Unsymmetrically Substituted Tellurium-Boron based Heterocycles

Fu An Tsao and Douglas W. Stephan

Department of Chemistry, 80 St. George St., University of Toronto, Toronto, Ontario, Canada M5S 3H6

Supporting Information
General experimental procedure

All experimental manipulations were conducted using standard Schlenk line techniques or in an O2-free, N2-filled MBraun LABmaster SP dry box equipped with a -35 °C freezer, in either 4-dram glass vials with screw caps or in flame-dried Schlenk flasks. All proteo solvents (purchased from Caledon Laboratories) were purified using a Grubbs-type column system (Innovative Technologies) and stored over 4 Å sieves or sodium wire in Straus flasks. CDCl3 (Cambridge Isotopes) was dried using CaH2 and distilled under reduced pressure prior to use. All solvents were also degassed by repeated freeze-pump-thaw cycles prior to use. Benzyl alcohol, 4-bromobenzyl alcohol, cinnamyl alcohol, 5-norbornene-2-methanol (exo + endo), 4-methoxyphenol and trimethylsilanol were purchased from Sigma-Aldrich, 1,1-diphenylmethanol and cyclohexanol were purchased from Alfa Aesar, 2-phenoxyethanol and 4-bromophenylacetylene were purchased from TCI chemicals, and 2-hydroxybenzylamine was purchased from Apollo Chemicals. All liquid reagents were de-gassed by repeated freeze-pump-thaw cycles and stored over 4 Å sieves prior to use. All solid reagents were placed under vacuum for 1 h prior to use. Compound 1, was prepared using standard literature procedure.[1]

NMR spectroscopy was performed on either a Bruker Advance III 400 MHz, an Agilent DD2 500 MHz, or an Agilent DD2 600 MHz spectrometer. Unless otherwise stated, all spectra were obtained at room temperature. All NMR spectra were referenced to residual proteo solvent peaks (1H = 5.32 ppm and 13C = 53.84 ppm for CHCl3) or an external standard (19F: CFCI3 (δ 0.00), 11B: (Et2O)BF3 (δ 0.00), 125Te: Ph2Te2 (δ 420.8).[2]) Single-crystal X-ray crystallographic analyses were performed on crystals coated in Paratone-N oil and mounted on a Bruker Kappa Apex II diffractometer. The structure was solved using SHELXS and least square refinements were performed using SHELXL-97. Combustion elemental analyses were performed on a PerkinElmer CHN Analyzer.

General synthetic procedure for compounds 2-11

1 eq. of compound 1 and 1.1 eq. of alkyne were dissolved in 5 ml of acetonitrile. The yellow slurry was then transferred into a 50-ml Schlenk flask equipped with a Teflon tab seal. The solution was heated to 110 °C for 16 h, upon which point a crude 19F{1H} NMR spectrum was taken to ensure reaction completion. The reaction times of compounds 2-11 vary between 1 to 7 days as outlined in scheme 2 in the main article. Once the reaction was completed as determined by in situ 19F{1H} NMR spectra, all volatiles were removed under reduced pressure, and the product was extracted into 5 ml of DCM and filtered through a short plug of celite. The resulting clear yellow or orange solution was
then put under vacuum to remove all volatiles again before pentane was used to either precipitate out or recrystallize the product.

Spectroscopic data of 2

![Diagram of 2](image)

Compound 1 (612.2 mg, 0.727 mmol) was reacted with benzyl alcohol (104.0 mg, 0.9617 mmol) of benzyl alcohol to give compound 2 (478.1 mg, 0.6114 mmol, 85.1% yield), which precipitated out as an off-white powder when triturated with pentane.

1H (500.0 MHz, CDCl$_3$): δ 7.26 (m, 6H, m-PhTe + p-PhTe), 7.20 (m, 3H, m-OCH$_2$Ph + p-OCH$_2$Ph), 7.17 (m, 4H, o-PhTe), 6.81 (m, 2H, o-OCH$_2$Ph), 4.58 (s, 2H, OCH$_2$Ph).

11B{1H} (128 MHz, CDCl$_3$): δ 36.9 (br s, $\nu_{1/2} \approx 817$ Hz)

13C{1H} (125 MHz, CDCl$_3$): δ 159.6 (s, Te=C), 141.4 (s, i-PhTe), 138.3 (s, i-OCH$_2$Ph), 129.9 (br s, BC=), 128.8 (s, p-PhTe), 128.5 (s, m-PhTe), 128.2 (s, m-OCH$_2$Ph), 127.6 (s, p-OCH$_2$Ph), 126.2 (s, o-PhTe), 125.1 (s, o-OCH$_2$Ph), 68.0 (s, OCH$_2$Ph).

19F{1H} NMR (377 MHz, CDCl$_3$): δ -139.0 (m, 4F, o-C$_6$F$_5$), -156.7 (t, 2F, 3J$_{F,F} = 21.5$ Hz, p-C$_6$F$_5$), -163.0 (m, 4F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 773.6 (s)

MS (DART+): cal’d for C$_{35}$H$_{18}$OBF$_{10}$Te [M+H$^+$]: 785.03533 amu. Found: 785.03695 amu

![NMR spectrum of 2](image)
Compound 1 (77.0 mg, 0.0915 mmol) was reacted with 4-bromobenzyl alcohol (20.3 mg, 0.109 mmol) to give compound 3 (48.8 mg, 0.0567 mmol, 61.9% yield), which precipitated out as a white powder when triturated with pentane.

^1H (400.0 MHz, CDCl₃): δ 7.34 (d, 2H, J_{H-H} = 8.4 Hz, m-OCH₂Ar), 7.28-7.25 (m, 6H, m-Ph^{Te} + p-Ph^{Te}), 7.16 (m, 4H, o-Ph^{Te}), 6.70 (d, 2H, J_{H-H} = 8.4 Hz, o-OCH₂Ar), 4.50 (s, 2H, OCH₂Ar)

^11B{^1H} (128 MHz, CDCl₃): δ 36.3 (br s, ν_{1/2} ≈ 1222 Hz)
13C{1H} (125 MHz, CDCl$_3$): δ n.o. (BC=), 160.2 (s, TeC=), 141.4 (s, i-PhTe), 137.3 (s, i-OCH$_2$Ar), 131.4 (s, m-OCH$_2$Ar), 128.9 (s, p-PhTe), 128.6 (s, m-PhTe), 126.9 (s, o-OCH$_2$Ar), 126.2 (s, o-PhTe), 121.5 (s, o-OCH$_2$Ar), 67.4 (s, OCH$_2$Ar).

19F{1H} NMR (377 MHz, CDCl$_3$): δ -138.9 (m, 4F, o-C$_6$F$_5$), -156.2 (t, 2F, 3J$_{F-F}$ = 21.0 Hz, p-C$_6$F$_5$), -162.8 (m, 4F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 777.7 (s)

MS (DART+): cal’d for C$_{35}$H$_{17}$BBrF$_{10}$OTe [M+H$^+$]: 862.94584 amu. Found: 862.94394 amu

1H (400.0 MHz, CDCl$_3$) NMR spectrum of 3

13C{1H} (125 MHz, CDCl$_3$) NMR spectrum of 3
Compound 1 (114.0 mg, 0.1354 mmol) was reacted with cinnamyl alcohol (55.1 mg, 0.411 mmol) to give compound 4 (83.2 mg, 0.103 mmol, 76.1% yield), which precipitated out as a yellow powder when triturated with pentane.

Spectroscopic data of 4

\[
\begin{align*}
\text{Compound 1} & (114.0 \text{ mg, 0.1354 mmol}) \\
& \text{was reacted with cinnamyl alcohol (55.1 mg,} \\
& \text{0.411 mmol) to give compound 4 (83.2 mg, 0.103 mmol,} \\
& \text{76.1\% yield), which} \\
& \text{precipitated out as a yellow powder when triturated with} \\
& \text{pentane.}
\end{align*}
\]

\(^1\)H (400.0 MHz, CDCl\(_3\)): \(\delta 7.31-7.22 \text{ (m, 9H, Ar-H), 7.20-7.15} \text{ (m, 6H, Ar-H), 6.08 (d, 1H),}

\(3J_{H-H} = 15.8 \text{ Hz, OCH}_2\text{CHCHPh), 5.87 (dt, 1H,} \quad \text{3J}_{H-H} = 15.8 \text{ Hz,} \quad \text{3J}_{H-H} = 5.4 \text{ Hz,}

\text{OCH}_2\text{CHPh), 4.15 (m, OCH}_2\text{CHPh)}\)

\(^{11}\)B\(^{1}\)H (128 MHz, CDCl\(_3\)): \(\delta 37.2 \text{ (br s, } \nu_{1/2} \approx 997 \text{ Hz)}\)

\(^{13}\)C\(^{1}\)H (125 MHz, CDCl\(_3\)): \(\text{(C}_6\text{F}_5 \text{ signals not listed, Ar signals tentatively} \\
\text{assigned due to closeness in peaks) } \delta 159.4 \text{ (s, TeC=), 141.5 (s, i-Ph}^{1\text{e}), 136.5 \text{ (s, i-Ph), 129.9 (br s,} \\
\text{BC=),129.7 (s, OCH}_2\text{CHPh), 128.8, (s, p-Ph), 128.7 (s,} \\
\text{p-Ph}^{1\text{e}), 128.5 (s, m-Ph}^{1\text{e}),} \\
\text{127.8 (s, m-Ph), 126.3 (s, o-Ph), 126.2 (s, o-Ph}^{1\text{e}),} \\
\text{125.7 (s, OCH}_2\text{CHCHPh), 66.4 (s,} \\
\text{OCH}_2\text{CHPh)}\)

\(^{19}\)F\(^{1}\)H NMR (377 MHz, CDCl\(_3\)): \(\delta -138.8 \text{ (m, 4F, o-C}_6\text{F}_5), -156.3 \text{ (t, 2F,} \\
\text{3J}_{F-F} = 21.4 \text{ Hz,} \quad \text{p-C}_6\text{F}_5), -162.8 \text{ (m, 4F,} \\
\text{m-C}_6\text{F}_5)\)

\(^{125}\)Te (158 MHz, CDCl\(_3\)): \(\delta 773.3 \text{ (s)}\)

Anal. Calc. for C\(_{37}\)H\(_{19}\)BF\(_{10}\)OTe: C 55.00%, H 2.37%. Found: C 54.67% H 2.24%
1H (400.0 MHz, CDCl$_3$) NMR spectrum of 4

13C{1H} (125 MHz, CDCl$_3$) NMR spectrum of 4

19F{1H} (377 MHz, CDCl$_3$) NMR spectrum of 4
Spectroscopic data of 5

Compound 1 (84.9 mg, 0.101 mmol) was reacted with 1,1-diphenylmethanol (23.6 mg, 0.128 mmol) to give compound 5 (42.8 mg, 0.0498 mmol, 49.4% yield), which precipitated out as a white powder when triturated with pentane.

\(^1\)H (400.0 MHz, CDCl\(_3\)): \(\delta\) 7.38-7.33 (m, 6H, \(m\)-, \(p\)-Ph), 7.28-7.24 (m, 10H, \(m\)-, \(p\)-Ph\(^{Te}\) + \(o\)-Ph), 6.95 (m, 4H, \(o\)-Ph\(^{Te}\)), 5.84 (s, OCH\(_2\)Ph)

\(^{11}\)B\(^{1}\)H (128 MHz, CDCl\(_3\)): \(\delta\) 36.2 (br s, \(\nu_{1/2} \approx 1380\) Hz)

\(^{13}\)C\(^{1}\)H (125 MHz, CDCl\(_3\)): (\(C_6F_5\) signals not listed) \(\delta\) 160.2 (s, TeC=), 142.2 (s, \(i\)-Ph\(^{Te}\)), 141.4 (s, \(i\)-Ph), 130.4 (br s, BC=), 128.8 (s, \(p\)-Ph\(^{Te}\)), 128.5 (s, \(m\)-Ph\(^{Te}\)), 128.3 (s, \(m\)-Ph), 127.7 (s, \(p\)-Ph), 126.2 (s, \(o\)-Ph\(^{Te}\)), 125.0 (s, \(o\)-Ph), 80.3 (s, OCH\(_2\)Ph)

\(^{19}\)F\(^{1}\)H NMR (377 MHz, CDCl\(_3\)): \(\delta\) -139.1 (m, 4F, \(o\)-C\(_6\)F\(_5\)), -157.1 (t, 2F, \(^3\)J\(_{F,F}\) = 21.1 Hz, \(p\)-C\(_6\)F\(_5\)), -163.2 (m, 4F, \(m\)-C\(_6\)F\(_5\))

\(^{125}\)Te (158 MHz, CDCl\(_3\)): \(\delta\) 777.7 (s)

\(^1\)H (400.0 MHz, CDCl\(_3\)) NMR spectrum of 5
Compound 1 (221.1 mg, 0.2626 mmol) was reacted with 5-norbornene-2-methanol (endo:exo ≈ 7:3) (33.3 mg, 0.268 mmol) to give compound 6 (129.3 mg, 0.1620 mmol, 61.7% yield), which precipitated out as an off-white powder when triturated with pentane. The ratio of endo and exo isomers in 6 is about the same as the starting mixture as confirmed by integration in ^1H NMR spectrum.

$^1\text{H} (500.0 \text{ MHz, CDCl}_3)$: δ 7.35-7.34 (m, 2H, $p-$Ph$^\text{Te}$), 7.29-7.23 (m, 4H, $m-$Ph$^\text{Te}$), 7.17 (m, 4H, $o-$Ph$^\text{Te}$), 6.01 (m, 1H, endo =CH), 5.96 (m, 1H, exo =CH), 5.92 (m, 1H, exo =CH), 5.61 (m, 1H, endo =CH), 3.41 (m, 1H, exo OCH$_2$), 3.21 (app t, 1H, exo OCH$_2$), 3.04 (m,
1H, endo OCH$_2$), 2.95 (app t, 1H, endo OCH$_2$), 2.69 (br s, 1H, H1), 2.36 (br s, 1H, endo H4), 2.22 (br s, 1H, exo H4), 1.96 (m, 1H, endo H2), 1.50 (m, 1H, endo H3), 1.33 (m, 1H, endo H7), 1.29 (m, 1H, exo C2), 1.20 (m, 1H, exo H7), 1.11 (m, 1H, endo H7), 0.96 (m, 1H, exo H3), 0.91 (m, 1H, exo H3), 0.71 (m, 1H, exo H3), 0.12 (m, 1H, endo H3)

11B{1H} (128 MHz, CDCl$_3$): δ 34.9 (br s, $\nu_{1/2} \approx 922$ Hz)

13C{1H} (125 MHz, CDCl$_3$): δ 158.8 (s, exo Te=C), 158.4 (s, endo Te=C), 141.54 (s, Ar-C), 141.49 (s, Ar-C), 141.2 (s, Ar-C), 137.5 (s, endo C5), 136.8 (s, exo C5), 136.2 (s, exo C6), 131.8 (s, endo C6), 129.9 (s, Ar-C), 129.7 (s, Ar-C), 128.8 (s, Ar-C), 128.7 (s, Ar-C), 128.5 (s, Ar-C), 128.5 (s, Ar-C), 126.5 (s, Ar-C), 126.3 (s, Ar-C), 70.3 (s, exo OCH$_2$), 69.7 (s, endo OCH$_2$), 49.4 (s, endo C7), 44.8 (s, exo C7), 43.5 (s, exo C4), 43.26 (s, CNor), 43.28 (s, CNor), 42.2 (s, C1), 41.5 (s, CNor), 41.0 (s, CNor), 40.5 (s, CNor), 28.9 (s, exo C3), 28.5 (s, endo C3)

19F{1H} NMR (377 MHz, CDCl$_3$): δ -139.1 (m, 4F, o-C$_6$F$_5$), -156.8 (t, 3J$_{F,F} = 20.5$ Hz, 2F, exo p-C$_6$F$_5$), -156.7 (t, 3J$_{F,F} = 21.8$ Hz, 2F, endo p-C$_6$F$_5$), -163.2 (m, 4F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 763.5 (s)

Note: when not specified, the endo- and exo-resonances are too close in chemical shifts to be unambiguously assigned by 2D experiments

1H (500.0 MHz, CDCl$_3$) NMR spectrum of 6

13C{1H} (125 MHz, CDCl$_3$) NMR spectrum of 6
Compound 1 (103.7 mg, 0.1232 mmol) was reacted with 2-phenoxyethanol (51.8 mg, 0.374 mmol) to give compound 7 (62.9 mg, 0.0775 mmol, 62.9% yield), which precipitated out as an off-white powder when triturated with pentane.

1H (500.0 MHz, CDCl$_3$): δ 7.27-7.22 (m, 8H, m-, p-PhTe + m-Ph), 7.15 (m, 4H, o-PhTe), 6.93 (tt, 1H, $^3J_{H-H} = 7.3$ Hz, $^4J_{H-H} = 1.0$ Hz, p-PhO), 6.69 (m, 2H, p-PhO), 3.73 (m, 2H, CH$_2$), 3.69 (m, 2H, CH$_2$)

11B{1H} (128 MHz, CDCl$_3$): δ 36.4 (br s, $\nu_{1/2} \approx 1210$ Hz)

13C{1H} (125 MHz, CDCl$_3$): δ 159.7 (s, TeC=), 158.6 (s, i-PhO), 141.4 (s, i-PhTe), 130.1 (br s, BC=), 129.5 (s, m-PhO), 128.8 (s, p-PhTe), 128.5 (s, m-PhTe), 126.3 (s, o-PhTe), 121.2 (s, p-PhO), 114.3 (s, o-PhO), 67.9 (s, CH$_2$), 64.6 (s, CH$_2$)

19F{1H} NMR (377 MHz, CDCl$_3$): δ -139.0 (m, 4F, o-C$_6$F$_5$), -156.2 (t, 2F, $^3J_{F-F} = 20.9$ Hz, p-C$_6$F$_5$), -162.9 (m, 4F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 771.4 (s)

Anal. Calc. for C$_{36}$H$_{19}$BF$_{10}$O$_2$Te: C 53.25%, H 2.36%. Found: C 52.48% H 2.24%
\(^1\text{H} \) (500.0 MHz, CDCl\(_3\)) NMR spectrum of 7

\(^{13}\text{C}^1\text{H} \) (125 MHz, CDCl\(_3\)) NMR spectrum of 7

\(^{19}\text{F}^1\text{H} \) (377 MHz, CDCl\(_3\)) NMR spectrum of 7
Spectroscopic data of 8

Compound 1 (118.5 mg, 0.1408 mmol) was reacted with 4-methoxyphenol (18.2 mg, 0.147 mmol) to give compound 8 (72.8 mg, 0.0912 mmol, 64.7%) after 7 days of heating at 110 °C. It could be precipitated out as a light yellow powder when triturated with pentane.

\(^1\)H (400.0 MHz, CDCl\(_3\)) \(\delta\) 7.29-7.25 (m, 6H, meta-PhTe), 7.17 (m, 4H, o-PhTe), 6.55 (app d, 4H, H\(_2\) + H\(^3\)), 3.67 (s, 3H, OCH\(_3\))

\(^{11}\)B\(^{1}\)H (128 MHz, CDCl\(_3\)): \(\delta\) 35.9 (br s, \(\nu_{1/2} \approx 1200\) Hz)

\(^{13}\)C\(^{1}\)H (125 MHz, CDCl\(_3\)) (C\(_6\)F\(_5\) signals not listed) \(\delta\) 162.4 (s, TeC=), 155.7 (s, C\(^1\)), 148.1 (s, C\(^3\)), 141.3 (s, i-PhTe), 130.3 (br s, BC=), 128.9 (s, p-PhTe), 128.5 (s, m-PhTe), 126.3 (s, o-PhTe), 119.6 (s, C\(^2\)), 114.1 (s, C\(^3\)), 55.9 (s, OCH\(_3\)).

\(^{19}\)F\(^{1}\)H NMR (377 MHz, CDCl\(_3\)): \(\delta\) -133.9 (m, 4F, o-C\(_6\)F\(_5\)), -157.1 (t, 2F, \(^3\)J\(_{F-F}\) = 20.8 Hz, p-C\(_6\)F\(_5\)), -163.6 (m, 4F, m-C\(_6\)F\(_5\)).

\(^{125}\)Te (158 MHz, CDCl\(_3\)): \(\delta\) 781.6 (s)

MS (DART+): cal’d for C\(_{35}\)H\(_{17}\)O\(_2\)BF\(_{10}\)Te [M\(^+\)]: 800.02241 amu. Found: 800.02322 amu

\(^1\)H (400.0 MHz, CDCl\(_3\)) NMR spectrum of 8
$^{13}\text{C}\{^1\text{H}\} (125\text{ MHz, } \text{CDCl}_3) \text{ NMR spectrum of 8}$

$^{19}\text{F}\{^1\text{H}\} (377\text{ MHz, } \text{CDCl}_3) \text{ NMR spectrum of 8}$
Spectroscopic data of 9

Compound 1 (123.5 mg, 0.1467 mmol) was reacted with cyclohexanol (20.3 mg, 0.203 mmol) to give compound 9 (70.5 mg, 0.0911 mmol, 62.1% yield), which precipitated out as a yellow powder when triturated with pentane.

\(^1H \) (500.0 MHz, CDCl\(_3\)): \(\delta \) 7.35 (m, 1H, o-Ph\(^{Te}\)), 7.30-7.24 (m, 6H, m-, p-Ph\(^{Te}\)), 7.16 (m, 3H, o-Ph\(^{Te}\)), 3.46 (br m, 1H, H\(^1\)), 1.36 (br m, 5H, H\(^3\)+H\(^2\)), 1.08 (br m, 3H, H\(^2\)), 0.92 (br m, 2H, H\(^4\))

\(^{11}B\{^1H\} \) (128 MHz, CDCl\(_3\)): \(\delta \) 35.8 (br s, \(\nu_{1/2} \approx 640 \text{ Hz} \))

\(^{13}C\{^1H\} \) (125 MHz, CDCl\(_3\)): (C\(_6\)F\(_5\) signals not listed) \(\delta \) 157.7 (s, TeC=), 141.6 (s, i-Ph\(^{Te}\)), 130.3 (br s, BC=), 128.6 (s, p-Ph\(^{Te}\)), 128.5 (s, m-Ph\(^{Te}\)), 126.2 (s, o-Ph\(^{Te}\)), 73.6 (s, C\(^1\)), 34.4 (s, C\(^2\)), 25.2 (s, C\(^3\)), 23.2 (s, C\(^4\))

\(^{19}F\{^1H\} \) NMR (377 MHz, CDCl\(_3\)): \(\delta \) -139.1 (m, 4F, o-C\(_6\)F\(_5\)), -156.9 (t, 2F, \(^3J_{F-F} = 20.5 \text{ Hz} \), p-C\(_6\)F\(_5\)), -163.4 (m, 4F, m-C\(_6\)F\(_5\))

\(^{125}Te \) (158 MHz, CDCl\(_3\)): \(\delta \) 754.5 (s)

MS (DART+): cal'd for C\(_{34}\)H\(_{22}\)OBF\(_{10}\)Te [M+H\(^+\)]: 777.06663 amu. Found: 777.06606 amu
$^{13}\text{C}\{^1\text{H}\} \ (125 \text{ MHz, CDCl}_3) \text{ NMR spectrum of 9}$

$^{19}\text{F}\{^1\text{H}\} \ (377 \text{ MHz, CDCl}_3) \text{ NMR spectrum of 9}$
Spectroscopic data of 10

Compound 1 (139.0 mg, 0.1651 mmol) was reacted with 2-hydroxybenzylamine (22.4 mg, 0.1819 mmol) to give compound 10 (86.6 mg, 0.109 mmol, 65.8%) of 10, which precipitated out as a white powder when triturated with pentane.

1H (600.0 MHz, CDCl$_3$): δ 7.31-7.29 (m, 4H, Ar), 7.27-7.25 (m, 6H, Ar), 6.98 (app t, 1H, H3), 6.94 (d, 1H, 3J$_{H-H}$ = 7.6 Hz, H6), 6.78 (app t, 1H, H4), 6.34 (d, 1H, 3J$_{H-H}$ = 8.1 Hz, H2), 4.92 (br s, 2H, NH$_2$), 4.41 (t, 2H, 3J$_{H-H}$ = 5.7 Hz, H7)

11B1H (128 MHz, CDCl$_3$): δ 1.3 (s, $\nu_{1/2} \approx 290$ Hz)

13C1H (125 MHz, CDCl$_3$): (C$_6$F$_5$ signals not listed) δ 154.8 (s, TeC=), 143.2 (1:1:1:1 q, 1J$_{C-B}$ = 150 Hz, BC=), 142.9 (s, i-Ph$^\text{Te}$), 135.5 (s, C1), 129.2 (s, C3), 128.4 (s, m-Ph$^\text{Te}$), 127.9 (s, p-Ph$^\text{Te}$), 127.4 (s, o-Ph$^\text{Te}$), 126.6 (s, C5), 119.4 (s, C4), 119.0 (s, C2), 116.4 (s, C6), 42.0 (s, C7)

19F1H NMR (377 MHz, CDCl$_3$): δ -139.4 (m, 2F, o-C$_6$F$_5$), -141.5 (m, 2F, o-C$_6$F$_5$), -158.8 (app t, 2F, p-C$_6$F$_5$), -163.4 (m, 2F, m-C$_6$F$_5$), -165.1 (m, 2F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 691.7 (s)

Anal. Calc. for C$_{34}$H$_{16}$BF$_{10}$NOTe: C 52.16%, H 2.06%, N 1.79% Found: C 52.22%, H 2.39%, N 1.70%
Compound 1 (163.1 mg, 0.1937 mmol) was reacted with trimethylsilanol (21.0 mg, 0.2328 mmol) to give compound 11 (78.3 mg, 0.102 mmol, 52.9% yield), which was purified by recrystallization from pentane.

1H (600.0 MHz, C$_6$D$_6$): δ 7.11 (d, 4H, 3J$_{H-H}$ = 6.8 Hz, o-Ph), 6.85-6.77 (m, 6H, m-, p-Ph), -0.42 (s, 9H, Si(CH$_3$)$_3$)

11B{H}(128 MHz, C$_6$D$_6$): δ 35.2 (s, $\nu_{1/2}$ \approx 820 Hz)

13C{H}(125 MHz, C$_6$D$_6$): (C$_6$F$_5$ signals not listed) δ 161.7 (s, TeC=), 142.0 (s, i-PhTe), 132.2 (br s, BC=), 129.0 (s, p-PhTe), 128.7 (s, m-PhTe), 126.3 (o-PhTe)

19F{H} NMR (377 MHz, C$_6$D$_6$): δ -139.1 (dd, 4F, o-C$_6$F$_5$, 3J$_{F-F}$ = 24 Hz, 4J$_{F-F}$ = 8 Hz), -157.1 (app t, 2F, p-C$_6$F$_5$, 3J$_{F-F}$ = 21 Hz), -163.5 (m, 4F, m-C$_6$F$_5$)

125Te (158 MHz, C$_6$D$_6$): δ 768.4 (s)

Anal. Calc. for C$_{31}$H$_{19}$BF$_{10}$SiTe: C 48.74%, H 2.51% Found: C 49.25%, H 2.49%
1H (600.0 MHz, C$_6$D$_6$) NMR spectrum of 11

13C(1H) (125 MHz, C$_6$D$_6$) NMR spectrum of 11

19F(1H) (377 MHz, C$_6$D$_6$) NMR spectrum of 11
Preparation and spectroscopic data of 12

Compound 2 (135.1 mg, 0.1728 mmol) was reacted with 4-ethynylbromobenzene (51.0 mg, 0.282 mmol) in 4 ml of toluene at 110 °C for 16 h, giving a yellow and clear solution. All volatiles were removed under vacuum and the residue was triturated with pentane to give compound 12 (84.7 mg, 0.122 mmol, 70.6% yield) as a yellow powder.

1H (500.0 MHz, CDCl$_3$): δ 7.57 (m, 2H, H$_6$-Ph), 7.43 (s, 1H, H(B)C=), 7.35-7.33 (m, H7-Ph+Ar, 4H), 7.29-7.25 (m, 4H, Ar), 7.21-7.19 (br m, 4H, Ar), 5.24 (s, 2H, BOC$_2$H$_2$)

11B{1H} (128 MHz, CDCl$_3$): δ 38.6 (s, $v_{1/2}$ ≈ 920 Hz)

13C{1H} (125 MHz, CDCl$_3$): (C$_6$F$_5$ signals not listed) δ 159.0 (s, TeC=), 156.7 (s, TeC=), 143.2 (s, Ar), 141.9 (s, Ar), 139.2 (s, Ar), 132.2 (s, C6), 130.9 (br s, =CB), 129.6 (br s, =CB), 128.5 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 128.2 (s, Ar), 127.3 (s, Ar), 126.6 (s, Ar), 125.8 (s, Ar), 123.7 (s, Ar), 67.9 (s, OCH$_2$Ph)

19F{1H} NMR (377 MHz, CDCl$_3$): δ -139.8 (m, 2F, o-C$_6$F$_5$), -157.8 (app t, 1F, p-C$_6$F$_5$), --164.0 (m, 2F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 681.7 (s)

Anal. Calc. for C$_{29}$H$_{17}$BBrF$_5$OTe: C 50.14%, H 2.47% Found: C 50.32%, H 2.40%

1H (600.0 MHz, CDCl$_3$) NMR spectrum of 12
Compound 2 (116.3 mg, 0.1487 mmol) was reacted with 3-ethynylthiophene (51.0 mg, 0.472 mmol) in 4 ml of toluene at 110 °C for 16 h, giving a brownish-yellow and clear solution. After all volatiles were removed under vacuum, the residue was dissolved in 3 ml of pentane and passed through a plug of silica. 5 ml more of pentane was used to rinse out the C₆F₅CCPh from the silica plug. 5 ml of DCM was then used to extract 13 from the silica, giving again a clear and brownish yellow solution. All volatiles were removed again to give compound 13 (73.0 mg, 0.117, 78.9% yield) as a light yellow sticky solid.
1H (600.0 MHz, CDCl$_3$): δ 7.46 (s, 1H, H(B)C=), 7.43 (m, 1H, ArS), 7.41 (m, 1H, ArS), 7.32 (app d, 2H, Ar), 7.28-7.23 (m, 6H, Ar), 7.20-7.17 (m, 4H, Ar), 5.22 (s, 2H, BOCH$_2$)

11B{1H} (128 MHz, CDCl$_3$): δ 38.4 (s, ν$_{1/2}$ ≈ 600 Hz)

13C{1H} (125 MHz, CDCl$_3$): (C$_6$F$_5$ signals not listed) δ 156.0 (s, TeC=), 152.5 (s, TeC=), 145.8 (s, Ar), 142.2 (s, Ar), 139.5 (s, Ar), 128.6 (s, Ar), 128.6 (s, Ar), 128.5 (s, Ar), 127.4 (s, Ar), 127.3 (s, Ar), 126.8 (s, Ar), 125.9 (s, Ar), 125.8 (s, Ar), 123.0 (s, Ar), 68.0 (s, OCH$_2$Ph)

19F{1H} NMR (377 MHz, CDCl$_3$): δ -139.8 (m, 2F, o-C$_6$F$_5$), -158.1 (app t, 1F, p-C$_6$F$_5$), -- 164.2 (m, 2F, m-C$_6$F$_5$)

125Te (158 MHz, CDCl$_3$): δ 633.6 (s)

MS (DART+): cal’d for C$_{27}$H$_{17}$OBF$_5$STe [M+H$^+$]: 625.00755 amu. Found: 625.00837 amu

1H (500.0 MHz, CDCl$_3$) NMR spectrum of 13

13C{1H} (125 MHz, CDCl$_3$) NMR spectrum of 13
19F$\{^1$H$\}$ (377 MHz, CDCl$_3$) NMR spectrum of 13

References