Supporting Information

Expeditious Synthesis of Pyrano[2,3,4-de]quinolines via Rh(III)-Catalyzed Cascade C–H Activation/Annulation/Lactonization of Quinolin-4-ol with Alkynes

Gang Liao,a Hong Song,a Xue-Song Yin,a,b and Bing-Feng Shi*a

a Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
b School of Chemical & Environmental Engineering, Wuyi University, Jiangmen, 529020, China

*To whom correspondence should be addressed. Email: bfshi@zju.edu.cn

Table of Contents:
1. General information S2
2. Experimental Section S2
2.1 General Procedure for the Preparation of tertiary propargylic alcohols(GP1) S2
2.2 General Procedure for the Rh(III)-Catalyzed reaction (GP2) S4
3. References S21
4. NMR Spectra S22
1. General Information:

1,2-dimethoxyethane was dried by Sodium and stored under nitrogen. All 4-Hydroxyauinoline substrate were purchased from commercial suppliers and used without additional purification. NMR spectra were recorded on a Brueke Avance operating for 1H NMR at 400 MHz, 13C NMR at 100 MHz, and 19F NMR at 376 MHz, using TMS as internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for 13C NMR). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, m = multiplet, b = broad. Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or a low-resolution MS instrument using EI ionization.

2. Experimental Section

2.1 General Procedure for the Preparation of tertiary propargylic alcohols (GP1)

A solution of n-butyllithium in hexanes (1.6 M, 33.0 mmol) was added dropwise to a solution of freshly distilled diisopropylamine (33.0 mmol) in dried THF (30 mL) at 0°C. The solution was stirred for 1 h at 0°C, then cooled to -78 °C. Propargyl ester (31.3 mmol) in dried THF (10 mL) was then added dropwise to the reaction mixture. After 1 h at the same temperature, ketone (62.6 mmol) was added, and the resulting mixture was stirred at -78 °C for 3 h. The reaction was quenched with saturated NH$_4$Cl solution, and the mixture was extracted four times with Et$_2$O. The combined organic layers were washed with brine, dried with anhydrous MgSO$_4$, and the solvents evaporated to dryness. The oily residue was purified by flash silica gel column chromatography (hexanes/EtOAc) to get propargylic alcohol.
Compounds 2a, 2ab, 2h, 2k, 2l, [1a] 2m, 2n, 2oz; [1b] 2e [1c]; 2d [1d]; 2h-2z [1e] were known compounds were known compound and were prepared according to literature. [1] 2ac, 2b, 2e, 2f, 2g were prepared according to the GP1.

Tert-butyl 4-hydroxy-4-methylpent-2-ynoate (2ac)

1H NMR (400 MHz, CDCl$_3$) δ 1.55 (s, 6H), 1.49 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 152.8, 88.7, 83.7, 75.6, 65.1, 30.7, 28.1; HRMS (EI) calcd for C$_{10}$H$_{16}$O$_3$ (M$^+$): 184.1099; found 184.1100.

Methyl 4-hydroxy-4-methylhex-2-ynoate (2b)
Ethyl 4-hydroxy-4-methylhept-2-ynoate (2e)

1H NMR (400 MHz, CDCl$_3$) δ 4.23 (q, J = 7.1 Hz, 2H), 2.26 (s, 1H), 1.74 – 1.63 (m, 2H), 1.58 – 1.47 (m, 5H), 1.31 (t, J = 7.1 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 153.8, 90.7, 75.2, 68.1, 62.2, 45.2, 29.0, 17.9, 14.2, 14.1. HRMS (EI) calcd for C$_{10}$H$_{16}$O$_3$ (M$^+$): 184.1099; found 184.1096.

Methyl 4-hydroxy-4,5,5-trimethylhex-2-ynoate (2f)

1H NMR (400 MHz, CDCl$_3$) δ 3.77 (s, 3H), 2.13 (s, 1H), 1.48 (s, 3H), 1.05 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 154.1, 91.2, 75.9, 74.1, 52.8, 38.4, 25.1, 24.3. HRMS (EI) calcd for C$_{10}$H$_{16}$O$_3$ (M$^+$): 184.1099; found 184.1101.

Methyl 4-hydroxy-4,6-dimethylhept-2-ynoate (2g)

1H NMR (400 MHz, CDCl$_3$) δ 3.77 (s, 3H), 2.14 (s, 1H), 1.98 – 1.87 (m, 1H), 1.64 (d, J = 6.3 Hz, 2H), 1.54 (s, 3H), 1.01 (dd, J = 6.6, 4.0 Hz, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 154.1, 91.4, 75.2, 68.0, 52.9, 51.1, 30.2, 25.1, 24.2, 24.1. HRMS (EI) calcd for C$_{10}$H$_{16}$O$_3$ (M$^+$): 184.1099; found 184.1097.

2.2 General Procedure for the Rh(III)-Catalyzed reaction (GP2)

A mixture of quinolin-4-ol 1 (0.2 mmol), [Cp*RhCl$_2$]$_2$ (0.005 mmol, 0.0025 equiv), AgSbF$_6$ (0.02 mmol, 0.1 equiv), alkyne 2 (0.4 mmol, 2.0 equiv), Cu(OAc)$_2$ (0.4 mmol, 2.0 equiv), LiOTf (0.4 mmol, 2.0 equiv) in 2 mL DME in a 50-mL Schlenck tube (Purged with N$_2$) was heated at 100 °C for 12 h. Then a 1mL ammonium hydroxide was added and then the whole solution was stirred for 5 min. The resulting mixture was filtered with celite. The organic layer was concentrated under reduced pressure and separated on a silica gel column to provide the desired product.
8,8-dimethylfuro[3′,4′:5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3a)

The title compound 3a was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (32.9 mg 65% yield) ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 5.1 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.73 (d, J = 6.9 Hz, 1H), 7.67 – 7.60 (m, 1H), 6.91 (d, J = 5.1 Hz, 1H), 1.67 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 166.5, 158.8, 152.4, 150.3, 131.8, 127.0, 120.0, 118.0, 116.1, 105.3, 104.2, 81.1, 24.4; HRMS (EI) calcd for C₁₅H₁₁O₃N (M⁺): 253.0739; found 253.0737.

<table>
<thead>
<tr>
<th>Bond precision:</th>
<th>C-C = 0.0027 Å</th>
<th>Wavelength=0.71073</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell:</td>
<td>a=7.2462(9)</td>
<td>b=8.215(1)</td>
</tr>
<tr>
<td></td>
<td>α=90</td>
<td>β=93.583(10)</td>
</tr>
<tr>
<td>Temperature:</td>
<td>293 K</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>1201.8(3)</td>
<td>1201.7(3)</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
<td>P 21/c</td>
</tr>
<tr>
<td>Hall group</td>
<td>-P 2ybc</td>
<td>-P 2ybc</td>
</tr>
<tr>
<td>Moiety formula</td>
<td>C₁₅H₁₁N O₃</td>
<td>C₁₅H₁₁N O₃</td>
</tr>
<tr>
<td>Sum formula</td>
<td>C₁₅H₁₁N O₃</td>
<td>C₁₅H₁₁N O₃</td>
</tr>
<tr>
<td>Mr</td>
<td>253.25</td>
<td>253.25</td>
</tr>
<tr>
<td>Dx,g cm⁻³</td>
<td>1.400</td>
<td>1.400</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Mu (mm⁻¹) 0.099
F000 528.0
F000’ 528.27
h,k,l max 8,9,24
N ref 2194
T min,T max 0.978, 0.984
T min’ 0.968

Correction method= MULTI-SCAN
Data completeness= 0.998
R(reflections)= 0.0423(1421)
wR2(reflections)= 0.1198(2190)
S = 1.031
Npar = 175

8,8-dimethylfuro[3’,4’:5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3aa)

The title compound 3aa was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (27.0mg 51% yield) 1H NMR (400 MHz, CDCl3) δ 7.76 – 7.67 (m, 2H), 7.63 (dd, J = 8.3, 7.4 Hz, 1H), 6.83 (s, 1H), 2.66 (s, 3H), 1.68 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 175.5, 166.7, 161.7, 159.0, 149.8, 131.9, 126.4, 121.9, 116.3, 115.5, 105.5, 104.1, 81.1, 25.7, 24.4. HRMS (El) calcd for C16H13O3N (M+): 267.0895; found 267.0895.

1,2-dimethoxy-8,8-dimethylfuro[3’,4’:5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ab)
The title compound 3ab was prepared according to GP2 and was purified by chromatography (EtOAc) to give the product as a faint yellow solid (38.8mg, 76% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.54 \ (d, J = 5.2 \text{ Hz}, 1\text{H}), 7.20 \ (s, 1\text{H}), 6.76 \ (d, J = 5.2 \text{ Hz}, 1\text{H}), 3.98 \ (s, 3\text{H}), 3.94 \ (s, 3\text{H}), 1.65 \ (s, 6\text{H}). \) \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 176.6, 164.5, 158.2, 157.8, 151.5, 149.3, 142.5, 113.9, 113.2, 107.0, 103.6, 103.3, 79.6, 62.6, 56.1, 24.6. HRMS (EI) calcd for C\(_{17}\)H\(_{15}\)O\(_3\)N(M \(^+\)): 313.0950; found 313.0942.

![3-fluoro-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ac)]

The title compound 3ac was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (29.8mg, 62% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.78 \ (d, J = 4.8 \text{ Hz}, 1\text{H}), 7.72 \ (dd, J = 8.0, 4.3 \text{ Hz}, 1\text{H}), 7.40 \ (dd, J = 10.9, 8.0 \text{ Hz}, 1\text{H}), 7.04 \ (t, J = 10.1 \text{ Hz}, 1\text{H}), 1.69 \ (s, 6\text{H}). \) \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 174.6 \ (d, J_{C-F} = 2.0 \text{ Hz}), 166.3, 159.0 \ (d, J_{C-F} = 3.1 \text{ Hz}), 156.3 \ (d, J_{C-F} = 256.8 \text{ Hz}), 152.9, 140.8 \ (d, J_{C-F} = 14.6 \text{ Hz}), 119.8 \ (d, J_{C-F} = 3.8 \text{ Hz}), 118.2 \ (d, J_{C-F} = 5.0 \text{ Hz}), 116.0, 115.9 \ (d, J_{C-F} = 12.1 \text{ Hz}), 106.4, 104.2, 81.3, 24.4. HRMS (EI) calcd for C\(_{15}\)H\(_{10}\)O\(_3\)NF(M \(^+\)): 271.0654; found 271.0648.

![2-chloro-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ad)]

The title compound 3ad was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (37mg, 64% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta 8.73 \ (d, J = 5.1 \text{ Hz}, 1\text{H}), 7.81 \ (d, J = 1.6 \text{ Hz}, 1\text{H}), 7.76 \ (d, J = 1.7 \text{ Hz}, 1\text{H}), 6.94 \ (d, J = 5.2 \text{ Hz}, 1\text{H}), 1.68 \ (s, 6\text{H}). \) \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta 176.3, 166.0, 158.9, 153.4, 150.9, 138.5, 126.0, 123.6, 117.2, 116.5, 105.6, 103.6, 81.4, 24.4. HRMS (EI) calcd for C\(_{15}\)H\(_{10}\)O\(_3\)NCl(M \(^+\)): 287.0349; found 287.0356.
6-bromo-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3ae)

![Chemical Structure](image)

The title compound 3ae was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (47.1mg, 71% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.78 (s, 1H), 7.87 – 7.78 (m, 2H), 7.70 (dd, $J = 8.6, 7.2$ Hz, 1H), 1.73 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 175.0, 166.2, 155.1, 154.0, 148.7, 131.9, 127.3, 121.5, 118.9, 117.0, 104.8, 100.7, 81.4, 24.4. HRMS (EI) calcd for C$_{15}$H$_{10}$O$_3$NBr (M$^+$): 330.9844; found 330.9841.

6-iodo-8,8-dimethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3af)

![Chemical Structure](image)

The title compound 3af was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (56.1mg, 74% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.91 (s, 1H), 7.88 – 7.78 (m, 2H), 7.75 – 7.67 (m, 1H), 1.73 (s, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 175.1, 166.1, 155.1, 154.0, 149.1, 132.0, 127.0, 121.3, 118.9, 116.7, 104.8, 81.3, 73.5, 24.3. HRMS (EI) calcd for C$_{15}$H$_{10}$O$_3$NI (M$^+$): 378.9705; found 378.9705.

8-ethyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3b)

![Chemical Structure](image)
The title compound 3b was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (35.8mg, 67% yield). 1H NMR (400 MHz, CDCl3) δ 8.73 (d, $J = 5.0$ Hz, 1H), 7.92 – 7.75 (m, 2H), 7.69 (dd, $J = 8.6$, 7.2 Hz, 1H), 6.94 (d, $J = 5.1$ Hz, 1H), 2.11 – 2.01 (m, 1H), 2.01 – 1.92 (m, 1H), 1.67 (s, 3H), 0.98 (t, $J = 7.4$ Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 174.5, 166.9, 158.8, 152.4, 150.4, 131.8, 127.0, 122.0, 118.0, 116.1, 105.4, 105.3, 83.9, 30.2, 22.9, 7.8. HRMS (EI) calcd for C$_{16}$H$_{13}$O$_3$N(M$^+$): 267.0895; found 267.0898.

8,8-diethylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3c)

The title compound 3c was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (33.7mg, 60% yield). 1H NMR (400 MHz, CDCl3) δ 8.73 (d, $J = 4.9$ Hz, 1H), 7.94 – 7.76 (m, 2H), 7.69 (dd, $J = 8.6$, 7.2 Hz, 1H), 6.93 (d, $J = 5.1$ Hz, 1H), 2.07 (dq, $J = 14.9$, 7.4 Hz, 2H), 1.97 (dq, $J = 14.7$, 7.4 Hz, 2H), 0.96 (t, $J = 7.4$ Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 173.3, 167.3, 158.8, 152.4, 150.4, 131.9, 127.0, 121.9, 116.0, 106.7, 105.3, 87.0, 77.2, 28.9, 7.6. HRMS (EI) calcd for C$_{17}$H$_{15}$O$_3$N (M$^+$) 281.1052; found 281.1051.

8-isopropyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3d)

The title compound 3d was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (37.7mg, 67% yield). 1H NMR (400 MHz, CDCl3) δ 8.71 (d, $J = 5.0$ Hz, 1H), 7.86 – 7.75 (m, 2H), 7.68 (dd, $J = 8.4$, 7.4 Hz, 1H), 6.93 (d, $J = 5.1$ Hz, 1H), 2.24 – 2.14 (m, 1H), 1.67 (s, 3H), 1.12 (d, $J = 6.8$ Hz, 3H), 1.03 (d, $J = 6.9$ Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 175.0, 167.1, 158.8, 152.4, 150.3,
131.9, 126.9, 122.0, 118.0, 116.0, 105.4, 105.3, 86.1, 34.6, 21.3, 17.2, 16.8. HRMS (EI) calcd for \(\text{C}_{17}\text{H}_{15}\text{O}_3\text{N}(\text{M}^+) \): 281.1052; found 281.1052.

8-methyl-8-propylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3e)

The title compound 3e was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (35.4mg, 63% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.72 (s, 1H), 7.81 (d, \(J = 8.5 \) Hz, 1H), 7.77 (d, \(J = 7.1 \) Hz, 1H), 7.66 (t, \(J = 7.8 \) Hz, 1H), 6.93 (d, \(J = 4.7 \) Hz, 1H), 2.04 – 1.93 (m, 1H), 1.92 – 1.81 (m, 1H), 1.66 (s, 3H), 1.53 – 1.39 (m, 1H), 1.36 – 1.26 (m, 1H), 0.93 (t, \(J = 7.3 \) Hz, 3H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 174.8, 166.9, 158.8, 152.4, 146.9, 131.8, 127.1, 122.1, 116.1, 105.4, 105.2, 83.7, 39.1, 23.3, 16.8, 14.0. HRMS (EI) calcd for \(\text{C}_{17}\text{H}_{15}\text{O}_3\text{N}(\text{M}^+) \): 281.1052 ; found 281.1055.

8-(tert-butyl)-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3f)

The title compound 3f was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (31.7mg, 54% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.71 (d, \(J = 5.1 \) Hz, 1H), 7.86 – 7.76 (m, 2H), 7.68 (t, \(J = 7.8 \) Hz, 1H), 6.93 (d, \(J = 5.1 \) Hz, 1H), 1.67 (s, 3H), 1.13 (s, 9H). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 175.3, 167.2, 158.7, 152.4, 150.4, 131.9, 127.0, 122.1, 118.0, 116.1, 105.6, 105.3, 88.4, 37.5, 25.4, 19.3. HRMS (EI) calcd for \(\text{C}_{18}\text{H}_{17}\text{O}_3\text{N}(\text{M}^+) \): 295.1208; found 295.1211.

8-isobutyl-8-methylfuro[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3g)

\[\text{C}_{18}\text{H}_{17}\text{O}_3\text{N} \]
The title compound 3g was prepared according to GP2 and was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (41.3 mg, 70% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.72 (d, $J = 4.8$ Hz, 1H), 7.82 (d, $J = 8.7$ Hz, 1H), 7.78 (d, $J = 7.0$ Hz, 1H), 7.67 (dd, $J = 8.4$, 7.4 Hz, 1H), 6.94 (d, $J = 5.1$ Hz, 1H), 1.99 (dd, $J = 7.8$ Hz, 1H), 1.82 – 1.73 (m, 2H), 1.66 (s, 3H), 0.97 (d, $J = 6.3$ Hz, 3H), 0.92 (d, $J = 6.1$ Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 175.0, 166.9, 158.8, 152.5, 150.4, 131.9, 127.0, 122.1, 118.0, 116.2, 105.3, 105.2, 83.7, 45.4, 24.4, 24.1, 24.0, 23.6. HRMS (EI) calcd for C$_{18}$H$_{17}$O$_3$N(M$^+$): 295.1208 ; found 295.1205.

8,8-diphenylfuro[3′,4′:5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3h)

The title compound 3h was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (38.5mg, 51% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.73 (s, 1H), 7.89 – 7.81 (m, 2H), 7.74 – 7.66 (m, 1H), 7.53 – 7.46 (m, 4H), 7.43 – 7.39 (m, 6H), 6.98 (d, $J = 4.9$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 172.4, 166.5, 158.8, 152.5, 150.3, 137.3, 131.9, 129.5, 129.0, 127.5, 127.1, 121.9, 116.6, 105.8, 87.5. HRMS (EI) calcd for C$_{25}$H$_{15}$O$_3$N(M$^+$): 377.1052 ; found 377.1056.

8-methyl-8-phenylfuro[3′,4′:5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3i)
The title compound 3i was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (33.4mg, 53% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.75 (d, $J = 5.2$ Hz, 1H), 7.88 (d, $J = 8.5$ Hz, 1H), 7.55 – 7.47 (m, 3H), 7.44 – 7.39 (m, 3H), 7.04 (d, $J = 5.2$ Hz, 1H), 6.78 (d, $J = 6.7$ Hz, 1H), 2.18 (s, 3H).

13C NMR (101 MHz, CDCl$_3$) δ 163.4, 159.3, 153.0, 150.6, 139.9, 138.8, 136.5, 131.0, 129.8, 129.6, 129.3, 126.3, 122.9, 119.7, 117.5, 105.8, 85.4, 23.9. HRMS (EI) calcd for C$_{20}$H$_{13}$O$_3$N(M$^+$): 315.0895; found 315.0895.

8-methyl-8-(p-tolyl)furo[3',4':5,6]pyrano[2,3,4-de]quinolin-10(8H)-one (3j)

The title compound 3j was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (30.3mg, 46% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.73 (d, $J = 5.2$ Hz, 1H), 7.87 (d, $J = 8.7$ Hz, 1H), 7.52 (dd, $J = 8.6$, 7.3 Hz, 1H), 7.36 (d, $J = 8.2$ Hz, 2H), 7.20 (d, $J = 8.1$ Hz, 2H), 7.03 (d, $J = 5.2$ Hz, 1H), 6.77 (d, $J = 7.1$ Hz, 1H), 2.35 (s, 4H), 2.18 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 163.5, 159.3, 153.0, 150.6, 139.9, 138.7, 133.4, 131.0, 129.9, 129.6, 126.3, 122.9, 119.7, 117.5, 105.8, 85.4, 23.9, 21.3. HRMS (EI) calcd for C$_{21}$H$_{15}$O$_3$N(M$^+$): 329.1052; found 329.1051.

10'H-spirocyclopentane-1,8'-furo[3',4':5,6]pyrano[2,3,4-de]quinolin-10'-one (3k)
The title compound **3k** was prepared according to **GP2** and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (34.6 mg, 62% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.72 (s, 1H), 7.81 (d, J = 8.5 Hz, 1H), 7.76 (d, J = 7.1 Hz, 1H), 7.66 (d, J = 7.8 Hz, 1H), 2.49 – 1.76 (m, 8H). 13C NMR (101 MHz, CDCl$_3$) δ 173.1, 166.8, 159.0, 152.4, 150.5, 131.9, 127.0, 122.2, 116.0, 105.4, 105.3, 90.9, 36.5, 25.2. HRMS (EI) calcd for C$_{17}$H$_{13}$O$_3$N(M$^+$) 279.0895; found 279.0899.

10’H-spiro[cyclohexane-1,8’-furo[3’,4’:5,6]pyrano[2,3,4-de]quinolin]-10’-one (**3l**)

The title compound **3l** was prepared according to **GP2** and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (42.2 mg, 71% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.72 (d, J = 5.1 Hz, 1H), 7.81 (t, J = 8.2 Hz, 2H), 7.68 (dd, J = 8.4, 7.4 Hz, 1H), 6.93 (d, J = 5.1 Hz, 1H), 2.02 – 1.91 (m, 2H), 1.87 – 1.80 (m, 8H). 13C NMR (101 MHz, CDCl$_3$) δ 175.9, 166.9, 158.9, 152.4, 150.3, 131.8, 126.9, 122.2, 118.1, 116.0, 105.3, 104.4, 82.9, 33.3, 24.4, 21.7. HRMS (ESI) calcd for C$_{18}$H$_{15}$O$_3$N(M$^+$): 293.1052; found 293.1057.

5,6-diphenylpyrano[2,3,4-de]quinoline (**4a**)
The title compound 4a was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (60.4 mg, 94% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (s, 1H), 7.70 (d, J = 8.5 Hz, 1H), 7.48 (t, J = 7.9 Hz, 1H), 7.44 – 7.33 (m, 3H), 7.32 – 7.27 (m, 3H), 7.28 – 7.17 (m, 4H), 6.82 (d, J = 4.9 Hz, 1H), 6.65 (d, J = 7.3 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 159.6, 152.3, 150.1, 149.2, 134.8, 133.4, 131.4, 130.7, 129.3, 129.1, 128.9, 128.1, 127.9, 125.2, 119.5, 118.5, 116.2, 103.2. HRMS (EI) calcd for C$_{23}$H$_{15}$ON(M$^+$) 321.1154; found 321.1153.

5,6-di-p-tolylpyrano[2,3,4-de]quinoline (4b)

The title compound 4b was prepared according to GP2 and was purified by chromatography (petroleum ether/dichloromethane/acetone 5:4:1) to give the product as a faint yellow solid (66.4 mg, 95% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.62 (d, J = 5.1 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.48 – 7.42 (m, 1H), 7.24 – 7.17 (m, 4H), 7.13 (d, J = 7.9 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 5.2 Hz, 1H), 6.64 (d, J = 7.3 Hz, 1H), 2.39 (s, 3H), 2.29 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 159.6, 152.1, 150.0, 149.1, 138.8, 137.6, 131.8, 131.6, 131.3, 130.6, 130.5, 129.9, 128.8, 128.6, 124.7, 118.8, 118.3, 116.0, 103.0, 21.4, 21.3. HRMS (EI) calcd for C$_{25}$H$_{19}$ON(M$^+$): 349.1467; found 349.1470.

5,6-bis(4-(tert-butyl)phenyl)pyrano[2,3,4-de]quinoline (4c)
The title compound 4c was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (81.5 mg, 94% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.61 (d, J = 5.3 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.50 – 7.43 (m, 1H), 7.41 (d, J = 8.3 Hz, 2H), 7.27 – 7.13 (m, 6H), 6.79 (d, J = 5.3 Hz, 1H), 6.66 (d, J = 7.3 Hz, 1H), 1.35 (s, 9H), 1.26 (s, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 159.8, 152.0, 151.1, 149.8, 149.0, 131.8, 131.7, 131.5, 130.5, 130.3, 128.6, 126.2, 124.8, 124.6, 119.0, 118.4, 116.3, 103.1, 34.8, 34.7, 31.5, 31.2. HRMS (EI) calcd for C$_{31}$H$_{31}$ON(M$^+$): 433.2400; found 433.2403.

5,6-bis(4-methoxyphenyl)pyrano[2,3,4-de]quinoline (4d)

The title compound 4d was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (70.2 mg, 92% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (d, J = 5.2 Hz, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.56 – 7.45 (m, 1H), 7.30 – 7.23 (m, 2H), 7.18 (d, J = 2.7 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 5.2 Hz, 1H), 6.79 – 6.73 (m, 2H), 6.68 (d, J = 7.3 Hz, 1H), 3.87 (s, 3H), 3.80 (s, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 159.9, 159.7, 159.3, 152.1, 150.0, 151.1, 149.1, 149.0, 150.1, 149.1, 132.0, 131.9, 131.5, 130.5, 127.1, 125.9, 124.6, 118.3, 118.0, 115.9, 114.8, 113.4, 103.1, 55.4, 55.3. HRMS (EI) calcd for C$_{25}$H$_{19}$ON$_3$(M$^+$): 381.1359; found 381.1356.

5,6-bis(2-fluorophenyl)pyrano[2,3,4-de]quinoline (4e)

The title compound 4e was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (57.9
mg, 81% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.55 (d, $J = 4.7$ Hz, 1H), 7.68 (d, $J = 8.5$ Hz, 1H), 7.42 (t, $J = 7.9$ Hz, 1H), 7.27 – 7.14 (m, 3H), 7.09 (t, $J = 6.9$ Hz, 1H), 7.02 – 6.85 (m, 4H), 6.70 (d, $J = 5.1$ Hz, 1H), 6.51 (d, $J = 7.2$ Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -111.8 (d, $J = 2.3$ Hz, 1F), -112.9(d, $J = 2.3$ Hz, 1F). 13C NMR (101 MHz, CDCl$_3$) 160.6 (d, J_{C-F}=248.7 Hz), 160.0 (d, J_{C-F}=252.6 Hz), 159.7, 152.1, 149.8, 146.7, 132.2 (d, J_{C-F}=3.0 Hz), 131.6 (d, J_{C-F}=8.3 Hz), 131.5, 131.2 (d, J_{C-F}=2.2 Hz), 130.4 (d, J_{C-F}=8.1 Hz), 129.7, 125.5, 124.5 (d, J_{C-F}=3.6 Hz), 123.9 (d, J_{C-F}=3.6 Hz), 121.6 (d, J_{C-F}=16.3 Hz), 121.4 (d, J_{C-F}=14.9 Hz), 118.4, 116.6, 116.0, 115.9 (d, J_{C-F}=24.4 Hz), 115.9 (d, J_{C-F}=19.1 Hz), 103.4. HRMS (EI) calcd for C$_{23}$H$_{13}$OF$_2$N (M$^+$): 357.0960; found 357.0959.

5,6-bis(3-fluorophenyl)pyrano[2,3,4-de]quinoline (4f)

The title compound 4f was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (57.2 mg, 80% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (d, $J = 5.1$ Hz, 1H), 7.73 (d, $J = 8.6$ Hz, 1H), 7.49 (t, $J = 7.9$ Hz, 1H), 7.40 (dd, $J = 14.2$, 7.6 Hz, 1H), 7.17 (dd, $J = 14.2$, 7.6 Hz, 1H), 7.09 (t, $J = 9.0$ Hz, 1H), 7.06 – 6.93 (m, 5H), 6.82 (d, $J = 5.1$ Hz, 1H), 6.63 (d, $J = 7.3$ Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -111.4, -112.5. 13C NMR (101 MHz, CDCl$_3$) 163.5 (d, J_{C-F}=248.7 Hz), 162.3 (d, J_{C-F}=247.1 Hz), 159.2, 152.5, 150.0, 148.0 (d, J_{C-F}=2.7 Hz),136.6 (d, J_{C-F}=8.0 Hz), 135.1(d, J_{C-F}=8.2 Hz), 131.4, 131.2 (d, J_{C-F}=8.5 Hz), 130.5, 129.6 (d, J_{C-F}=8.2 Hz), 126.5 (d, J_{C-F}=3.1 Hz), 125.8, 124.8 (d, J_{C-F}=3.1 Hz), 119.1 (d, J_{C-F}=2.0 Hz), 118.3, 117.6 (d, J_{C-F}=21.6 Hz), 116.5, 116.4, 116.1 (d, J_{C-F}=21.2 Hz), 115.9 (d, J_{C-F}=23.7 Hz), 115.5 (d, J_{C-F}=21.0 Hz), 103.3. HRMS (EI) calcd for C$_{23}$H$_{13}$OF$_2$N (M$^+$): 357.0960; found 357.0956.

5,6-bis(4-fluorophenyl)pyrano[2,3,4-de]quinolone (4g)
The title compound 4g was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (57.9 mg, 81% yield). 1H NMR (400 MHz, CDCl₃) δ 8.63 (d, $J = 5.1$ Hz, 1H), 7.72 (d, $J = 8.6$ Hz, 1H), 7.53 – 7.42 (m, 1H), 7.29 – 7.23 (m, 2H), 7.22 – 7.16 (m, 2H), 7.10 (t, $J = 8.6$ Hz, 2H), 6.95 – 6.85 (m, 2H), 6.79 (d, $J = 5.2$ Hz, 1H), 6.61 (d, $J = 7.3$ Hz, 1H). 19F NMR (376 MHz, CDCl₃) δ -110.8, -113.0. 13C NMR (101 MHz, CDCl₃) 162.8 (d, $J_{C,F}=251.5$ Hz), 161.5 (d, $J_{C,F}=249.0$ Hz), 159.4, 152.2, 149.9, 148.6, 132.5 (d, $J_{C,F}=8.1$ Hz), 131.4, 131.1, 131.0, 130.4 (d, $J_{C,F}=3.6$ Hz), 129.3 (d, $J_{C,F}=3.5$ Hz), 125.3, 118.5, 118.2, 116.6 (d, $J_{C,F}=21.6$ Hz), 116.2, 115.2 (d, $J_{C,F}=21.8$ Hz), 103.2. HRMS (EI) calcd for C$_{23}$H$_{13}$OF$_2$N (M⁺): 357.0960; found 357.0961

5,6-bis(4-chlorophenyl)pyrano[2,3,4-de]quinoline (4h)

The title compound 4h was prepared according to GP2 and was purified by chromatography (petroleum ether / dichloromethane / acetone 5:4:1) to give the product as a faint yellow solid (73.4 mg, 94% yield). 1H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.72 (d, $J = 8.5$ Hz, 1H), 7.48 (t, $J = 7.9$ Hz, 1H), 7.40 (d, $J = 8.2$ Hz, 2H), 7.23 – 7.15 (m, 6H), 6.81 (d, $J = 4.6$ Hz, 1H), 6.61 (d, $J = 7.3$ Hz, 1H). 13C NMR (101 MHz, CDCl₃) δ 159.3, 152.5, 150.1, 148.4, 135.2, 134.3, 133.0, 132.1, 131.6, 131.4, 130.7, 130.4, 129.9, 128.5, 125.7, 118.8, 116.3, 103.4. HRMS (EI) calcd for C$_{23}$H$_{13}$O$_3$NCl$_2$(M⁺): 389.0374; found 389.0378.
5,6-bis(4-bromophenyl)pyrano[2,3,4-de]quinoline (4i)

The title compound 4i was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (43.1 mg, 41% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.65 (s, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.55 (d, J = 8.3 Hz, 2H), 7.48 (t, J = 8.0 Hz, 1H), 7.37 (d, J = 8.6 Hz, 2H), 7.19 – 7.07 (m, 4H), 6.80 (d, J = 5.1 Hz, 1H), 6.61 (d, J = 7.3 Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 159.3, 152.4, 150.0, 148.4, 133.4, 133.2, 132.8, 132.4, 132.0, 131.4, 130.6, 129.0, 125.6, 123.6, 122.5, 118.9, 118.3, 116.3, 103.3. HRMS (EI) calcd for C$_{23}$H$_{13}$OBr$_2$N (M$^+$): 476.9358; found 476.9361.

5,6-bis(4-(trifluoromethyl)phenyl)pyrano[2,3,4-de]quinoline (4j)

The title compound 4j was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (75.0 mg, 82% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.66 (d, J = 5.2 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 7.70 (d, J = 8.1 Hz, 2H), 7.57 – 7.45 (m, 3H), 7.42 – 7.36 (m, 4H), 6.83 (d, J = 5.3 Hz, 1H), 6.59 (d, J = 7.3 Hz, 1H). 19F NMR (376 MHz, CDCl$_3$) δ -62.7, -62.97. 13C NMR (101 MHz, CDCl$_3$) δ 159.3, 152.3, 149.7, 148.2, 138.1, 138.2, 131.6, 131.2, 131.1 (q, J_{C-F}=33.6 Hz), 130.5 (q, J_{C-F}=33.0 Hz), 129.4, 126.6 (q, J_{C-F}=3.7 Hz), 125.9, 125.2 (q, J_{C-F}=3.8 Hz), 123.8 (q, J_{C-F}=273.4 Hz), 124.0 (q, J_{C-F}=273.5 Hz), 119.7, 118.3, 116.7, 103.3. HRMS (EI) calcd for C$_{25}$H$_{13}$OBr$_2$N (M$^+$): 457.0896; found 457.0899.
5,6-diethylpyrano[2,3,4-de]quinoline (4k)

![Chemical structure of 5,6-diethylpyrano[2,3,4-de]quinoline (4k)](image)

The title compound 4k was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (41.0 mg, 91% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.55 (s, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.59 (t, J = 7.9 Hz, 1H), 6.97 (d, J = 7.3 Hz, 1H), 6.69 (d, J = 5.2 Hz, 1H), 2.62 – 2.40 (m, 4H), 1.26 (t, J = 7.5 Hz, 3H), 1.18 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, CDCl$_3$) δ 160.0, 153.2, 151.3, 149.7, 131.8, 130.1, 123.5, 115.5, 113.1, 102.9, 23.9, 19.8, 12.9, 12.6. HRMS (EI) calcd for C$_{15}$H$_{15}$ON (M$^+$): 225.1148; found 225.1147.

5,6-dipropylpyrano[2,3,4-de]quinoline (4l)

![Chemical structure of 5,6-dipropylpyrano[2,3,4-de]quinoline (4l)](image)

The title compound 4l was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (39.5 mg, 78% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.55 (d, J = 5.0 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.56 (t, J = 7.9 Hz, 1H), 6.92 (d, J = 7.2 Hz, 1H), 6.66 (d, J = 5.2 Hz, 1H), 2.54 – 2.34 (m, 4H), 1.79 – 1.64 (m, 2H), 1.63 – 1.41 (m, 2H), 1.10 – 0.96 (m, 6H). 13C NMR (101 MHz, CDCl$_3$) δ 159.6, 152.2, 151.8, 150.3, 131.4, 130.3, 124.0, 118.7, 114.5, 113.1, 102.8, 32.5, 28.7, 21.4, 21.2, 14.4, 14.0. HRMS (EI) calcd for C$_{17}$H$_{19}$ON (M$^+$): 253.1461; found 253.1465.

5,6-dibutylpyrano[2,3,4-de]quinoline (4m)

![Chemical structure of 5,6-dibutylpyrano[2,3,4-de]quinoline (4m)](image)
The title compound 4m was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (34.3 mg, 61% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.56 (s, 1H), 7.63 (d, $J = 8.5$ Hz, 1H), 7.56 (t, $J = 7.8$ Hz, 1H), 6.91 (d, $J = 7.3$ Hz, 1H), 6.66 (d, $J = 3.1$ Hz, 1H), 2.54 – 2.36 (m, 6H), 1.71 – 1.62 (m, 3H), 1.59 – 1.50 (m, 3H), 1.45 – 1.28 (m, 11H), 1.00 – 0.86 (m, 9H). 13C NMR (101 MHz, CDCl$_3$) δ 159.5, 152.3, 151.7, 150.4, 131.4, 130.4, 129.3, 124.1, 114.5, 113.0, 102.9, 32.2, 31.6, 30.6, 27.9, 27.6, 26.7, 22.7, 22.6, 14.2, 14.1. HRMS (EI) calc'd for C$_{21}$H$_{27}$ON (M$^+$):309.2087; found 309.2086.

5,6-di(thiophen-2-yl)pyrano[2,3,4-de]quinoline (4n)

The title compound 4n was prepared according to GP2 and was purified by chromatography (petroleum ether /dichloromethane /acetone 5:4:1) to give the product as a faint yellow solid (30.0 mg, 45% yield). 1H NMR (400 MHz, CDCl$_3$) δ 8.66 (s, 1H), 7.70 (d, $J = 8.5$ Hz, 1H), 7.60 (d, $J = 5.0$ Hz, 1H), 7.50 (t, $J = 7.9$ Hz, 1H), 7.30 (d, $J = 4.9$ Hz, 1H), 7.27 – 7.23 (m, 1H), 7.19 (d, $J = 3.5$ Hz, 1H), 7.09 (d, $J = 3.0$ Hz, 1H), 6.96 (t, $J = 4.4$ Hz, 1H), 6.86 (d, $J = 4.9$ Hz, 1H), 6.63 (d, $J = 7.3$ Hz, 1H). 13C NMR (101 MHz, CDCl$_3$) δ 158.8, 152.4, 149.7, 146.2, 135.0, 134.4, 131.9, 131.6, 129.9, 129.2, 128.7, 128.6, 128.5, 127.0, 125.2, 116.6, 110.4, 103.3. HRMS (EI) calc'd for C$_{19}$H$_{11}$ONS$_2$ (M$^+$):333.0277; found 333.0280.
3. References

(c) R. M. Carlson, J. R. Peterson, B. J. Hoop, K. J. Jensen, Synthetic Communications, 1982, 12, 977;
(d) S. Yu, N. Keiichi, K. Tanaka, J. Am. Chem. Soc. 2010, 132, 7896;
4. NMR Spectra

2ac
$3ab$

![Diagram of 3ab molecule with spectral data.]
4a
4n