Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Asymmetric Fluorinative Dearomatization of Tryptamine Derivatives

Xiao-Wei Liang, Chuan Liu, Wei Zhang, and Shu-Li You*

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China Fax (+86) 21-54925087; E-mail: slyou@sioc.ac.cn

Table of Contents

General methods	S2
Complete optimization data	S 3
General procedure for the synthesis of substrates (1a-1z)	S5
General procedure for asymmetric fluorinative dearomatization of tryptamine	C 10
derivatives	510
Transformations of product 2b	S36
X-Ray crystal structure of enantiopure 3	S40
References	S42
Copies of NMR and HPLC chromatographs	S43

General methods.

Unless stated otherwise, all solvents were purified and dried according to standard methods prior to use. ¹H and ¹⁹F NMR spectra were recorded on Varian or Angilent instrument (600 MHz, 400 MHz and 376 MHz, 300 MHz and 282 MHz, respectively) and referenced relative to tetramethylsilane signal or residual protio solvent signals respectively. ¹³C NMR spectra were recorded on Varian or Agilent instrument (155 MHz, 101 MHz or 75 MHz) and referenced relative to residual solvent signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR and ¹⁹F NMR are reported in terms of chemical shift (δ , ppm).

Reaction Condition Optimization Section (complete optimization data)

Table S1. Examination of catalysts

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ } \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array}								
	$ \begin{array}{c} $: R = 2,4,6-(iPr)_3-C_6H_2 : R = SiPh_3 : R = 3,5-(CF_3)_2-C_6H_3 : R = 1-naphthyl : R = 2-naphthyl : R = 9-anthryl : R = 9-phenyl : R = 2-BuO-naphthyl : R = 1-pyrenyl						
Ph Ph,,,		Ph Ph Ph , , O NHTf						
C12		C13	C14					
c12 entry ^a	CPA	C13 PG	c14 yield (%) ^b	ee (%) ^c				
c12 entry ^a 1	CPA C1	C13 PG COOMe	c14 yield (%)^b 48	ee (%) ^c 5.5				
c12 entry ^a 1 2	CPA C1 C2	C13 PG COOMe COOMe	c14 yield (%) ^b 48 70	ee (%) ^c 5.5 4				
C12 entry ^a 1 2 3	CPA C1 C2 C3	C13 PG COOMe COOMe COOMe	c14 yield (%)^b 48 70 52	ee (%) ^c 5.5 4 0				
C12 entry ^a 1 2 3 4	CPA C1 C2 C3 C4	C13 PG COOMe COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58	ee (%) ^c 5.5 4 0 13				
C12 entry ^a 1 2 3 4 5	CPA C1 C2 C3 C4 C5	C13 PG COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58 48 48	ee (%) ^c 5.5 4 0 13 3				
C12 entry ^a 1 2 3 4 5 6	CPA C1 C2 C3 C4 C5 C6	c13 PG COOMe COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58 48 67 67	ee (%) ^c 5.5 4 0 13 3 37				
C12 entry ^a 1 2 3 4 5 6 7	CPA C1 C2 C3 C4 C5 C6 C7	C13 PG COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58 48 67 56 14	ee (%) ^c 5.5 4 0 13 3 37 22 12				
C12 entry ^a 1 2 3 4 5 6 7 8	CPA C1 C2 C3 C4 C5 C6 C7 C8	C13 PG COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58 48 67 56 14 10	ee (%) ^c 5.5 4 0 13 3 37 22 19				
C12 entry ^a 1 2 3 4 5 6 7 8 9	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C6	C13 PG COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 02					
C12 entry ^a 1 2 3 4 5 6 7 8 9 10	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C9	C13 PG COOMe Boc Boc	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 93 17	ee (%) ^c 5.5 4 0 13 3 37 22 19 55 22 2				
C12 entry ^a 1 2 3 4 5 6 7 8 9 10 11	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C9 C10	C13 PG COOMe Boc Boc Boc Boc	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 93 17 14					
C12 entry ^a 1 2 3 4 5 6 7 8 9 10 11 12	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C9 C10 C11	C13 PG COOMe Boc Boc Boc Boc Boc COOMe COOMe COOMe COOMe COOMe COOME COME COOME COM	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 93 17 44					
C12 entry ^a 1 2 3 4 5 6 7 8 9 10 11 12 13	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C9 C10 C11 C12	C13 PG COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe COOMe Boc Boc Boc Boc Boc Boc Boc	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 93 17 44 39 55	ee (%) ^c 5.5 4 0 13 3 37 22 19 55 22 0 28 35 12				
C12 entry ^a 1 2 3 4 5 6 7 8 9 10 11 12 13 14	CPA C1 C2 C3 C4 C5 C6 C7 C8 C6 C7 C8 C6 C9 C10 C11 C12 C13	C13 PG COOMe Boc Boc Boc Boc Boc Boc Boc Boc	c14 yield (%) ^b 48 70 52 58 48 67 56 14 48 93 17 44 39 35					

^{*a*} Reaction conditions: **1** (0.2 mmol), **CPA** (0.02 mmol), Selectfluor (0.22 mmol), Na₂CO₃ (0.22 mmol) in C_6H_5F (4 mL) at rt. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis.

Table S2. Examination of solvents, bases, temperature, and concentration

			C6 (10 mol base (1.1 eq C ₆ H ₅ F, rt, 8	%) uiv) 3 h		
	1b	1.1 equiv			2b	
entry ^a	solvent	base	T (°C)	time	yield (%) ^b	ee (%) ^c
1	C ₆ H ₅ F	Na ₂ CO ₃	rt	8 h	48	55
2	hexane	Na_2CO_3	rt	8 h	23	0
3	toluene	Na_2CO_3	rt	8 h	47	26
4	DCM	Na ₂ CO ₃	rt	8 h	23	49
5	EA	Na ₂ CO ₃	rt	8 h	66	33
6	C_6H_5F	NaHCO ₃	rt	8 h	46	40
8	C_6H_5F	K_2CO_3	rt	8 h	64	41
9	C_6H_5F	Na ₃ PO ₄	rt	8 h	53	50
10	C_6H_5F	PS	rt	8 h	72	56
11	C_6H_5F	PS	0	8 h	60	65
12 ^d	C_6H_5F	PS	0	11 h	41	5
13	C ₆ H ₅ F /c-Hexane	PS	0	11 h	69	33
14	C_6H_5F/H_2O	PS	0	1 h	42	63
15	C ₆ H ₅ F/DMA	PS	0	2 h	85	50
16	C ₆ H ₅ F/CH ₃ CN	PS	0	10 min	50	69
17	C ₆ H ₅ F /MeOH	PS	0	1 h	55	23
18	CH ₃ CN/H ₂ O	PS	0	10 min	41	17
19	CH ₃ CN	PS	0	10 min	78	47
20	C ₆ H ₅ F/CH ₃ CN	PS	-40	3 h	73	88
21	C ₆ H ₅ F/CH ₃ CN	PS	-60	16 h	64	90
22 ^e	C ₆ H ₅ F/CH ₃ CN	PS	-60	16 h	87	90
$23^{\rm f}$	C ₆ H ₅ F/CH ₃ CN	PS	-60	10 h	84	88
24 ^g	C ₆ H ₅ F/CH ₃ CN	PS	-60	18 h	66	90

^{*a*} Reaction conditions: **1b** (0.2 mmol), **C6** (0.02 mmol), Selectfluor (0.22 mmol), base (0.22 mmol), Solvent (4 mL). ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis. ^{*d*} 4 Å MS was used. ^{*e*} At 0.1 M. ^{*f*} At 0.2 M. ^{*g*} 5 mol % **C6** was used. PS: proton sponge. General procedure for the synthesis of substrates (1a-1z)

Method A

Take the synthesis of **1b** as an example. To a solution of the substituted phenylhydrazine (10 mmol, 1.0 equiv) in EtOH (30 mL) was added 5-chloropentan-2-one (1.7 mL, 20 mmol). The reaction mixture was stirred at reflux for 12-24 h. Then the solvent was removed under reduced pressure. The resulting substituted 2-(2-methyl-1H-indol-3-yl)ethanamine was directly used in the next step without further purification.

A solution of 2-(2-methyl-1H-indol-3-yl)ethanamine (1.40 g, 10.5 mmol) and NaOH in ethyl acetate (30 mL) was added dropwise to a solution of di-*tert*butyldicarbonate (12.6 mmol, 1.2 equiv) in CH₂Cl₂ (30 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 0.5 h. Then the reaction mixture was quenched with NaHCO₃ saturated solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/10, v/v) to give tert-butyl (2-(2-methyl-1H-indol-3-yl)ethyl)carbamate **1**.

Methyl (2-(2-methyl-1H-indol-3-yl)ethyl)carbamate (1a)¹

Method A. White solid. Analytical data for **1a**: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (br s, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.27 (d, J = 8.4 Hz, 1H), 7.14-7.06 (m, 2H), 4.71 (br s, 1H), 3.66 (s, 3H), 3.43 (q, J = 6.0 Hz, 2H), 2.91 (t, J = 6.4 Hz, 2H), 2.38 (s, 3H).

tert-Butyl (2-(2-methyl-1H-indol-3-yl)ethyl)carbamate (**1b**)¹

Method A. White solid. Analytical data for **1b**: ¹H NMR (400 MHz, CDCl₃) δ 7.92 (br s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.14-7.05 (m, 2H), 4.58 (br s, 1H), 3.37 (t, *J* = 6.0 Hz, 2H), 2.89 (t, *J* = 6.4 Hz, 2H), 2.37 (s, 3H), 1.44 (s, 9H).

Benzyl (2-(2-methyl-1H-indol-3-yl)ethyl)carbamate (1c)²

Method A. Light red solid. Analytical data for **1c**: ¹H NMR (400 MHz, CDCl₃) δ 7.79 (br s, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.37-7.29 (m, 5H), 7.28-7.26 (m, 1H), 7.14-7.05 (m, 2H), 5.10 (s, 2H), 4.77 (br s, 1H), 3.45 (q, *J* = 6.6 Hz, 2H), 2.92 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 3H).

(9H-Fluoren-9-yl)methyl (2-(2-methyl-1H-indol-3-yl)ethyl)carbamate (**1d**) Method A. White solid. Analytical data for **1d**: Mp = 132.7-133.7 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.81 (br s, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.41-7.38 (m, 2H), 7.32-7.26 (m, 2H), 7.15-7.07 (m, 2H), 4.82 (br s, 1H), 4.39 (d, *J* = 6.8 Hz, 2H), 4.20 (t, *J* = 6.8 Hz, 1H), 3.48-3.43 (m, 2H), 2.92 (t, *J* = 6.8 Hz, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.4, 143.9, 141.2, 135.2, 132.0, 127.6, 127.0, 125.0, 121.1, 119.9, 119.3, 117.7, 110.3, 109.9, 108.3, 66.5, 47.2, 41.4, 24.6, 11.5. IR (film) 1695, 1515, 1461, 1447, 1237, 737 cm⁻¹.

tert-Butyl (2-(5-methoxy-2-methyl-1H-indol-3-yl)ethyl)carbamate (**1e**) ³ Method A. White solid. Analytical data for **1e**: ¹H NMR (400 MHz, CDCl₃) δ 7.91 (br s, 1H), 7.13 (d, *J* = 8.8 Hz, 1H), 6.94 (s, 1H), 6.76 (dd, *J* = 8.6, 2.0 Hz, 1H), 4.62 (br s, 1H), 3.84 (s, 3H), 3.38-3.33 (m, 2H), 2.84 (t, *J* = 6.8 Hz, 2H), 2.41-2.29 (m, 3H), 1.43 (s, 9H).

tert-Butyl (2-(2,5-dimethyl-1H-indol-3-yl)ethyl)carbamate (1f)

Method A. White solid. Analytical data for **1f**: ¹H NMR (400 MHz, CDCl₃) δ 7.83 (br s, 1H), 7.27 (s, 1H), 7.14 (d, *J* = 8.4 Hz, 1H), 6.93 (dd, *J* = 8.4, 1.6 Hz 1H), 4.58 (br s, 1H), 3.35 (d, *J* = 6.8 Hz, 2H), 2.85 (t, *J* = 6.4 Hz, 2H), 2.43 (s, 3H), 2.34 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 146.7, 133.5, 132.1, 128.3, 122.4, 117.6, 109.9, 108.1, 85.2, 41.0, 28.4, 27.4, 24.6, 21.5, 11.6. IR (film) 3392, 2927, 1687, 1366, 1161, 1051, 788 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₅N₂O₂ [M+H]⁺: 289.1911. Found: 289.1913.

tert-Butyl (2-(5-(tert-butyl)-2-methyl-1H-indol-3-yl)ethyl)carbamate (1g)

Method A. Grey solid. Analytical data for **1g**: Mp = 133.8-134.9 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.20 (br s, 1H), 7.46 (s, 1H), 7.20-7.17 (m, 2H), 4.72-4.66 (m, 1H), 3.38-3.35 (m, 2H), 2.88 (t, *J* = 6.4 Hz, 2H), 2.30 (s, 3H), 1.43 (s, 9H), 1.38 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.5, 156.0, 141.9, 133.4, 132.2, 128.1, 118.9, 113.4, 109.7, 108.2, 79.5, 78.9, 41.0, 34.4, 31.9, 28.3, 28.1, 24.4, 11.4. IR (film) 3286, 1689,

1493, 1165, 806, 665 cm⁻¹. HRMS (ESI) calcd for $C_{20}H_{31}N_2O_2$ [M+H]⁺: 331.2380. Found: 331.2382.

tert-Butyl (2-(2,7-dimethyl-1H-indol-3-yl)ethyl)carbamate (1h)

Method A. White solid. Analytical data for **1h**: Mp = 94.8-95.6 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.72 (br s, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.01 (dd, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 7.2 Hz, 1H), 4.56 (br s, 1H), 3.36 (d, *J* = 6.2 Hz, 2H), 2.88 (t, *J* = 6.4 Hz, 2H), 2.46 (s, 3H), 2.41 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 134.7, 131.6, 128.1, 121.8, 119.5, 119.4, 115.7, 109.1, 78.9, 41.0, 28.4, 24.7, 16.5, 11.6. IR (film) 3296, 2973, 2931, 1689, 1500, 1163, 1052, 778 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₅N₂O₂ [M+H]⁺: 289.1911. Found: 289.1911.

tert-Butyl (2-(2-methyl-5-(trifluoromethyl)-1H-indol-3-yl)ethyl)carbamate (1i)

Method A. White solid. Analytical data for **1i**: Mp = 144.8-145.2 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.01 (br s, 1H), 7.75 (s, 1H), 7.43-7.30 (m, 2H), 4.56 (br s, 1H), 3.38-3.33 (m, 2H), 2.92-2.89 (m, 2H), 2.42 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 136.7, 134.2, 127.9, 125.5 (q, *J* = 271.0 Hz), 121.1 (d, *J* = 31.3 Hz), 117.3, 115.0, 110.3, 109.1, 79.1, 67.7, 41.1, 28.2, 25.4, 24.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.08 (s). IR (film) 3266, 1686, 1497, 1330, 1151, 1105, 1049, 816, 672 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₅F₃N₃O₂ [M+NH₄]⁺: 360.1893. Found: 360.1895.

Ethyl 3-(2-((tert-butoxycarbonyl)amino)ethyl)-2-methyl-1H-indole-5-carboxylate (**1j**) Method A. White solid. Analytical data for **1j**: Mp = 158.8-159.4 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 1.6 Hz, 1H), 8.10 (br s, 1H), 7.85 (dd, *J* = 8.4, 1.6 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 2H), 4.57 (br s, 1H), 4.40 (q, *J* = 7.2 Hz, 2H), 3.40-3.35 (m, 2H), 2.92 (t, *J* = 6.4 Hz, 2H), 2.40 (d, *J* = 2.0 Hz, 3H), 1.44-1.40 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 156.0, 138.0, 133.5, 128.1, 122.6, 121.5, 120.5, 109.8, 79.1, 60.5, 41.0, 28.4, 24.5, 14.5, 11.6. IR (film) 3347, 3247, 1679, 1617, 1362, 1272, 1131, 770, 682 cm⁻¹. HRMS (ESI) calcd for C₁₉H₃₀N₃O₄ [M+NH₄]⁺: 364.2231. Found: 364.2232.

tert-Butyl (2-(5-fluoro-2-methyl-1H-indol-3-yl)ethyl)carbamate (1k)

Method A. White solid. Analytical data for **1k**: Mp = 102.3-103.4 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.14 (br s, 1H), 7.21-7.06 (m, 2H), 6.83 (d, *J* = 2.4 Hz, 1H), 4.62 (br s, 1H), 3.32 (t, *J* = 6.0 Hz, 2H), 2.83 (t, *J* = 6.4 Hz, 2H), 2.34 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 156.5, 156.0, 134.0, 131.7, 110.7, 110.6, 109.0, 108.8, 106.8, 103.0, 102.7, 79.1, 40.9, 28.4, 28.2, 24.5, 11.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.79 .IR (film) 1704, 1507, 1363, 1244, 1159, 847 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₂FN₂O₂ [M+H]⁺: 293.166. Found: 293.1665.

tert-Butyl (2-(5-chloro-2-methyl-1H-indol-3-yl)ethyl)carbamate (11)⁴

Method A. Brown solid. Analytical data for **11**: ¹H NMR (400 MHz, CDCl₃) δ 8.16 (br s, 1H), 7.42 (s, 1H), 7.14 (d, J = 8.4 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 4.60 (br s, 1H), 3.31 (m, 2H), 2.82 (m, 2H), 2.33 (s, 3H), 1.44 (s, 9H).

tert-Butyl (2-(5-bromo-2-methyl-1H-indol-3-yl)ethyl)carbamate (**1m**) ⁵ Method A. Light brown solid. Analytical data for **1m**: ¹H NMR (400 MHz, CDCl₃) δ 8.17 (br s, 1H), 7.57 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 1H), 4.61 (br s, 1H), 3.31 (q, *J* = 6.0 Hz, 2H), 2.93-2.70 (m, 2H), 2.33 (s, 3H), 1.44 (s, 9H).

Method B

separable by silica gel chromatography

To a solution of 3-bromophenylhydrazine (10 mmol, 1.0 equiv) in EtOH (30 mL) was added 5-chloropentan-2-one (1.7 mL, 20 mmol). The reaction mixture was stirred at reflux for 24 h. Then the solvent was removed under reduced pressure. To the resulting 4- or 6-bromo-2-(2-methyl-1H-indol-3-yl)ethanamine mixture was then added toluene (50 mL) and potassium phthalimide (12 mmol, 1.2 equiv), the reaction mixture was stirred at reflux overnight. The solvent was removed under reduced pressure, giving the separated 4- or 6-bromo substituted products. Then the 4- or 6-

bromo substituted product was dissolved in DCM-MeOH (1:1), hydrazine hydrate (28 mmol, 2.8 equiv) was added. The reaction mixture was then stirred at room temperature overnight. After the reaction was complete, it was quenched with NH₄Cl saturated aqueous solution, extracted with DCM, dried with Na₂SO₄, and filtrated. The products were directly used in the next step without further purification. Then a solution of above products (10 mmol) and NaOH in ethyl acetate (30 mL) was added dropwise to a solution of di-*tert*-butyldicarbonate (12 mmol, 1.2 equiv) in DCM (30 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 0.5 h. Then the reaction mixture was quenched with NaHCO₃ saturated solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/5, v/v) to give **1n** or **10**.

tert-Butyl (2-(4-bromo-2-methyl-1H-indol-3-yl)ethyl)carbamate (1n)

Method B. Light green solid. Analytical data for **1n**: Mp = 97.6-98.8 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.58 (br s, 1H), 7.20-7.17 (m, 2H), 6.90-6.86 (m, 1H), 4.76 (br s, 1H), 3.40 (q, *J* = 6.8 Hz, 2H), 3.10 (t, *J* = 7.2 Hz, 2H), 2.30 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.1, 136.5, 134.2, 126.1, 123.6, 121.5, 112.9, 109.7, 108.7, 79.0, 42.4, 28.4, 28.0, 24.6, 11.5. IR (film) 3292, 2973, 2928, 1687, 1623, 1497, 1249, 1163, 742 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₁N₂O₂Br [M]⁺: 352.0781. Found: 352.0783.

tert-Butyl (2-(6-bromo-2-methyl-1H-indol-3-yl)ethyl)carbamate (**10**)

Method B. Light green solid. Analytical data for **1o**: Mp = 115.1-116.8 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.24 (br s, 1H), 7.31-7.29 (m, 2H), 7.12 (d, *J* = 8.4, 1H), 4.63 (br s, 1H), 3.30 (q, *J* = 6.8 Hz, 2H), 2.82 (t, *J* = 6.8 Hz, 2H), 2.29 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 134.0, 132.8, 127.4, 122.1, 118.9, 114.1, 113.1, 108.5, 79.1, 40.9, 29.6, 28.4, 24.4, 11.5. IR (film) 3416, 3251, 2970, 2928, 2863, 1685, 1617, 1494, 1162, 1052, 850, 716 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₂N₂O₂Br [M+H]⁺: 353.0859. Found: 353.0859.

tert-Butyl (2-(7-bromo-2-methyl-1H-indol-3-yl)ethyl)carbamate (**1p**)

Method A. White solid. Analytical data for **1p**: Mp = 166.8-167.4 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.03 (br s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 1H), 6.95 (dd, *J* = 7.6 Hz, 1H), 4.56 (br s, 1H), 3.34 (q, *J* = 6.8 Hz, 2H), 2.87 (t, *J* = 6.8 Hz, 2H), 2.41 (s, 3H), 1.43 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 133.8, 132.8, 129.7, 123.3, 120.5, 117.1, 110.0, 105.0, 103.9, 79.1, 40.9, 28.4, 24.8, 11.6. IR (film) 3099, 1642, 1299, 1027, 8053274, 1689, 1488, 1164, 775 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₂BrN₂O₂ [M+H]⁺: 353.0859. Found: 353.0861.

tert-Butyl (2-(4,6-difluoro-2-methyl-1H-indol-3-yl)ethyl)carbamate (1q)

Method A. Light red solid. Analytical data for **1q**: Mp = 100.9-102.1 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.64 (br s, 1H), 6.73 (dd, *J* = 9.2, 1.6 Hz, 1H), 6.51 (ddd, *J* = 12.0, 10.6, 2.0 Hz, 1H), 4.71 (br s, 1H), 3.36 (q, *J* = 6.2 Hz, 2H), 2.89 (t, *J* = 6.4 Hz, 2H), 2.26 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 159.6, 157.3, S12

157.2, 156.8, 156.6, 156.1, 154.3, 154.2, 137.0, 136.9, 136.7, 132.4, 129.6, 113.5, 113.3, 106.8, 94.9, 94.9, 94.7, 94.6, 94.6, 94.4, 94.3, 93.2, 93.1, 92.9, 92.9, 79.1, 41.6, 28.3, 25.4, 11.1, 11.1. ¹⁹F (film) 3422, 3306, 2984, 2938, 2865, 1689, 1502, 1167, 976, 825 cm⁻¹. NMR (376 MHz, CDCl₃) δ -120.61 (td, J = 12.9, 9.9, 3.5 Hz), -122.43 (d, J = 10.4 Hz). IR (film) 3422, 3306, 2938, 1689, 1502, 1247, 1167, 976, 825 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₀N₂O₂F₂ [M+H]⁺: 310.1487. Found: 310.1488.

tert-Butyl (2-(4,6-dichloro-2-methyl-1H-indol-3-yl)ethyl)carbamate (**1r**)

Method A. Grey white solid. Analytical data for **1r**: Mp = 154.4-154.8 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.30 (br s, 1H), 7.13 (s, 1H), 7.02 (d, *J* = 0.6 Hz 1H), 4.67 (br s, 1H), 3.37 (q, *J* = 6.6 Hz, 2H), 3.05 (t, *J* = 6.6 Hz, 2H), 2.33 (s, 3H), 1.42 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 136.6, 134.4, 126.3, 125.3, 123.8, 120.5, 109.1, 108.9, 79.1, 42.2, 28.4, 24.9, 11.5. IR (film) 3674, 3421, 3211, 2980, 2941, 2736, 1683, 1489, 1168, 905, 767 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₁N₂O₂Cl₂ [M+H]⁺: 343.0975. Found: 343.0974.

Method C:

Prepared according to literature procedures.⁶

tert-Butyl (2-(2-ethyl-1H-indol-3-yl)ethyl)carbamate (1s)

Method C. White solid. Analytical data for **1s:** Light yellow solid, Mp = 86.3-87.5 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.25 (d, *J* = 7.5 Hz, 1H), 7.16-7.02 (m, 2H), 4.63 (s, 1H), 3.36 (d, *J* = 6.1 Hz, 2H), 2.88 (t, *J* = 6.4 Hz, 2H), 2.72 (q, *J* = 7.6 Hz, 2H), 1.43 (s, 9H), 1.25 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.0, 137.9, 135.3, 128.4, 121.0, 119.1, 118.0, 110.4, 107.4, 79.0, 41.0, 28.4, 24.5, 19.2, 14.4. IR (film) 3404, 2972, 2932, 1688, 1507, 1392, 1247, 1164, 737 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₅N₂O₂ [M+H]⁺: 289.1911. Found: 289.1912.

Method D:

Prepared according to modified literature procedures.⁷ A Schlenk flask equipped with a magnetic stirring bar was charged with 1w (5.0 mmol, 1 equiv), norbornene (10 mmol, 2 equiv), K₂CO₃ (20 mmol, 4 equiv), and PdCl₂ (0.5 mmol, 0.1 equiv). A solution of water in DMF (25 mL, 1 M) added, was then the (bromomethyl)cyclopropane (20 mmol, 4 equiv) was added via syringe. The reaction mixture was heated at 100 °C and monitored by TLC. Upon completion, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered. The filtrate was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄ and filtrated. After the solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/petroleum ether = 1/4, v/v) to afford the 2-alkylindole product.

tert-Butyl (2-(2-(cyclopropylmethyl)-1H-indol-3-yl)ethyl)carbamate (1t)

Method D. Light yellow oil. Analytical data for **1t**: ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.16-7.03 (m, 2H), 4.61 (s, 1H), 3.36 (q, *J* = 6.4 Hz, 2H), 2.88 (t, *J* = 6.4 Hz, 2H), 2.65 (d, *J* = 6.8 Hz, 2H), 1.43 (s, 9H),1.04-0.94 (m, 1H), 0.62-0.57 (m, 2H), 0.28 (q, *J* = 4.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 136.1, 135.2, 128.3, 121.1, 119.2, 118.1, 110.4, 107.9, 78.9, 40.9, 30.6, 28.4, 24.5, 10.4, 4.6. IR (film) 3335, 1691, 1500, 1365, 1164, 743 cm⁻¹. HRMS (ESI) calcd for C₁₉H₂₇N₂O₂ [M+H]⁺: 315.2067. Found: 315.207.

tert-Butyl (2-(2-(pent-4-en-1-yl)-1H-indol-3-yl)ethyl)carbamate (**1u**) Method C. White solid. Analytical data for **1u**: Mp = 89.3-90.5 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.05 (br s, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.14-7.05 (m, 2H), 5.86-5.76 (m, 1H), 5.06–4.98 (m, 2H), 4.60 (br s, 1H), 3.38 (d, *J* = 5.8 Hz, 2H), 2.88 (t, *J* = 6.8 Hz, 2H), 2.72 (t, *J* = 7.6 Hz, 2H), 2.10 (q, *J* = 7.2 Hz, 2H), 1.74 (p, *J* = 7.6 Hz, 2H), 1.43 (s, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 138.0, 136.2, 135.3, 128.4, 121.1, 119.1, 118.1, 115.2, 110.3, 108.3, 79.0, 40.9, 33.2, 29.0, 28.4, 25.3, 24.7. IR (film) 3420, 3286, 2973, 2932, 2866, 1685, 1495, 1455, 1167, 776 cm⁻¹. HRMS (ESI) calcd for C₂₀H₂₉N₂O₂ [M+H]⁺: 329.2224. Found: 329.2222.

tert-Butyl (2-(2-isopropyl-1H-indol-3-yl)ethyl)carbamate (1v)

Method C. Light yellow oil. Analytical data for **1v**: ¹H NMR (400 MHz, CDCl₃) δ 8.05 (br s, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 7.14-7.05 (m, 2H), 4.63 (br s, 1H), 3.40-3.05 (m, 2H), 3.26-3.19 (m, 1H), 2.90 (t, *J* = 6.8 Hz, 2H), 1.43 (s, 9H), 1.31 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 141.8, 135.2, 128.3, 121.0, 119.2, 118.1, 110.4, 106.5, 79.0, 40.9, 28.4, 25.4, 24.6, 22.9. IR (film) 3336, 2967, 1687, 1507, 1365, 1247, 1163, 741 cm⁻¹. HRMS (ESI) calcd for $C_{18}H_{27}N_2O_2 [M+H]^+$: 303.2067. Found: 303.2071.

tert-Butyl (2-(1H-indol-3-yl)ethyl)carbamate $(\mathbf{1w})^8$

White solid. Analytical data for **1w**: ¹H NMR (400 MHz, Chloroform-d) δ 8.10 (br s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.23-7.19 (m, 1H), 7.14-7.19 (m, 1H), 7.03 (s, 1H), 4.62 (br s, 1H), 3.50-3.45 (m, 2H), 2.96 (t, J = 6.8 Hz, 2H), 1.44 (d, J = 1.6 Hz, 9H).

tert-Butyl (2-(6-bromo-1H-indol-3-yl)ethyl)carbamate $(1x)^9$

White solid. Analytical data for **1x**: 1H NMR (400 MHz, Chloroform-d) δ 8.02 (br s, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 7.02 (s, 1H), 4.59 (br s, 1H), 3.46-3.41 (m, 2H), 2.92 (t, *J* = 6.8 Hz, 2H), 1.43 (s, 9H).

tert-Butyl (2-(2,4,6-trimethyl-1H-indol-3-yl)ethyl)carbamate (**1**y)

Method A. Grey solid. Analytical data for **1y**: Mp = 91.2-92.3 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (br s, 1H), 6.91 (s, 1H), 6.66 (s, 1H), 4.59 (s, 1H), 3.32 (d, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 6.8 Hz, 2H), 2.62 (s, 3H), 2.38 (s, 3H), 2.34 (s, 3H), 1.44 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9, 136.0, 131.4, 130.6, 129.1, 124.5, 123.0, 110.0, 108.7, 108.2, 79.6, 79.0, 42.5, 28.4, 28.2, 25.9, 21.3, 20.0, 11.5. IR (film) 3443,

3257, 1680, 1605, 1364, 1272, 1251, 1160, 1050, 788, 702 cm⁻¹. HRMS (ESI) calcd for C₁₈H₂₇N₂O₂ [M+H]⁺: 303.2067. Found: 303.2068.

tert-Butyl (2-(1-methyl-1H-indol-3-yl)ethyl)carbamate $(\mathbf{1z})^{10}$

White solid. Analytical data for **1z**: ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.4 Hz, 1H), 7.26-7.21 (m, 1H), 7.13-7.09 (m, 1H), 6.89 (s, 1H), 4.60 (br s, 1H), 3.76 (s, 3H), 3.45 (d, *J* = 5.6 Hz, 2H), 2.98 (t, *J* = 6.8 Hz, 2H), 1.44 (s, 9H).

General procedure for asymmetric fluorinative dearomatization of tryptamine derivatives

To a 25 mL Schlenk tube, substrate **1** (0.2 mmol), **C6** (7.0 mg, 0.01 mmol, 5 mol% or 14.0 mg, 0.02 mmol, 10 mol %), and Proton Sponge (PS, 47.1 mg, 0.22 mmol) were dissolved in C₆H₅F/CH₃CN (1:1, 2 mL). The vial was capped with a screw cap. The reaction mixture was stirred at room temperature for 10 min, and stirred at -60 °C for 15 min. Then Selectfluor (77.9 mg, 0.22 mmol) was added. After the reaction was complete (monitored by TLC), Na₂S₂O₃ saturated aqueous solution (2 mL) was poured into the solution, and then the mixture was allowed to warm to the room temperature. The reaction mixture was extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1/10, v/v) to afford the desired product **2**.

(3a*R*,8a*S*)-Methyl-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2a**)

Light yellow oil, 10 mol % **C6** was used, 41.8 mg, 85% yield, 85% *ee*. Analytical data for **2a**: $[\alpha]_D^{20} = 248.1$ (c = 1.0 Chloroform, 85% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 1H), 7.24-7.20 (m, 1H), 6.83-6.80 (m, 1H), 6.66-6.62 (m, 1H), 5.75 (br s, 0.8H), 5.18 (br s, 0.2H), 3.80 (s, 0.8H), 3.65 (s, 2.2H), 3.71-3.58 (m, 1H), 3.16-3.04 (m, 1H), 2.60-2.44 (m, 2H), 1.70 (d, J = 4.0 Hz, 2.2H), 1.66 (d, J = 3.2 Hz, 0.8H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 150.3 (d, J = 4.1 Hz), 131.6 (d, J = 3.4 Hz), 124.9, 124.4 (d, J = 21.7 Hz), 119.4, 119.1 (d, J = 2.9

Hz), 110.4 (d, J = 1.5 Hz), 110.2 (d, J = 1.8 Hz), 104.4 (d, J = 201.4 Hz), 84.3 (d, J = 26.8 Hz), 52.5, 52.0, 45.0 (d, J = 4.3 Hz), 44.5 (d, J = 4.7 Hz), 31.6 (d, J = 29.0 Hz), 31.2 (d, J = 29.0 Hz), 19.9 (d, J = 9.3 Hz), 18.9 (d, J = 8.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.81 (d, J = 12.8 Hz), -145.63 (d, J = 13.5 Hz). IR (film) 3350, 2945, 1674, 1373 cm⁻¹. HRMS (ESI) calcd for C₁₃H₁₆FN₂O₂ [M+H]⁺: 251.119. Found: 251.1192. The enantiomeric excess was determined by Daicel Chiralpak IC-H (0.46 cm x 25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 7.10 min, t (major) = 7.92 min.

(3aR,8aS)-tert-Butyl-3a-fluoro-8a-methyl-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (2b)

Light yellow oil, 10 mol % C6 was used, 50.2 mg, 87% yield, 90% ee. Analytical data for **2b**: $\left[\alpha\right]_{D}^{20} = 329.7$ (c = 1.0 Chloroform, 90% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.4 Hz, 1H), 7.22 (dd, J = 7.6 Hz, 1H), 6.82 (dd, J = 7.6 Hz, 1H), 6.66 (d, J = 7.6 Hz, 1H), 5.77 (br, 0.6H), 5.13 (br, 0.4H), 3.66-3.53 (m, 1H), 3.10-3.00 (m, 1H), 2.63-2.34 (m, 2H), 1.73-1.63 (m, 3H), 1.58-1.49 (m, 3H), 1.42-1.40 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.4, 150.5 (d, J = 4.2 Hz), 150.0 (d, J = 4.1 Hz), 131.6 (d, J = 2.8 Hz), 131.5 (d, J = 3.3 Hz), 124.9, 124.9, 124.7, 124.5, 119.4, 119.0 (d, J = 2.8 Hz), 110.4, 110.1, 105.4 (d, J = 201.5Hz), 104.6 (d, J = 200.5 Hz), 84.1 (d, J = 26.6 Hz), 83.5 (d, J = 25.7 Hz), 80.8, 80.0, 44.8 (d, J = 4.5 Hz), 44.5 (d, J = 4.0 Hz), 31.6 (d, J = 28.7 Hz), 31.1 (d, J = 28.1 Hz), 28.5 (d, J = 25.2 Hz), 27.3, 20.1 (d, J = 9.5 Hz), 19.1 (d, J = 8.9 Hz). ¹⁹F NMR (376) MHz, CDCl₃) δ -143.10 (d, J = 13.2 Hz), -145.25 (d, J = 14.2 Hz). IR (film) 3406, 2938, 1678, 1393 cm⁻¹. HRMS (ESI) calcd for $C_{16}H_{22}FN_2O_2$ [M+H]⁺: 293.166. Found: 293.1667. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.86 min, t (major) = 6.68 min.

(3aR,8aS)-Benzyl-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-

1(2H)-carboxylate (2c)

Light yellow oil, 5 mol % **C6** was used, 52.9 mg, 81% yield, 90% ee. Analytical data for **2c**: $[\alpha]_D^{26.6} = 255.9$ (c = 1.0 Chloroform, 90% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.49 (s, 1H), 7.35 (d, *J* = 4.8 Hz, 5H), 7.26 (d, *J* = 6.8 Hz, 1H), 7.17-7.02 (m, 2H), 5.11 (d, *J* = 5.6 Hz, 2H), 4.81 (s, 1H), 3.45 (dd, *J* = 11.8, 6.2 Hz, 2H), 2.92 (t, *J* = 5.8 Hz, 2H), 2.31 (d, *J* = 15.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.2, 150.3 (d, *J* = 4.0 Hz), 136.2, 131.7 (d, *J* = 3.5 Hz), 128.8, 128.5, 128.3 (d, *J* = 24.3 Hz), 128.0, 127.7, 124.9, 119.2 (d, *J* = 3.0 Hz), 110.5, 110.1, 104.5 (d, *J* = 200.9 Hz), 84.5 (d, *J* = 26.9 Hz), 67.3, 66.6, 44.7 (d, *J* = 4.7 Hz), 31.7 (d, *J* = 28.8 Hz), 19.0 (d, *J* = 8.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -143.04 (d, *J* = 13.2 Hz). IR (film) 3378, 2945, 1678, 1407, 1337, 1037, 750 cm⁻¹. HRMS (ESI) calcd for C₁₉H₂₀FN₂O₂ [M+H]⁺: 327.1503. Found: 327.1505. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 48 / 2, 0.5 mL/min, λ = 254 nm, t (major) = 31.46 min, t (minor) = 33.60.

(3a*R*,8a*S*)-(9H-Fluoren-9-yl)methyl-3a-fluoro-8a-methyl-3,3a,8,8atetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2d**)

Light yellow oil, 5 mol % **C6** was used, 55.4 mg, 69% yield, 86% ee. Analytical data for **2d**: $[\alpha]_D^{26.8} = 189.5$ (c = 1.0 Chloroform, 86% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, DMSO-D₆) δ 8.01 (d, *J* = 7.2 Hz, 0.5H), 7.96 (d, *J* = 7.2 Hz, 0.5H), 7.88 (d, *J* = 2.4 Hz, 0.5H), 7.86 (d, *J* = 2.8 Hz, 0.5H), 7.76 (d, *J* = 7.6 Hz, 0.5H), 7.73 (d, *J* = 7.2 Hz, 0.5H), 7.58-7.48 (m, 2H), 7.45-7.26 (m, 4H), 7.22-7.09 (m, 1H), 6.85-

6.62 (m, 2H), 6.18 (d, *J* = 7.6 Hz, 1H), 4.73 (m, 1H), 4.37-4.21 (m, 2H), 3.59-3.54 (m, 1H), 2.92-2.88 (m, 1H), 2.74-2.58 (m, 1H), 2.36-2.13 (m, 1H), 1.59 (d, *J* = 3.8 Hz, 1.5H), 0.80 (d, *J* = 3.6 Hz, 1.5H). ¹³C NMR (151 MHz, DMSO-D₆, 80 °C) δ 152.8, 143.5, 140.5, 140.3, 130.9, 130.8, 127.1, 127.1, 126.6, 124.3, 124.2, 123.5 (d, *J* = 21.9 Hz), 119.6, 119.5, 117.7, 104.7 (d, *J* = 200.7 Hz), 65.6, 54.2, 46.4, 45.3, 43.9 (d, *J* = 4.5 Hz), 18.1 (d, *J* = 9.5 Hz). ¹⁹F NMR (376 MHz, DMSO-D₆) δ -136.03 (d, *J* = 14.3 Hz), -136.55 (d, *J* = 14.1 Hz). IR (film) 3402, 2891, 1686, 1611, 1451, 1455, 745 cm⁻¹. HRMS (ESI) calcd for C₂₆H₂₄FN₂O₂ [M+H]⁺: 415.1816. Found: 415.1821. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 80 / 20, 1.0 mL/min, λ = 254 nm, t (minor) = 12.52 min, t (major) = 18.51 min.

(3a*R*,8a*S*)-*tert*-Butyl-3a-fluoro-5-methoxy-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2e**)

Light yellow oil, 10 mol % **C6** was used, 32.2 mg, 50% yield, 84% ee. Analytical data for **2e**: $[\alpha]_D^{28.1} = 281.8$ (c = 1.0 Chloroform, 84% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 1H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.61 (d, *J* = 7.6 Hz, 1H), 5.56 (br, 0.6H), 4.91 (br, 0.4H), 3.77 (s, 3H), 3.70-3.52 (m, 1H), 3.09-3.02 (m, 1H), 2.58-2.37 (m, 2H), 1.66 (dd, *J* = 12.0, 4.0 Hz, 3H), δ 1.54 (s, 3H), 1.42 (s, 6H). ¹³C NMR (101 MHz, C₆D₆) δ 154.1 (d, *J* = 3.3 Hz), 154.0, 145.2 (d, *J* = 4.5 Hz), 126.0 (d, *J* = 21.4 Hz), 118.1 (d, *J* = 3.7 Hz), 111.5, 110.8, 105.2 (d, *J* = 201.4 Hz), 85.3 (d, *J* = 26.5 Hz), 79.6, 55.5, 45.0 (d, *J* = 4.4 Hz), 31.9 (d, *J* = 28.6 Hz), 19.6 (d, *J* = 8.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.85 (s), -146.31 (d, *J* = 12.2 Hz). IR (film) 3368, 2889, 1676, 1493, 1385, 1157, 1033 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₄FN₂O₃ [M+H]⁺: 323.1765. Found: 323.1774. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 7.38 min, t (major) = 11.79 min.

(3aR,8aS)-tert-Butyl-3a-fluoro-5,8a-dimethyl-3,3a,8,8a-tetrahydropyrrolo[2,3-

b]indole-1(2H)-carboxylate (2f)

Light yellow oil, 10 mol % **C6** was used, 34.3 mg, 56% yield, 90% ee. Analytical data for **2f**: $[\alpha]_D^{28.2} = 278.9$ (c = 1.0 Chloroform, 90% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 1H), 7.03 (d, *J* = 8.0 Hz, 1H), 6.57 (t, *J* = 7.9 Hz, 2H), 3.66-3.53 (m, 1H), 3.08-3.01 (m, 1H), 2.55-2.46 (m, 2H), 2.27 (s, 3H), 1.65 (dd, *J* = 12.8, 4.0 Hz, 3H), 1.52 (s, 3H), 1.40 (s, 6H). ¹³C NMR (101 MHz, C₆D₆) δ 154.0, 149.1 (d, *J* = 4.2 Hz), 132.5 (d, *J* = 3.6 Hz), 125.5, 110.6 (d, *J* = 1.6 Hz), 105.0 (d, *J* = 201.1 Hz), 84.9 (d, *J* = 26.5 Hz), 79.6, 45.0 (d, *J* = 4.5 Hz), 31.8, 28.4 (d, *J* = 16.7 Hz), 20.7, 19.6 (d, *J* = 8.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.16, -145.39. IR (film) 3366, 2977, 1684, 1367, 1154, 1034 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₄FN₂O₂ [M+H]⁺: 307.1816. Found: 307.1823. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 5.42 min, t (major) = 6.34 min.

(3a*R*,8a*S*)-*tert*-Butyl-5-(tert-butyl)-3a-fluoro-8a-methyl-3,3a,8,8atetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2g**)

Light yellow oil, 10 mol % **C6** was used, 44.6 mg, 64% yield, 82% ee. Analytical data for **2g**: $[\alpha]_D^{25.5} = 169.9$ (c = 1.0 Chloroform, 82% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 7.27 (d, *J* = 10.0 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 5.65 (br s, 0.7H), 5.05 (br s, 0.3H), 3.66-3.54 (m, 1H), 3.08-3.06 (m, 1H), 2.59-2.54 (m, 2H), 1.69-1.65 (m, 3H), 1.54 (s, 3H), 1.42 (s, 6H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.4, 148.3 (d, *J* = 4.2 Hz), 147.7 (d, *J* = 3.7 Hz), 142.3, 128.8, 128.7 (d, *J* = 3.8 Hz), 124.3 (d, *J* = 21.4 Hz), 121.4, 110.0, 109.9, 105.2 (d, *J* = 5.65 (d) = 1.00 Hz, 12.54 (d) = 1.00 Hz, 12.54 (d) = 1.00 Hz, 121.4, 110.0, 109.9, 105.2 (d) *J* = 1.00 Hz, 12.54 (d) = 1.00 Hz, 12.54 (d) = 1.00 Hz, 12.54 (d) = 1.00 Hz, 12.54 (d).

200.1 Hz), 84.5 (d, J = 26.7 Hz), 80.8, 80.0, 44.8 (d, J = 4.3 Hz), 44.6 (d, J = 4.6 Hz), 34.3, 31.9, 31.4 (d, J = 50.9 Hz), 31.0 (d, J = 28.9 Hz), 28.7, 28.4, 20.2 (d, J = 9.4 Hz), 19.2 (d, J = 9.2 Hz). ¹⁹F NMR (376 MHz, CDCl3) δ -142.69 (d, J = 13.8 Hz), -144.30 (d, J = 14.6 Hz). IR (film) 3389, 2962, 1685, 1495, 1366, 1160, 1033 cm⁻¹. HRMS (ESI) calcd for C₂₀H₃₀FN₂O₂ [M+H]⁺: 349.2286. Found: 349.2286. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 4.81 min, t (major) = 7.29 min.

(3aR,8aS)-tert-Butyl-3a-fluoro-7,8a-dimethyl-3,3a,8,8a-tetrahydropyrrolo[2,3-

b]indole-1(2H)-carboxylate (2h)

Light yellow oil, 5 mol % **C6** was used, 65% yield, 61% ee. Analytical data for **2h**: $[\alpha]_D^{25.4} = 152.7$ (c = 1.0 Chloroform, 61% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.2 Hz, 1H), 7.06 (d, J = 7.6 Hz, 1H), 6.77 (dd, J =7.6 Hz, 1H), 5.68 (br, 0.5H), 5.13 (br, 0.5H), 3.67-3.50 (m, 1H), 3.12-2.98 (m, 1H), 2.62-2.37 (m, 2H), 2.12 (s, 3H), 1.75-1.65 (m, 3H), 1.53 (s, 3H), 1.41 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 153.3, 149.3, 149.3, 148.8, 148.8, 132.3, 132.3, 132.2, 132.2, 124.0, 123.8, 122.4, 122.2, 119.9, 119.9, 119.7, 119.6, 119.4, 119.2, 119.2, 106.5, 106.1, 84.2, 83.9, 83.9, 83.2, 80.7, 80.1, 44.9, 44.8, 44.5, 44.5, 31.9, 31.6, 31.0, 30.7, 28.7, 28.4, 20.2, 20.1, 19.2, 19.1, 16.5, 16.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.19 (d, J = 13.5 Hz), -145.31 (d, J = 13.3 Hz). IR (film) 3437, 3392, 3315, 2967, 2921, 1718, 1657, 1525, 1264, 1095, 1051, 931, 809 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₄FN₂O₂ [M+H]⁺: 307.1816. Found: 307.1823. The enantiomeric excess was determined by Daicel Chiralpak SFC OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.3 mL/min, $\lambda = 214$ nm, t (major) = 3.28 min, t (minor) = 3.54 min.

(3aR,8aS)-tert-Butyl-3a-fluoro-8a-methyl-5-(trifluoromethyl)-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (2i)

Light yellow oil, 10 mol % **C6** was used, 45.1 mg, 62% yield, 85% ee. Analytical data for **2i**: $[\alpha]_D^{26.6} = 480.0$ (c = 1.0 Chloroform, 85% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 6.04 (br s, 0.7H), 5.35 (br s, 0.3H), 3.70-3.56 (m, 1H), 3.12-3.07 (m, 1H), 2.56-2.45 (m, 2H), 1.70 (d, *J* = 4.0 Hz, 3H), 1.55 (s, 3H), 1.43 (s, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ 78.90 (s), 78.79 (s), -3.38 (d, *J* = 13.1 Hz), -5.56 (d, *J* = 12.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 152.9, 152.7 (d, *J* = 93.1 Hz), 129.3, 124.8 (d, *J* = 22.2 Hz), 124.6 (q, *J* = 270.5 Hz), 122.5 (d, *J* = 3.4 Hz), 120.8 (d, *J* = 32.7 Hz), 109.6, 109.5, 104.1 (d, *J* = 201.7 Hz), 84.6 (d, *J* = 26.3 Hz), 81.2, 80.4, 31.8 (d, *J* = 28.2 Hz), 28.6, 28.4, 18.9 (d, *J* = 9.2 Hz). IR (film) 3385, 1679, 1626, 1390, 1325, 1150, 849, 654 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₁F₄N₂O₂ [M+H]⁺: 361.1534. Found: 361.1535. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 4.43 min, t (major) = 5.45 min.

(3a*R*,8a*S*)-1-*tert*-Butyl-5-ethyl-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1,5(2H)-dicarboxylate (**2j**)

Light yellow oil, 10 mol % **C6** was used, 20.3 mg, 28% yield, 85% ee. Analytical data for **2j**: $[\alpha]_D^{27.2} = 383.5$ (c = 1.0 Chloroform, 85% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 2.0 Hz, 1H), 8.01-7.92 (m, 1H), 6.63 (d, J = 8.4 Hz, 1H), 6.10 (br s, 0.7H), 5.43 (br s, 0.3H), 4.38-4.30 (m, 2H), 3.69-3.56 (m, 1H), 3.13-2.97 (m, 1H), 2.63-2.44 (m, 2H), 1.71-1.67 (m, 3H), 1.55 (s, 3H), 1.43 (s, 6H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.3, 154.0, 153.9, 134.2, 127.2, 124.6, 124.3, 121.4, 120.9, 120.9, 109.1, 108.9, 105.0, 103.0, 84.7, 84.4, 80.4, 60.5, 46.3, 44.9, 44.8, 44.6, 31.9, 31.6, 29.7, 28.6, 28.4, 20.1, 19.0, 18.9, 14.4. ¹⁹F S24

NMR (376 MHz, CDCl₃) δ -142.60 (d, J = 19.6 Hz), -145.03 (d, J = 14.1 Hz). IR (film) 3380, 2988, 1688, 1616, 1365, 1156, 1029, 773 cm⁻¹. HRMS (ESI) calcd for C₁₉H₂₆FN₂O₄ [M+H]⁺: 365.1871. Found: 365.1872. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 3.10 min, t (major) = 11.36 min.

(3aR,8aS)-tert-Butyl-3a,5-difluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-

b]indole-1(2H)-carboxylate (2k)

Light yellow oil, 5 mol % **C6** was used, 28.2 mg, 46% yield, 89% ee. Two rotamers exist in NMR. Analytical data for **2k**: $[\alpha]_D^{24.9} = 282.4$ (c = 1.0 Chloroform, 89% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 7.6 Hz, 1H), 6.96-6.92 (m, 1H), 6.61-6.58 (m, 1H), 5.67 (br s, 0.6H), 5.02 (br s, 0.4H), 3.67-3.55 (m, 1H), 3.12-3.02 (m, 1H), 2.50-2.40 (m, 2H), 1.70-1.66 (m, 3H), 1.55 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 158.0, 157.9, 155.8, 155.6, 155.6, 153.8, 153.3, 146.7, 146.6, 146.1, 125.9, 125.8, 125.7, 125.6, 118.5, 118.4, 118.4, 118.3, 118.2, 118.2, 111.9, 111.8, 111.7, 111.6, 111.2, 111.1, 110.9, 110.9, 106.3, δ 104.5 (d, J = 201.0 Hz), 85.0, 84.8, 84.5, 84.3, 81.0, 80.2, 44.8, 44.7, 44.5, 44.5, 31.7, 31.4, 31.3, 31.0, 29.7, 28.6, 28.4, 20.2, 20.1, 19.1, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -124.74 (s), -125.37 (s), -144.50 (d, J = 11.7 Hz), -146.86 (s). IR (film) 3408, 2978, 1678, 1393, 1158, 1034, 774 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₁F₂N₂O₂ [M+H]⁺: 311.1566. Found: 311.1576. The enantiomeric excess was determined by Daicel Chiralpak SFC OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.3 mL/min, $\lambda = 214$ nm, t (major) = 3.28 min, t (minor) = 3.65 min.

(3a*R*,8a*S*)-*tert*-Butyl-5-chloro-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2l**)

Light yellow oil, 5 mol % **C6** was used, 45.5 mg, 70% yield, 86% ee. Analytical data for **21**: $[\alpha]_D^{25.5} = 269.0$ (c = 1.0 Chloroform, 86% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (s, 1H), 7.17 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 8.4 Hz, 1H), 3.68-3.54 (m, 1H), 3.10-3.05 (m, 1H), 2.51-2.46 (m, 2H), 1.66 (m, 3H), 1.55 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, C₆D₆) δ 154.0, 149.5 (d, J = 4.1 Hz), 131.8 (d, J = 3.2 Hz), 126.7 (d, J = 22.2 Hz), 125.3, 123.6 (d, J = 3.2 Hz), 111.5, 104.4 (d, J =202.2 Hz), 85.0 (d, J = 26.4 Hz), 79.82, 44.9 (d, J = 4.5 Hz), 31.7 (d, J = 28.3 Hz), 28.4 (d, J = 14.8 Hz), 19.3 (d, J = 8.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -143.91 (d, J = 13.4 Hz), -146.30 (d, J = 10.9 Hz). IR (film) 3370, 2979, 1681, 1479, 1367, 1157, 1035 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₁ClFN₂O₂ [M+H]⁺: 327.127. Found: 327.1278. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.22 min, t (major) = 6.60 min.

(3a*R*,8a*S*)-*tert*-Butyl-5-bromo-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2m**)

Light yellow oil, 5 mol % **C6** was used, 64.9 mg, 89% yield, 85% ee. Analytical data for **2m**: $[\alpha]_D^{25.5} = 270.5$ (c = 1.0 Chloroform, 85% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 6.55 (d, *J* = 8.43 Hz, 1H), 5.80 (s, 1H), 3.61 (dt, *J* = 20.3, 9.6 Hz, 1H), 3.14-3.00 (m, 1H), 2.54-2.37 (m, 2H), 1.54 (s, 3H), 1.42 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.8, 153.2, 149.4, 148.8, 134.3, 134.2, 127.9, 126.9, 126.7, 111.9, 111.6, 110.7, 110.2, 105.2, 103.2, 84.6, 84.3, 84.1, 83.8, 81.0, 80.2, 44.8, 44.7, 44.5, 31.7, 31.4, 31.3, 31.0, 29.6, 28.6, 28.3, 20.1, 20.0, 19.0, 18.9. IR (film) 3379, 2978, 1736, 1477, 1367, 1157, 1036 cm⁻¹. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.66 (d, *J* = 14.5 Hz), -146.05 (d, *J* = 13.0 Hz). S26

HRMS (ESI) calcd for $C_{16}H_{21}BrFN_2O_2$ [M+H]⁺: 371.0765. Found: 371.0764. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) = 5.31 min, t (major) = 6.85 min.

(*3aR*,8*aS*)-*tert*-Butyl-4-bromo-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2n**)

Light yellow oil, 10 mol % **C6** was used, 68.3 mg, 92% yield, 69% ee. Analytical data for **2n**: $[\alpha]_D^{30.3} = 210.2$ (c = 1.0 Chloroform, 69% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.06-7.02 (m, 1H), 6.94-6.89 (m, 1H), 6.56 (d, *J* = 8.0 Hz, 1H), 5.83 (br s, 0.7H), 5.14 (br s, 0.3H), 3.66-3.53 (m, 1H), 3.19-3.11 (m, 2H), 2.51-2.38 (m, 1H), 1.67 (d, *J* = 4.4 Hz, 3H), 1.55 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 152.1, 132.8, 132.8, 122.9, 122.8, 122.6, 122.4, 120.5, 109.2, 84.5, 84.3, 81.0, 80.2, 44.6, 31.0, 30.8, 29.7, 28.6, 28.4, 19.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -146.96 (d, *J* = 17.2 Hz), -149.01 (d, *J* = 17.6 Hz). IR (film) 3377, 2972, 2928, 1664, 1605, 1455, 1377, 1044, 775 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₁N₂O₂BrF [M+H]⁺: 371.0765. Found: 371.0765. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (minor) = 6.03 min, t (major) = 7.02 min.

(*3aR*,8*aS*)-*tert*-Butyl-6-bromo-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2o**)

Light yellow oil, 10 mol % **C6** was used, 65.0 mg, 88% yield, 97% ee. Analytical data for **20**: $[\alpha]_D^{30.3} = 188.5$ (c = 1.0 Chloroform, 97% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 8.0 Hz, 1H), 6.96-6.91 (m, 1H), 6.81 (s, 1H), 5.83 (br s, 0.7H), 5.16 (s, 0.3H), 3.67-3.53 (m, 1H), 3.10-3.00 (m, 1H), 2.50-2.39 (m, 2H), 1.68-1.64 (m, 3H), 1.54 (s, 3H), 1.43 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 151.7, 129.0, 128.2, 126.2, 125.7, 125.3, 123.9, 123.6, 122.4, 121.9, 113.4, 113.2, 110.0, 105.0, 103.0, 84.6, 84.3, 80.3, 44.8, 31.8, 31.5, 29.7, 28.7, 28.4, 19.1, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.16 (d, J = 14.5 Hz), -145.45 (d, J = 12.9Hz). IR (film) 3407, 2923, 2855, 1683, 1606, 1379, 1031, 768 cm⁻¹. HRMS (ESI) calcd for C₁₆H₂₁N₂O₂BrF [M+H]⁺: 371.0765. Found: 371.0765. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.05 min, t (minor) = 9.07 min.

(*3aR*,8*aS*)-*tert*-Butyl-7-bromo-3a-fluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2p**)

Light yellow oil, 5 mol % **C6** was used, 64.1 mg, 85% yield, 64% ee. Analytical data for **2p**: $[\alpha]_D^{29.6} = 194.4$ (c = 1.0 Chloroform, 86% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 7.8 Hz, 1H), 7.31-7.28 (m, 1H), 6.75-6.68 (m, 1H), 5.97 (br s, 0.5H), 5.54 (br s, 0.5H), 3.65-3.54 (m, 1H), 3.11–3.02 (m, 1H), 2.59– 2.41 (m, 2H), 1.70 (dd, J = 19.3, 4.1 Hz, 3H), 1.57 (s, 5H), 1.44 (s, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.8, 153.2, 149.0, 148.6, 134.0, 134.0, 133.9, 133.9, 126.0, 125.8, 123.9, 123.7, 120.6, 120.5, 120.1, 106.5, 106.2, 105.1, 104.9, 103.8, 83.9, 83.8, 83.1, 82.9, 81.2, 80.4, 44.8, 44.8, 44.4, 44.4, 32.3, 32.1, 31.0, 30.9, 28.6, 28.4, 20.0, 19.9, 19.1, 19.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.56 (d, J = 13.5 Hz), -145.26 (d, J = 10.8 Hz). HRMS (ESI) calcd for C₁₆H₂₁N₂O₂BrF [M+H]⁺: 371.0765. Found: 371.0762. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 50 / 1, 0.51 mL/min, λ = 254 nm, t (major) = 10.01 min, t (minor) = 11.23 min.

(3aR,8aS)-tert-Butyl-3a,4,6-trifluoro-8a-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-

b]indole-1(2H)-carboxylate (2q)

White solid, 10 mol % C6 was used, 42.8 mg, 65% yield, 96% ee. Analytical data for **2q**: Mp = 122.1-122.5 °C, $[\alpha]_D^{29.5} = 357.1$ (c = 0.1 Chloroform, 96% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.28-6.12 (m, 2H), 5.99 (br s, 0.7H), 5.31 (s, 0.3H), 3.70-3.56 (m, 1H), 3.19-3.10 (m, 1H), 2.84-2.76 (m, 1H), 2.51-2.38 (m, 1H), 1.67–1.66 (m, 3H), 1.55 (s, 9H), 1.44 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) & 167.1, 167.1, 167.1, 167.0, 165.5, 165.5, 165.4, 165.4, 161.8, 161.7, 160.1, 160.0, 153.9, 153.3, 153.1, 106.8, 106.7, 106.6, 104.5, 103.7, 103.1, 102.3, 94.9, 94.7, 94.5, 94.4, 94.2, 94.1, 93.9, 93.7, 93.5, 85.2, 85.0, 84.5, 84.4, 81.2, 80.4, 45.0, 45.0, 44.7, 44.7, 31.0, 30.8, 30.5, 30.3, 28.6, 28.4, 26.9, 20.1, 20.0, 19.0, 18.9. ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta -105.24 - -105.40 \text{ (m)}, -105.63 \text{ (qd}, J = 9.5, 5.6 \text{ Hz}), -115.14 \text{ (dt},$ J = 11.8, 5.9 Hz), -115.53 (td, J = 10.1, 9.4, 3.1 Hz), -143.17 (d, J = 15.2 Hz), -145.82 (dq, J = 14.8, 4.4 Hz). IR (film) 3363, 2985, 2934, 1679, 1392, 1163, 1028, 779, 675 cm⁻¹. FTMS (ESI) calcd for $C_{16}H_{20}N_2O_2F_3$ [M+H]⁺: 329.1471. Found: 329.1470. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 4.83 min, t (minor) = 5.87 min.

(3aR,8aS)-tert-Butyl-4,6-dichloro-3a-fluoro-8a-methyl-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (2r)

White solid, 10 mol % **C6** was used, 51.2 mg, 71% yield, 96% ee. Mp = 127.7-128.1 °C, Analytical data for **2r**: $[\alpha]_D^{29.6} = 332.5$ (c = 1.0 Chloroform, 96% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.74 (s, 1H), 6.52 (s, 1H), 5.95 (br s, 0.7H), 5.24 (br s, 0.3H), 3.68-3.54 (m, 1H), 3.20-3.03 (m, 2H), 2.51-2.38 (m, 1H), 1.67-1.66 (m, 3H), 1.55-1.43 (m, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 154.0, 153.1, 152.5, 152.4, 151.8, 138.0, 137.9, 132.9, 129.4, 129.2, 128.3, 128.2, 127.6, 119.9, 119.6, 119.5, 119.4, 108.8, 108.6, 105.3, 103.9, 84.8, 84.7, 81.2, 80.5, 44.7, 44.6, 44.5, 30.8, 30.6, 30.4, 30.2, 28.6, 28.4, 20.3, 20.2, 19.1, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -146.45 (d, J = 16.8 Hz), -148.55 – -149.37 (m). IR (film) 3368, 2981, 2936, 2895, 1675, 1590, 1384, 1165, 1032, 975, 846, 661 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₀N₂O₂Cl₂F [M+H]⁺: 361.0880. Found: 361.0881. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 4.74 min, t (minor) = 5.74 min.

(3a*R*,8a*S*)-*tert*-Butyl-8a-ethyl-3a-fluoro-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2s**)

Light yellow oil, 10 mol % **C6** was used, 43.5 mg, 71% yield, 89% ee. Analytical data for **2s**: $[\alpha]_D^{26.6} = 376.2$ (c = 1.0 Chloroform, 89% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 7.2 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 6.83-6.78 (m, 1H), 6.64 (d, J = 7.6 Hz, 1H), 5.65 (br s, 0.6H), 5.01 (br s, 0.4H), 3.65 (m, 1H), 3.14-3.07 (m, 1H), 2.56-2.50 (m, 2H), 2.41-2.25 (m, 1H), 2.04 (m, 1H), 1.54 (s, 3H), 1.43 (s, 6H), 0.98 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 153.6, 150.4 (d, J = 4.0 Hz), 149.9, 131.6, 131.5 (d, J = 3.2 Hz), 125.1 (d, J = 22.0 Hz), 124.8, 124.7, 119.3 (d, J = 1.6 Hz), 118.8 (d, J = 2.6 Hz), 110.2, 109.9, 106.2 (d,

J = 202.9 Hz), 105.4 (d, J = 201.0 Hz), 86.8 (d, J = 26.1 Hz), 86.2 (d, J = 25.8 Hz), 45.3 (d, J = 4.4 Hz), 45.0 (d, J = 3.5 Hz), 33.0 (d, J = 28.9 Hz), 32.6 (d, J = 28.4 Hz), 26.8 (d, J = 7.8 Hz), 25.7 (d, J = 7.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -142.96 (d, J = 14.0 Hz), -145.36 (s). IR (film) 3338, 2973, 1683, 1366, 1240, 1161, 742 cm⁻¹. HRMS (ESI) calcd for C₁₇H₂₄FN₂O₂ [M+H]⁺: 307.1816. Found: 307.182. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.55 min, t (major) = 6.55 min.

(3aR,8aS)-tert-Butyl-8a-(cyclopropylmethyl)-3a-fluoro-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (2t)

Light yellow oil, 10 mol % **C6** was used, 53.3 mg, 82% yield, 85% ee. Analytical data for **2t**: $[\alpha]_D^{28.4} = 234.7$ (c = 1.0 Chloroform, 85% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 7.2 Hz, 1H), 7.23 (m, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.65 (t, J = 7.6 Hz, 1H), 5.58 (br s, 1H), 3.74-3.62 (m, 1H), 3.19-3.12 (m, 1H), 2.74-2.59 (m, 1H), 2.65-2.53 (m, 1H), 2.23-2.18 (m, 1H), 2.02-1.87 (m, 1H), 1.56-1.39 (m, 9H), 0.79-0.77 (m, 1H), 0.51-0.46 (m, 2H), 0.19 (d, J = 3.6 Hz, 2H). ¹³C NMR (101 MHz, cdcl₃) δ 154.0, 150.3, 131.6, 131.5, 131.5, 125.5, 125.3, 124.7, 119.4, 119.0, 110.4, 110.1, 106.0, 104.0, 86.6, 86.3, 80.0, 45.3, 45.2, 45.1, 37.8, 37.7, 36.5, 36.4, 32.5, 32.3, 31.7, 31.4, 29.7, 28.7, 28.5, 6.3, 6.2, 5.3, 4.5, 3.8, 3.8. IR (film) 3391, 2929, 1681, 1381, 1160, 746 cm⁻¹. HRMS (ESI) calcd for C₁₉H₂₆FN₂O₂ [M+H]⁺: 333.1973. Found: 333.1974. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda =$ 254 nm, t (minor) = 5.44 min, t (major) = 6.21 min.

(3aR,8aS)-*tert*-Butyl-3a-fluoro-8a-(pent-4-en-1-yl)-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2u**)

Light yellow oil, 10 mol % C6 was used, 50.8 mg, 73% yield, 85% ee. Analytical data for 2u: $\left[\alpha\right]_{D}^{29.6} = 281.8$ (c = 1.0 Chloroform, 85% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, *J* = 7.6 Hz, 1H), 7.23-7.19 (m, 1H), 6.84-6.78 (m, 1H), 6.66-6.62 (m, 1H), 5.87-5.77 (m, 1H), 5.66 (br s, 0.7H), 5.05-4.97 (m, 2H), 4.94 (br s, 0.3H), 3.71-3.57 (m, 1H), 3.14-3.05 (m, 1H), 2.59-2.47 (m, 2H), 2.38-1.97 (m, 4H), 1.61 (s, 1H), 1.54 (s, 3H), 1.43 (s, 6H), 1.33-1.29 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) & 154.0, 153.5, 150.4, 150.4, 149.8, 147.0, 138.6, 138.3, 131.6, 131.6, 131.5, 128.8, 125.1, 125.1, 125.0, 124.9, 124.8, 124.7, 124.6, 124.4, 123.9, 119.3, 119.1, 118.9, 118.8, 115.0, 114.6, 110.2, 109.9, 106.9, 106.1, 105.5, 104.8, 86.4, 86.2, 85.9, 85.7, 80.9, 80.1, 45.2, 45.2, 44.9, 44.9, 34.8, 34.5, 33.9, 33.9, 33.5, 33.5, 33.0, 32.8, 32.6, 32.5, 32.5, 31.4, 30.2, 28.6, 28.4, 28.3, 24.0, 24.0, 23.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -142.38 (d, J = 14.5 Hz), -144.82. IR (film) 3404, 3327, 2973, 2930, 1678, 1164, 911, 747 cm⁻¹. HRMS (ESI) calcd for $C_{20}H_{28}FN_2O_2$ [M+H]⁺: 347.2129. Found: 347.2129. The enantiomeric excess was determined by Daicel Chiralcel OJ-H (0.46 cm x 25 cm), Hexanes / IPA = 98 / 2, 1.0 mL/min, λ = 254 nm, t (major) = 5.62 min, t (minor) = 8.44 min.

(3a*R*,8a*S*)-*tert*-Butyl-3a-fluoro-8a-isopropyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2v**)

Light yellow oil, 10 mol % **C6** was used, 43.6 mg, 68% yield, 62% ee. Analytical data for **2v**: $[\alpha]_D^{25.6} = 47.5$ (c = 1.0 Chloroform, 62% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (d, *J* = 7.2 Hz, 1H), 6.97 (dd, *J* = 6.8 Hz, 1H), 6.64

(dd, J = 7.2 Hz, 1H), 6.28 (d, J = 7.6 Hz, 1H), 6.00 (br s, 1H), 3.32-3.27 (m, 1H), 3.19-3.02 (m, 1H), 2.94-2.87 (m, 1H), 2.44-2.25 (m, 1H), 2.19-2.06 (m, 1H), 1.42-1.15 (m, 15H). ¹³C NMR (151 MHz, cdcl3) δ 154.2, 150.4, 149.7, 149.6, 131.4, 129.9, 125.8, 124.3, 118.7, 110.1, 106.4, 105.1, 80.0, 45.6, 33.6, 33.4, 32.4, 30.9, 29.7, 28.4, 18.1, 17.2, 17.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -145.05 (d, J = 15.8 Hz). IR (film) 3389, 2921, 2852, 1690, 1462, 1376, 1161, 744 cm⁻¹. HRMS (ESI) calcd for C₁₈H₂₆FN₂O₂ [M+H]⁺: 321.1973. Found: 321.1976. The enantiomeric excess was determined by Phenomenex Cellulose-2 (0.46 cm x 25 cm), Hexanes / IPA = 99 / 1, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.46 min, t (major) = 7.31 min.

(*3aR*,8*aS*)-*tert*-Butyl-3a-fluoro-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)carboxylate (**2w**)

Light red oil, 10 mol % **C6** was used, 28.3 mg, 51% yield, 56% ee. Analytical data for **2w**: $[\alpha]_D^{29.8} = 132.0$ (c = 1.0 Chloroform, 56% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 7.6 Hz, 1H), 7.26-7.22 (m, 1H), 6.84 (dd, J = 7.8 Hz, 1H), 6.68 (d, J = 8.0 Hz, 1H), 5.48 (dd, J = 27.0, 19.2 Hz, 1H), 5.11 (br s, 0.5H), 4.69 (br s, 0.5H), 3.86-3.71 (m, 1H), 3.27-3.17 (m, 1H), 2.72-2.57 (m, 1H), 2.51-2.43 (m, 1H), 1.53-1.47 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.6, 153.6, 150.5, 150.4, 131.6, 131.5, 131.5, 126.7, 124.9, 124.7, 124.6, 124.5, 124.4, 119.6, 119.6, 119.2, 119.2, 117.7, 117.5, 117.5, 117.4, 117.3, 110.4, 110.3, 109.0, 106.1, 83.5, 81.2, 80.7, 80.4, 79.9, 79.8, 79.6, 79.5, 46.3, 45.7, 45.7, 45.2, 45.2, 35.3, 35.0, 34.7, 28.5, 28.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -135.70 (td, J = 17.8, 5.4 Hz), -136.98 (td, J = 18.6, 18.2, 7.3 Hz). IR (film) 3361, 2978, 2932, 1693, 1615, 1403, 1167, 753 cm⁻¹. HRMS (ESI) calcd for C₁₅H₂₀FN₂O₂ [M+H]⁺: 279.1503. Found: 279.151. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, λ = 254 nm, t (minor) = 7.37 min, t (major) = 8.24 min.

(*3aR*,8*aS*)-*tert*-Butyl-6-bromo-3a-fluoro-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2x**) Light yellow oil, 10 mol % **C6** was used, 41.8 mg, 59% yield, 77% ee. Analytical data for **2x**: $[\alpha]_D^{29.5} = 111.9$ (c = 1.0 Chloroform, 77% *ee*). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 7.2 Hz, 1H), 6.96-6.91 (m, 1H), 6.83-6.81 (m, 1H), 5.46 (dd, *J* = 23.4, 18.8 Hz, 1H), 5.27 (br s, 0.6H), 4.79 (br s, 0.4H), 3.86-3.69 (m, 1H), 3.24-3.15 (m, 1H), 2.70-2.55 (m, 1H), 2.46-2.39 (m, 1H), 1.52 (s, 4H), 1.47 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 153.4, 151.7, 151.7, 151.3, 125.8, 125.7, 125.6, 123.8, 123.6, 122.4, 122.4, 122.0, 122.0, 1133, 108.2, 107.2, 106.2, 105.2, 80.9, 80.6, 79.9, 79.8, 79.6, 79.5, 45.6, 45.1, 35.1, 34.8, 34.6, 28.5, 28.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -138.55 (td, *J* = 18.2, 6.0 Hz), -139.93 (td, *J* = 18.2, 6.6 Hz). IR (film) 3351, 2925, 1692, 1609, 1405, 1168, 899, 783 cm⁻¹. HRMS (ESI) calcd for C₁₅H₁₉FN₂O₂ [M+H]⁺: 357.0608. Found: 357.0609. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 90 / 10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.00 min, t (minor) = 7.83 min.

(3a*R*,8a*S*)-*tert*-Butyl-3a-hydroxy-4,6,8a-trimethyl-3,3a,8,8a-tetrahydropyrrolo[2,3b]indole-1(2H)-carboxylate (**2yy**)

Light yellow oil, 10 mol % **C6** was used, 46.1 mg, 72% yield, 93% ee. Analytical data for 2m: $[\alpha]_D^{27.2} = 201.5$ (c = 1.0 Chloroform, 93% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 6.38 (d, *J* = 4.4 Hz, 1H), 6.26 (d, *J* = 6.8 Hz, 1H), 5.68 (br s, 0.6H), 5.01 (s, 0.4H), 3.52-3.41 (m, 1H), 3.01-2.95 (m, 1H), 2.64-2.57 (m, 1H),

2.35 (s, 3H), 2.22 (s, 3H), 2.19-2.15 (m, 1H), 1.53 (s, 3H), 1.40 (s, 6H), 1.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0, 153.5, 150.0, 149.4, 140.2, 135.8, 123.8, 122.8, 122.3, 119.2, 108.7, 108.4, 104.9, 87.7, 86.8, 84.5, 83.9, 80.3, 79.5, 44.5, 44.2, 32.0, 31.6, 31.5, 29.6, 28.7, 28.4, 22.6, 21.4, 20.4, 19.3, 17.6. IR (film) 3371, 2926, 1675, 1596, 1383, 1166, 1046, 757 cm⁻¹. HRMS (ESI) calcd for C₁₈H₂₇N₂O₃ [M+H]⁺: 319.2016. Found: 319.2018. The enantiomeric excess was determined by Daicel Chiralpak AD-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, λ = 254 nm, t (minor) =6.70 min, t (major) = 8.98 min.

*ter*t-Butyl-3a-fluoro-8-methyl-3,3a,8,8a-tetrahydropyrrolo[2,3-b]indole-1(2H)carboxylate (**2z**) ¹⁰

Light yellow oil, 10 mol % **C6** was used, 13.6 mg, 23% yield. Analytical data for **2z**: Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.24 (m, 2H), 6.77 (dd, *J* = 7.6 Hz, 1H), 6.51 (d, *J* = 8.0 Hz, 1H), 5.46 (dd, *J* = 37.8, 21.2 Hz, 1H), 4.04-3.83 (m, 1H), 3.26-3.11 (m, 1H), 3.05-2.99 (m, 3H), 2.62-2.50 (m, 1H), 2.39-2.36 (m, 1H), 1.54-1.43 (m, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -132.05 – -138.20 (m), -138.20 – -140.56 (m).

Transformations of product 2b

To a solution of compound **2b** (524 mg, 1.8 mmol, 90% ee) in DCM (18 mL) was added Et₃N (0.5 mL, 3.6 mmol, 1.2 equiv). The reaction mixture was stirred at 0 °C for 10 min, and then (CF₃CO)₂O (0.5 mL, 3.6 mmol, 1.2 equiv) was added slowly. After the reaction was complete (monitored by TLC), NaHCO₃ saturated solution (2 mL) was poured into the solution, and then warm to room temperature. The reaction mixture was extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1/20, v/v) to afford desired product **3**.

To a solution of compound **3** (155.0 mg, 0.4 mmol) in DCM (4 mL) was slowly added TMSOTf (144.8 μ L, 0.8 mmol, 2.0 equiv) at -78 °C. After the reaction was complete (monitored by TLC), H₂O (2 mL) was poured into the solution, and then the mixture was allowed to warm to the room temperature. The reaction mixture was extracted with ethyl acetate, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1/10, v/v) to afford desired product **4**.

(3a*R*,8a*S*)-*tert*-Butyl-3a-fluoro-8a-methyl-8-(2,2,2-trifluoroacetyl)-3,3a,8,8atetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**3**)

White solid. 588.0 mg, 84% yield, 90% ee. Analytical data for **3**: Mp = 91.7-92.5 °C, Two rotamers exist in NMR. $[\alpha]_D^{25.1}$ =95.0 (c = 0.2 Chloroform, 90% ee). ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.43-7.37 (m, 2H), 7.29 (m, 1H), 3.84-3.75 (m, 1H), 3.00-2.93 (m, 1H), 2.57-2.45 (m, 2H), 1.98 (d, *J* = 4.4 Hz, 3H), 1.49 (s, S36
9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.0 (d, J = 39.3 Hz), 153.3, 139.6 (d, J = 4.5 Hz), 131.0 (d, J = 2.4 Hz), 129.3 (d, J = 22.6 Hz), 126.3, 124.5, 117.2 (d, J = 6.2 Hz), 115.9 (q, J = 288.7 Hz), 103.8 (d, J = 206.5 Hz), 92.7-91.0 (m), 81.5, 44.8, 31.7 (d, J = 26.8 Hz), 28.4, 19.0 (d, J = 5.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.90 (s), -151.99 (s). HRMS (ESI) calcd for C₁₈H₂₁F₄N₂O₃ [M+H]⁺: 389.1483. Found: 389.1483. The enantiomeric excess was determined by Daicel Chiralpak IC-H (0.46 cm x 25 cm), Hexanes / IPA = 95 / 5, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.77 min.

(3a*R*,8a*S*)-2,2,2-Trifluoro-1-(3a-fluoro-8a-methyl-1,3,3a,8a-tetrahydropyrrolo[2,3-b]indol-8(2H)-yl)ethanone

Light yellow oil, 101.2 mg, 88% yield. Analytical data for 4: ¹H NMR (400 MHz, CDCl₃) δ 9.10 (br, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.2 Hz, 1H), 4.16-4.01 (m, 1H), 3.75 (s, 1H), 2.69-2.47 (m, 1H), 2.43-2.34 (m, 1H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.7 (d, *J* = 20.7 Hz), 155.0 (d, *J* = 37.9 Hz), 133.0, 129.8, 128.8 (d, *J* = 21.8 Hz), 126.4, 125.3 (d, *J* = 6.1 Hz), 124.5, 117.1, 114.3, 111.4, 109.5 (d, *J* = 179.7 Hz), 57.6, 45.6, 38.5 (d, J = 23.0 Hz), 15.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -76.22 (s), -140.30 (td, *J* = 29.3, 12.6 Hz). HRMS (ESI) calcd for C₁₃H₁₃F₄N₂O [M+H]⁺: 289.0959. Found: 289.0961.

To a solution of compound **2b** (29.2 mg, 0.1 mmol, 86% ee) in toluene (2 mL) was added DMAP (1.2 mg, 0.01 mmol), and then NBS (42.7 mg, 0.24 mmol, 2.4 equiv) was added in one pot. After the reaction was complete (monitored by TLC), $Na_2S_2O_3$ saturated aqueous solution (2 mL) was poured into the solution. The reaction mixture was extracted with ethyl acetate, dried with Na_2SO_4 , and concentrated under S37

reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1/20, v/v) to afford desired products **2bb** and **2p**.

(3aR,8aS)-tert-Butyl-5,7-dibromo-3a-fluoro-8a-methyl-3,3a,8,8a-

tetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (2bb)

White solid, 30.6 mg, 68% yield, 87% ee. Analytical data for **2bb**: Mp = 128.5-129.1 °C, $[\alpha]_D^{29.6} = 171.0$ (c = 1.0 Chloroform, 87% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.39 (d, *J* = 6.4 Hz, 1H), 5.98 (br s, 0.5H), 5.51 (br s, 0.5H), 3.65-3.55 (m, 1H), 3.14-3.04 (m, 1H), 2.57-2.40 (m, 2H), 1.68 (dd, *J* = 18.2, 4.2 Hz, 3H), 1.56 (s, 3H), 1.44 (s, 4H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 153.0, 148.1, 147.7, 136.0, 135.9, 127.4, 127.3, 127.1, 126.9, 110.6, 110.0, 106.2, 105.8, 104.9, 104.5, 104.1, 84.3, 84.1, 83.4, 83.2, 81.4, 80.6, 44.7, 44.4, 32.2, 32.0, 31.0, 30.9, 28.6, 28.3, 19.9, 19.8, 19.0, 18.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -143.96 (d, *J* = 14.6 Hz), -145.92. IR (film) 3367, 2968, 2925, 2861, 1689, 1459, 1374, 1255, 1155, 1034, 863, 783, 639 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₀N₂O₂Br₂F [M+H]+: 448.9870. Found: 448.9871. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 50 / 1, 0.51 mL/min, λ = 254 nm, t (minor) = 8.41 min, t (major) = 9.11 min.

To a solution of compound **2b** (29.2 mg, 0.1 mmol, 86% ee) in toluene (2 mL) was added DMAP (1.2 mg, 0.01 mmol), and then TCCA (55.8 mg, 0.24 mmol, 2.4 equiv) was added in one pot. After the reaction was complete (monitored by TLC), $Na_2S_2O_3$ saturated solution (2 mL) was poured into the solution. The reaction mixture was extracted with ethyl acetate, dried with Na_2SO_4 , and concentrated under reduced S38

pressure. The residue was purified by silica gel column chromatography (ethyl acetate/ petroleum ether = 1/20, v/v) to afford desired product **2bc**.

(*3aR*,8*aS*)-*tert*-Butyl-5,7-dichloro-3a-fluoro-8a-methyl-3,3a,8,8atetrahydropyrrolo[2,3-b]indole-1(2H)-carboxylate (**2bc**)

White solid, 23.8 mg, 66% yield, 88% ee. Analytical data for **2bc**: Mp = 73.1-74.9 °C, $[\alpha]_D^{29.7} = 248.0$ (c = 0.1 Chloroform, 88% ee). Two rotamers exist in NMR. ¹H NMR (400 MHz, CDCl₃) δ 7.25-2.22 (m, 2H), 5.97 (br s, 0.6H), 5.48 (br s, 0.4H), 3.66-3.55 (m, 1H), 3.14-3.02 (m, 1H), 2.56-2.41 (m, 2H), 1.72-1.66 (m, 3H), 1.56 (s, 4H), 1.44 (s, 5H). ¹³C NMR (151 MHz, CDCl₃) δ 153.7, 153.1, 149.0, 146.2, 145.8, 130.8, 127.2, 127.0, 124.1, 123.7, 123.5, 115.9, 115.8, 106.1, 105.7, 104.7, 104.4, 84.7, 84.5, 83.8, 83.6, 81.4, 80.6, 44.8, 44.8, 44.4, 44.4, 42.6, 32.1, 31.9, 31.0, 30.8, 28.6, 28.4, 19.9, 19.9, 19.0, 19.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -144.33 (d, *J* = 14.6 Hz), -146.21. IR (film) 3368, 2976, 2928, 1688, 1463, 1375, 1159, 1036, 863, 768 cm⁻¹. FTMS (ESI) calcd for C₁₆H₂₀N₂O₂Cl₂F [M+H]⁺: 361.0880. Found: 361.0882. The enantiomeric excess was determined by Daicel Chiralcel OD-H (0.46 cm x 25 cm), Hexanes / IPA = 50 / 1, 0.51 mL/min, λ = 254 nm, t (minor) = 8.43 min, t (major) = 9.14 min.

X-Ray crystal structure of enantiopure 3 (CCDC 1526408)

The crystal of enantiopure 3 was obtained through slow evaporation from its solution in tetrahydrofuran and *n*-hexane. The structure and absolute configuration of 3 were then determined by X-ray crystallographic analysis.

Table 1. Crystal data and structure refinement for cd214591.

cd214591	
C18 H20 F4 N2 O3	
388.36	
293(2) K	
0.71073 Å	
Monoclinic	
P 21	
a = 10.606(4) Å	$\alpha = 90$ °.
b = 6.390(3) Å	β= 95.946(8) °.
c = 13.828(6) Å	$\gamma = 90$ °.
932.0(7) Å ³	
2	
1.384 Mg/m ³	
0.121 mm ⁻¹	
404	
0.112 x 0.089 x 0.075 mm ³	
2.308 to 25.050 °.	
-12<=h<=12, -7<=k<=7, -14<=	=l<=16
4955	
2965 [R(int) = 0.0582]	
	cd214591 C18 H20 F4 N2 O3 388.36 293(2) K 0.71073 Å Monoclinic P 21 a = 10.606(4) Å b = 6.390(3) Å c = 13.828(6) Å 932.0(7) Å ³ 2 1.384 Mg/m ³ 0.121 mm ⁻¹ 404 0.112 x 0.089 x 0.075 mm ³ 2.308 to 25.050 °. -12<=h<=12, -7<=k<=7, -14<= 4955 2965 [R(int) = 0.0582]

Completeness to theta = 25.242° 97.8 % Semi-empirical from equivalents Absorption correction Max. and min. transmission 0.7457 and 0.4412 Full-matrix least-squares on F² Refinement method Data / restraints / parameters 2965 / 1 / 248 Goodness-of-fit on F² 1.168 Final R indices [I>2sigma(I)] R1 = 0.0888, wR2 = 0.2191R indices (all data) R1 = 0.1018, wR2 = 0.2281Absolute structure parameter 0.1(10) Extinction coefficient n/a 0.507 and -0.327 $e.\textrm{\AA}^{\text{-3}}$ Largest diff. peak and hole

References

[1]. S. J. Yeo, Y. Liu and X. Wang, *Tetrahedron*, 2012, **68**, 813.

- [2]. M. Righi, F. Topi, S. Bartolucci, A. Bedini, G. Piersanti and G. Spadoni, J. Org. Chem., 2012, 77, 6351.
- [3]. A. S. Kalgutkar, B. C. Crews, S. Saleh, D. Prudhomme and L. J. Marnett, Bioorg. Med. Chem. 2015, 13, 6810.
- [4]. O. René and B. P. Fauber, *Tetrahedron Lett.* 2014, **55**, 830.
- [5]. R. F. Salikova, A. Y. Belyya, N. S. Khusnutdinovac, Y. V. Vakhitovac and Y. V. Tomilov, Bioorg. Med. Chem. Lett., 2015, 25, 3597.
- [6]. M. Righi, F. Topi, S. Bartolucci, A. Bedini, G. Piersanti and G. Spadoni, J. Org. Chem., 2012, 77, 6351.
- [7]. a). L. Jiao and T. Bach, J. Am. Chem. Soc., 2011, 133, 12990; b). L. Jiao, E. Herdtweck and T. Bach, J. Am. Chem. Soc., 2012, 134, 14563.
- [8]. S. Routier, L. Saugé, N. Ayerbe, G. Coudert and J.-Y. Mérour, Tetrahedron Lett., 2002, 43, 589.
- [9]. L. S. Santos, R. A. Pilli and V. H. Rawal, J. Org. Chem., 2004, 69, 1283.
- [10]. O. Lozano, G. Blessley, T. M. del Campo, A. L. Thompson, G. T. Giuffredi, M. Bettati, M. Walker and R. Borman, V. Gouverneur, Angew. Chem., Int. Ed., 2011, 50, 8105.

Copies of NMR Spectra and HPLC Chromatographs

NMR Spectra of 1a

NMR Spectra of 1d

NMR Spectra of 1e

NMR Spectra of $\mathbf{1f}$

NMR Spectra of 1g

NMR Spectra of 1h

NMR Spectra of 1i

NMR Spectra of 1k

NMR Spectra of 11

NMR Spectra of 1n

NMR Spectra of 10

NMR Spectra of 1p

NMR Spectra of 1q

NMR Spectra of 1r

NMR Spectra of 1s

NMR Spectra of 1t

NMR Spectra of **1u**

NMR Spectra of **1v**

NMR Spectra of **1**w

NMR Spectra of 1x

NMR Spectra of 1y

NMR Spectra of 1z

NMR Spectra of 2a

NMR Spectra of 2c

NMR Spectra of 2e

NMR Spectra of 2f

NMR Spectra of 2g

NMR Spectra of 2h

NMR Spectra of 2i

NMR Spectra of 2j

NMR Spectra of 2k

NMR Spectra of 2m

NMR Spectra of 20

NMR Spectra of 2p

NMR Spectra of 2q

NMR Spectra of 2r

NMR Spectra of 2s

NMR Spectra of 2u

NMR Spectra of 2v

NMR Spectra of 2w

NMR Spectra of 2x

NMR Spectra of 2yy

NMR Spectra of 2z

NMR Spectra of 3

NMR Spectra of 4

NMR Spectra of 2bb

NMR Spectra of 2bc

HPLC Chromatographs of 2c

HPLC Chromatographs of 2d

HPLC Chromatographs of 2e

HPLC Chromatographs of 2g

Signal: DAD1 A, Sig=210, 16 Ref=360, 100

-					
RT [min]	Туре	Width [min]	Area	Height	Area%
3.253	BV	0.0770	5164.9712	1056.5814	47.0459
3.508	VB	0.0869	5813.6040	1062.0057	52.9541
		Sum	10978.5752		

Signal: DAD1 A, Sig=210, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
3.281	BV	0.0721	780.0882	168.3072	80.5758
3.537	VB	0.0792	188.0540	36.4463	19.4242
		Sum	968.1422		

HPLC Chromatographs of 2j

Signal: DAD1 A, Sig=210, 16 Ref=360, 100

RT [min]	Туре	Width [min]	Area	Height	Area%
3.267	MM	0.0757	1275.8678	280.9491	49.9846
3.641	MM	0.0836	1276.6549	254.4320	50.0154
		Sum	2552.5227		

Signal:	DAD1 A,	Sig=210,16	Ref=360,100

516 hd1. 5 hD1 h, 516 210, 10 ker 500, 100					
RT [min]	Туре	Width [min]	Area	Height	Area%
3.276	BV	0.0711	1072.6036	235.5274	94.2445
3.651	VV	0.0835	65.5039	12.2355	5.7555
		Sum	1138.1076		

HPLC Chromatographs of 2l

HPLC Chromatographs of 2m

HPLC Chromatographs of 2r

HPLC Chromatographs of 2s

S147

HPLC Chromatographs of 2v

HPLC Chromatographs of 2w

Peak Name:						
		Injection	RT	Area	% Area	Height
	1	1	8.239	538829	77.90	36408
	2	1	7.367	152844	22.10	13049

HPLC Chromatographs of 2yy

HPLC Chromatographs of 3

HPLC Chromatographs of 2bb

HPLC Chromatographs of 2bc

