Supplemental Information

Other Gold Clusters Observed in this Study: Prior to ligand exchange a range of gold clusters was observed; (8,7)$^{2+}$, (9,8)$^{2+}$, (10,8)$^{2+}$ and (11,9)$^{2+}$. After ligand exchange with MePPh$_2$, Au$_8$ Au$_{10}$ and Au$_{11}$ formed mixed ligand clusters and Au$_9$ was no longer present in the mass spectrum. Au$_{10}$ clusters exhibited two arrival times before and after ligand exchange but also show mixed ligand Au$_{10}$ clusters with both 8 and 9 ligands attached. One of the arrival times of Au$_{10}$ with 8 ligands coincided with that of Au$_{10}$ with 9 ligands indicating that the Au$_{10}$ 9 ligand cluster may be fragmenting through loss of a MePPh$_2$ ligand leading to one of the two arrival times observed for Au$_{10}$ with 8 ligands. Thus, the choice to focus our analysis on (8,7)$^{2+}$ and (11,9)$^{2+}$ in this study was based on two considerations; 1) (8,7)$^{2+}$ showed no evidence that the two arrival times were coming from fragmentation of a larger cluster but rather were truly two different isomers of the mixed ligand (8,7)$^{2+}$ clusters and 2) the (11,9)$^{2+}$ exhibited interesting chemical bonding behavior post ligand exchange which lead to the binding of either H or Cl depending on the number of exchanged ligands.

Gold Cluster Synthesis and Ligand Exchange: Phosphine-ligated gold clusters were synthesized in solution according to modified versions of literature procedures.1 All syntheses were 1.05 mL total volume in methanol (HPLC grade Sigma–Aldrich) carried out in 1.5 mL microcentrifuge tubes with final concentrations of each reagent as follows: 50 µM gold precursor, chloro(triphenylphosphine) gold (I) (99.9% Sigma–Aldrich) and 1.0 mM borane tert-butyl amine complex reducing agent (BTBA) (96% Sigma–Aldrich). The gold precursor and BTBA were allowed to react for 30 minutes prior to the addition of exchange ligand, methyldiphenylphosphine (MePPh$_2$). Reactions were analyzed as is without any filtering.

Ion Mobility-Orthogonal Time of Flight Mass Spectrometer: The custom-built platform coupling ion mobility spectrometry with a time of flight mass spectrometer (IMS-TOF MS) was used in this study and has previously been described in detail.2 Briefly, for IMS measurements, samples were infused directly from a syringe pump into a 20 µm inner diameter fused-silica emitter and following electrospray ionization, the ions were passed through a heated stainless steel capillary, focused by a high pressure ion funnel, and accumulated in a lower pressure ion funnel trap. Ions were then pulsed into the 90 cm-long IMS drift tube filled with ~ 4 Torr of nitrogen gas, where they travel under the influence of a weak electric field (10-20 V/cm). Ions exiting the drift tube were refocused by a rear ion funnel prior to TOF MS detection (6224 TOF, Agilent Technologies, Santa Clara CA, USA). The signal from the TOF detector is then routed to an 8-bit Analog-to-Digital converter (ADC) (AP240, Agilent Technologies, Switzerland) and processed using custom control-software written in C#.

References

Figure S1. Representative positive mode ESI mass spectra of gold clusters formed after the addition of MePPh₂ to preformed Auₓ(PPh₃)ᵧ²⁺ clusters. **Red trace**, 2.5/1 ratio of PPh₃ to MePPh₂. **Blue trace**, 2.5/2 ratio of PPh₃ to MePPh₂. The y-axis of the red trace spectrum is scaled to 100x the blue trace spectrum.