<td>Zn</td>
<td>11.215045000</td>
<td>0.926403000</td>
<td>-0.204843000</td>
</tr>
<tr>
<td>C</td>
<td>9.867600000</td>
<td>6.260210000</td>
<td>-0.209607000</td>
</tr>
<tr>
<td>H</td>
<td>6.228750000</td>
<td>3.128967000</td>
<td>-0.228263000</td>
</tr>
<tr>
<td>C</td>
<td>8.885483000</td>
<td>3.564583000</td>
<td>-0.230132000</td>
</tr>
<tr>
<td>C</td>
<td>9.087819000</td>
<td>2.833413000</td>
<td>-1.418676000</td>
</tr>
<tr>
<td>C</td>
<td>9.670920000</td>
<td>3.380700000</td>
<td>0.913240000</td>
</tr>
<tr>
<td>N</td>
<td>9.968686000</td>
<td>1.811562000</td>
<td>-1.606220000</td>
</tr>
<tr>
<td>C</td>
<td>8.348666000</td>
<td>3.102105000</td>
<td>-2.694606000</td>
</tr>
<tr>
<td>C</td>
<td>10.650644000</td>
<td>2.445533000</td>
<td>1.096353000</td>
</tr>
<tr>
<td>C</td>
<td>9.539522000</td>
<td>4.205975000</td>
<td>2.162898000</td>
</tr>
<tr>
<td>Zn</td>
<td>11.215045000</td>
<td>0.926403000</td>
<td>-0.204843000</td>
</tr>
<tr>
<td>C</td>
<td>8.965711000</td>
<td>1.407146000</td>
<td>-2.984613000</td>
</tr>
<tr>
<td>C</td>
<td>8.813986000</td>
<td>2.243731000</td>
<td>-3.625856000</td>
</tr>
<tr>
<td>H</td>
<td>7.605574000</td>
<td>3.872869000</td>
<td>-2.784632000</td>
</tr>
<tr>
<td>C</td>
<td>11.213426000</td>
<td>2.653693000</td>
<td>2.397276000</td>
</tr>
<tr>
<td>C</td>
<td>10.459829000</td>
<td>3.768362000</td>
<td>3.044341000</td>
</tr>
<tr>
<td>H</td>
<td>8.818133000</td>
<td>4.996375000</td>
<td>2.264810000</td>
</tr>
<tr>
<td>N</td>
<td>12.100710000</td>
<td>-0.177273000</td>
<td>-1.703036000</td>
</tr>
<tr>
<td>C</td>
<td>12.789416000</td>
<td>0.466731000</td>
<td>1.046845000</td>
</tr>
<tr>
<td>C</td>
<td>10.607187000</td>
<td>0.459927000</td>
<td>-3.601815000</td>
</tr>
<tr>
<td>H</td>
<td>8.538720000</td>
<td>2.144466000</td>
<td>-4.659074000</td>
</tr>
<tr>
<td>C</td>
<td>12.246650000</td>
<td>1.980273000</td>
<td>2.950914000</td>
</tr>
<tr>
<td>H</td>
<td>10.676203000</td>
<td>4.118785000</td>
<td>4.037010000</td>
</tr>
<tr>
<td>C</td>
<td>11.677009000</td>
<td>-0.291797000</td>
<td>-3.001005000</td>
</tr>
<tr>
<td>C</td>
<td>13.201894000</td>
<td>-1.048446000</td>
<td>-1.561448000</td>
</tr>
<tr>
<td>C</td>
<td>13.014461000</td>
<td>0.951027000</td>
<td>2.297798000</td>
</tr>
<tr>
<td>C</td>
<td>13.806415000</td>
<td>-0.497072000</td>
<td>0.793696000</td>
</tr>
<tr>
<td>H</td>
<td>10.427793000</td>
<td>0.245880000</td>
<td>-4.661313000</td>
</tr>
<tr>
<td>H</td>
<td>12.576155000</td>
<td>2.236772000</td>
<td>3.963063000</td>
</tr>
<tr>
<td>C</td>
<td>12.488213000</td>
<td>-1.258202000</td>
<td>-3.715171000</td>
</tr>
</tbody>
</table>

S64
<table>
<thead>
<tr>
<th>Element</th>
<th>X Position</th>
<th>Y Position</th>
<th>Z Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-6.32173000</td>
<td>4.974690000</td>
<td>0.523769000</td>
</tr>
<tr>
<td>C</td>
<td>-6.725174000</td>
<td>4.114583000</td>
<td>1.636225000</td>
</tr>
<tr>
<td>C</td>
<td>-7.554098900</td>
<td>4.985053000</td>
<td>-0.507958000</td>
</tr>
<tr>
<td>N</td>
<td>-7.648881500</td>
<td>3.122190000</td>
<td>1.809406000</td>
</tr>
<tr>
<td>C</td>
<td>-8.510169000</td>
<td>4.169360000</td>
<td>2.816387000</td>
</tr>
<tr>
<td>N</td>
<td>-8.635781000</td>
<td>3.141405000</td>
<td>-0.652720000</td>
</tr>
<tr>
<td>C</td>
<td>-7.530074000</td>
<td>5.950680000</td>
<td>-1.648565000</td>
</tr>
<tr>
<td>C</td>
<td>-7.366259000</td>
<td>2.507311000</td>
<td>3.082761000</td>
</tr>
<tr>
<td>N</td>
<td>-6.547941900</td>
<td>4.891258000</td>
<td>2.900322000</td>
</tr>
<tr>
<td>C</td>
<td>-9.329635000</td>
<td>4.543292000</td>
<td>-1.834838000</td>
</tr>
<tr>
<td>C</td>
<td>-10.492203000</td>
<td>5.697910000</td>
<td>-2.433610000</td>
</tr>
<tr>
<td>H</td>
<td>-0.769011000</td>
<td>6.714653000</td>
<td>-1.747408000</td>
</tr>
<tr>
<td>C</td>
<td>-8.025593000</td>
<td>1.458337000</td>
<td>3.623630000</td>
</tr>
<tr>
<td>C</td>
<td>-9.735291000</td>
<td>1.095603000</td>
<td>-1.747408000</td>
</tr>
<tr>
<td>C</td>
<td>-11.153815000</td>
<td>2.880900000</td>
<td>-1.755953000</td>
</tr>
<tr>
<td>H</td>
<td>-10.897903000</td>
<td>4.402499000</td>
<td>-3.254978000</td>
</tr>
<tr>
<td>N</td>
<td>-9.745287000</td>
<td>1.127135000</td>
<td>1.833101000</td>
</tr>
<tr>
<td>C</td>
<td>-9.797077000</td>
<td>-0.361920000</td>
<td>3.608681000</td>
</tr>
<tr>
<td>N</td>
<td>-10.783582000</td>
<td>2.217717000</td>
<td>-0.626880000</td>
</tr>
<tr>
<td>C</td>
<td>-12.370399000</td>
<td>2.299180000</td>
<td>-2.327158000</td>
</tr>
<tr>
<td>Zn</td>
<td>-2.930895000</td>
<td>0.615514000</td>
<td>3.023098000</td>
</tr>
<tr>
<td>C</td>
<td>-10.815519000</td>
<td>0.226540000</td>
<td>1.662057000</td>
</tr>
<tr>
<td>C</td>
<td>-10.840098000</td>
<td>-0.696492000</td>
<td>2.746441000</td>
</tr>
<tr>
<td>H</td>
<td>-0.547941900</td>
<td>4.543292000</td>
<td>-1.834838000</td>
</tr>
<tr>
<td>C</td>
<td>-11.754553000</td>
<td>1.179488000</td>
<td>-0.431889000</td>
</tr>
<tr>
<td>N</td>
<td>-12.374888000</td>
<td>1.266585000</td>
<td>-1.514416000</td>
</tr>
<tr>
<td>H</td>
<td>-12.858684000</td>
<td>2.665670000</td>
<td>-3.210268000</td>
</tr>
<tr>
<td>C</td>
<td>-11.772189000</td>
<td>0.274575000</td>
<td>0.608940000</td>
</tr>
<tr>
<td>H</td>
<td>-11.564118000</td>
<td>-1.481732000</td>
<td>2.886977000</td>
</tr>
<tr>
<td>C</td>
<td>-13.587361000</td>
<td>0.609293000</td>
<td>-1.600083000</td>
</tr>
<tr>
<td>C</td>
<td>-12.871282000</td>
<td>-0.722044000</td>
<td>0.652092000</td>
</tr>
<tr>
<td>C</td>
<td>-12.802148000</td>
<td>-0.900570000</td>
<td>-0.117059000</td>
</tr>
<tr>
<td>C</td>
<td>-14.001095000</td>
<td>-0.477548000</td>
<td>1.465783000</td>
</tr>
<tr>
<td>C</td>
<td>-13.845918000</td>
<td>-2.829945000</td>
<td>-0.663170000</td>
</tr>
<tr>
<td>C</td>
<td>-11.620430000</td>
<td>-2.156269000</td>
<td>-0.998526000</td>
</tr>
<tr>
<td>C</td>
<td>-15.037420000</td>
<td>-1.416470000</td>
<td>1.505673000</td>
</tr>
<tr>
<td>C</td>
<td>-14.092955000</td>
<td>0.775977000</td>
<td>2.268228000</td>
</tr>
</tbody>
</table>
Figure S77. Perspective view of supramolecular nanorotor \([\text{Cu(S)(R)}]^+\) obtained from energy minimized structure, calculated using PM6 level.

The x, y, z cartesian coordinates:

<table>
<thead>
<tr>
<th></th>
<th>x (Å)</th>
<th>y (Å)</th>
<th>z (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.865054000</td>
<td>-5.70181000</td>
<td>-1.123846000</td>
</tr>
<tr>
<td>H</td>
<td>-0.590481000</td>
<td>-5.073721000</td>
<td>-1.923561000</td>
</tr>
<tr>
<td>O</td>
<td>-8.029049000</td>
<td>-0.063888000</td>
<td>-3.833382000</td>
</tr>
<tr>
<td>O</td>
<td>-7.602654000</td>
<td>1.672749000</td>
<td>0.146469000</td>
</tr>
<tr>
<td>C</td>
<td>-8.784376000</td>
<td>-8.029049000</td>
<td>0.992773000</td>
</tr>
<tr>
<td>H</td>
<td>-8.990754000</td>
<td>-2.861020000</td>
<td>0.146469000</td>
</tr>
<tr>
<td>H</td>
<td>-9.716419000</td>
<td>1.672749000</td>
<td>-0.010560000</td>
</tr>
<tr>
<td>H</td>
<td>-8.163083000</td>
<td>1.480747000</td>
<td>-0.010560000</td>
</tr>
<tr>
<td>C</td>
<td>-9.920410000</td>
<td>1.706347000</td>
<td>-0.010560000</td>
</tr>
<tr>
<td>H</td>
<td>-9.716419000</td>
<td>1.672749000</td>
<td>-0.010560000</td>
</tr>
<tr>
<td>H</td>
<td>-8.163083000</td>
<td>1.480747000</td>
<td>-0.010560000</td>
</tr>
<tr>
<td>H</td>
<td>-8.990754000</td>
<td>1.672749000</td>
<td>-0.010560000</td>
</tr>
</tbody>
</table>

Figure S77. Perspective view of supramolecular nanorotor \([\text{Cu(S)(R)}]^+\) obtained from energy minimized structure, calculated using PM6 level.

The x, y, z cartesian coordinates:
H -14.454509000 0.829297000 3.880654000
H -15.401986000 -0.960735000 2.085939000
C -15.019780000 -1.908212000 0.421876000
H -12.190613000 -2.266598000 2.930520000
H -15.401986000 -1.908212000 0.421876000
C -13.549872000 -3.757070000 0.442025000
H -13.238904000 -3.224659000 1.353604000
H -13.562754000 -4.828381000 0.678106000
H -18.325647000 -1.949530000 1.280386000
H -16.180586000 0.673778000 0.449325000
H -15.739330000 0.248837000 2.104474000
H -17.440870000 0.239102000 1.614490000
C -18.393025000 -4.571381000 0.621646000
H -18.809720000 -4.619392000 1.641975000
H -18.080972000 -4.619392000 1.641975000
C -18.092502000 -5.599834000 0.320505000
H -19.206118000 -4.225972000 0.304041000
H -18.841427000 12.576919000 0.808024000
C -0.112057000 -3.995044000 0.424211000
C -0.616613000 -4.272048000 -0.750788000
C -0.109486000 -2.823801000 1.178868000
C -0.540576000 -3.320195000 -1.229605000
C -1.914310000 -1.857041000 0.686196000
Cu -1.686977000 -2.117797000 -0.518689000
C -6.451424000 -3.928338000 -2.321986000
C -7.201714000 -2.747556000 -2.067435000
C -6.179820000 -4.193901000 -3.670829000
C -7.601798000 -1.885612000 -3.087128000
C -6.501288000 -3.357280000 -4.725632000
C -7.242951000 -2.207611000 -4.410403000
H -8.174645000 -0.981233000 -2.902157000
H -6.234740000 -3.583997000 -5.748066000
Br -2.846105000 -0.765262000 -1.234528000
C -2.357834000 -3.571300000 -2.453993000
H -3.436763000 -3.511555000 -2.232794000
10. References

