Supporting Information for:
Regioselective 1,4-Hydroboration of Pyridines Catalyzed by an Acid-Initiated Boronium Cation

Evan N. Keyzer, Sky S. Kang, Schirin Hanf, and Dominic S. Wright*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.

*Email: dsw1000@cam.ac.uk

Contents:
SI.1 Experimental Details
SI.2 Synthetic Procedures
SI.3 Spectral Analysis
SI.4 Crystallographic Details
SI.5 References
SI.1 Experimental Details

All reactions were carried out under a dry, oxygen free nitrogen atmosphere using standard Schlenk and glovebox techniques in dry degassed solvents unless otherwise specified. All solvents were collected freshly distilled over calcium hydride (acetonitrile) or sodium wire (heptane). Deuterated NMR solvents were dried over activated molecular sieves and degassed with dry nitrogen (CD$_3$CN) or used as purchased in ampules (C$_6$D$_6$). 1,2-difluorobenzene, purchased from Fluorochem, was stirred over alumina followed by vacuum transfer from CaH$_2$ and finally stored over activated molecular sieves. Ammonium tetraphenylborate was purchased from Sigma Aldrich and dried overnight under vacuum at 100 °C. HBpin was purchased from Sigma Aldrich, distilled, and stored under dry nitrogen in a Young’s flask. All pyridines were stirred over CaH$_2$, distilled or sublimed, and stored under dry atmosphere.

NMR spectra were recorded at 298.0 K on a Bruker 400 MHz AvIII HD Smart Probe spectrometer (1H at 400 MHz, 11B 128 MHz, 13C 101 MHz) unless otherwise specified. Chemical shifts (δ, ppm) are given relative to residual solvent signals for 1H and 13C, to external BF$_3$·Et$_2$O for 11B, with coupling constants (J) reported in Hz. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and combinations thereof for highly coupled systems.

High-resolution mass spectra (HRMS) were collected using a Waters Xevo G2-S QTOF mass spectrometer in positive mode using CH$_3$CN.

Single crystal X-ray diffraction was carried out at 180(2) K on a Bruker D8-Quest PHOTON-100 diffractometer equipped with an Incoatec IμS Cu microsource (λ = 1.5418 Å). Structures were solved using SHELXT1 and refined using full-matrix least squares on F^2 using SHELXL-2014.2

SI.2 Synthetic Procedures

General procedure for NMR-scale reactions:

In a glove box, ammonium tetraphenylborate (5mg, 2.5 mol%, 0.0148 mmol) was dissolved/suspended in dry solvent (0.5 mL CD$_3$CN, C$_6$D$_6$, or heptane). This solution was transferred to a J. Young NMR tube. For reactions conducted in heptane, a DMSO-d_6 capillary
was included. The desired pyridine (0.593 mmol) was then added, followed by 1.5 equivalents HBpin (0.13 mL, 0.890 mmol). The NMR tube was sealed, removed from the glove box, shaken and placed in a preheated oil bath.

General procedure for preparative-scale reactions:

In a glove box, ammonium tetraphenylborate (28.3 mg, 0.08 mmol) was transferred to an oven-dried J. Young flask equipped with a magnetic stir bar along with the desired pyridine (3.36 mmol) and HBpin (0.73 mL, 5.04 mmol). Dry CH$_3$CN, heptane, or benzene (5ml) was then added outside of the glovebox. The reaction was then heated in an oil bath. Following heating the volatiles were removed in vacuo, and the remaining reaction mixture was suspended in dry pentane (5ml). The solution was then filtered through paper via a cannula filter into a pre-dried Schlenk flask. After removal of the pentane the 1,2- and 1,4-dihydropyridine products were retrieved as oils or waxy solids which can be purified further by reported methods if necessary. Due to the high moisture sensitivity of the products, the reaction was frequently contaminated with a small amount of pinBOH.

SI.3 Spectral characterization

NMR spectra of NMR-scale reactions:

- Pyridine

\[
\begin{align*}
\text{O} & \quad \text{BH} \\
\text{O} & \quad \text{BH}
\end{align*}
\]

\[
\begin{array}{c}
\text{1.5 eq} \\
\text{[NH$_4$]BPh$_4$ 2.5 mol %} \\
\text{CD$_3$CN, 90$^\circ$C}
\end{array}
\]

\[
\begin{array}{c}
\text{H$_a$} \\
\text{H$_b$} \\
\text{H$_c$}
\end{array}
\]

Conversion = >95%

Characterization of N-boryl-1,4-dihydropyridine.3

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 6.11 (dt, $J = 8.5$, 1.6 Hz, 2H, H$_a$), 4.64 – 4.56 (m, 2H, H$_b$), 2.84 – 2.80 (m, 2H, H$_c$), 1.23 (s, 12H, pin).
Characterization of N-boryl-1,2-dihydropyridine:

N-boryl-1,2-dihydropyridine could not be fully assigned due to its low concentration in solution. However, it can be identified by the characteristic multiplet at δ 3.92 (dd, \(J = 4.2, 1.7 \) Hz, 2H, \(H_d \)).

![Figure S1](image)

Figure S1. \(^1\)H NMR (400 MHz, 298.0 K, CD\(_3\)CN) spectrum of the reaction mixture after 24 hours (inset: reaction mixture at \(t = 0 \)h showing presence of \(H_2 \)).

![Figure S2](image)

Figure S2. \(^{11}\)B NMR (128 MHz, 298.0 K, CD\(_3\)CN) spectrum of the reaction mixture after 24 hours. DHPs = 1,2- and 1,4-dihydropyridine products, Cat = boronium catalyst. This \(^{11}\)B NMR spectrum is typical of the NMR-scale reactions.
Figure S3. 1B NMR (128 MHz, 298.0 K, CD$_3$CN) spectrum of isolated crystals of the pinBPy$_2$BPh$_4$ salt.

Figure S4. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectra of HBpin and NH$_4$BPh$_4$ in acetonitrile. Bottom: freshly prepared reaction mixture; middle: reaction mixture after 4 hours of heating at 90 °C; top: reaction mixture after 24 hours of heating at 90 °C.
Figure S5. 11B NMR (128 MHz, 298.0 K, CD$_3$CN) spectra of HBpin and NH$_4$BPh$_4$ in acetonitrile. Bottom: freshly prepared reaction mixture; middle: reaction mixture after 4 hours of heating at 90 °C; top: reaction mixture after 24 hours of heating at 90 °C.

- 3-methylpyridine

\[
\begin{align*}
\text{N-Boryl-3-methyl-1,4-dihydropyridine:}^{4,5} \\
\text{Conversion = >95%}
\end{align*}
\]

Characterization of N-boryl-3-methyl-1,4-dihydropyridine:

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 6.15 (dd, $J = 8.1, 1.3$ Hz, 1H, H_a), 5.97 – 5.95 (m, 1H, H_e), 4.63 (dt, $J = 8.1, 3.3$ Hz, 1H, H_b), 2.77 – 2.68 (m, 2H, H_c), 1.51 (s, 3H, H_d), 1.22 (s, 12H, pin).

Characterization of minor products:

N-boryl-3-methyl-1,2-dihydropyridine and N-boryl-3-methyl-1,6-dihydropyridine could not be fully assigned due to their low concentration in solution. However, they can be identified as the 1,2- and 1,6-isomers by characteristic multiplets at δ 3.86 (m, 2H, H_f) and 3.83 (dd, $J = 4.2, 1.7$ Hz, 2H, H_g), respectively.
Figure S6. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 42 hours.

![Figure S6](image1)

Figure S7. 1H NMR (400 MHz, 298.0 K, heptane) spectrum of the reaction mixture after 98 hours (spectrum referenced to DMSO-d_6 in a glass capillary; C$_6$H$_6$ likely resulting from BPh$_4^-$ decomposition).

- 3-phenylpyridine

![Molecular Structure](image2)

Conversion = >95%
Characterization of N-boryl-3-phenyl-1,4-dihydropyridine:3,6
1H NMR (400 MHz, 298.0 K, CD\textsubscript{3}CN) \(\delta\) 7.34 – 7.16 (m, 5H, Ph), 6.81 (s, 1H, \(H_d\)), 6.29 (dd, \(J = 8.1, 0.8\) Hz, 1H, \(H_a\)), 4.93 – 4.85 (m, 1H, \(H_b\)), 3.21 – 3.18 (m, 2H, \(H_c\)), 1.25 (s, 12H, pin).

Characterization of minor products:

\(N\)-boryl-3-phenyl-1,2-dihydropyridine and \(N\)-boryl-3-phenyl-1,6-dihydropyridine could not be fully assigned due to their low concentration in solution. However, they can be identified as the 1,2- and 1,6-isomers by characteristic peaks at \(\delta\) 4.35 (s, 1H, \(H_e\)) and 4.01 (dd, \(J = 4.1, 1.6\) Hz, 1H, \(H_f\)), respectively.

\textbf{Figure S8.} 1H NMR (400 MHz, 298.0 K, CD\textsubscript{3}CN) spectrum of the reaction mixture after 20 hours.

- 3-bromopyridine

\textit{Conversion = >95%}

Characterization of \textit{N-boryl-3-bromo-1,4-dihydropyridine}:3,6
1H NMR (400 MHz, 298.0 K, CD\textsubscript{3}CN) \(\delta\) 6.48 (d, \(J = 1.1\) Hz, 1H, \(H_d\)), 6.17 (dd, \(J = 8.1, 1.1\) Hz, 1H, \(H_a\)), 4.63 (dt, \(J = 8.1, 3.3\) Hz, 1H, \(H_b\)), 3.18 (dt, \(J = 3.2, 1.5\) Hz, 2H, \(H_c\)), 1.24 (s, 12H, pin).
Characterization of minor products:

N-boryl-3-bromo-1,2-dihydropyridine and N-boryl-3-bromo-1,6-dihydropyridine could not be fully assigned due to their low concentration in solution. However, they can be identified as the 1,2- and 1,6-isomers by characteristic peaks at δ 4.18 (d, $J = 1.3$ Hz, 2H, H_e) and 3.91 (dd, $J = 4.3$, 1.8 Hz, 2H, H_f), respectively.

Figure S9. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 24 hours.

- 3-pyridinecarbonitrile

Characterization of N-boryl-3-cyano-1,4-dihydropyridine.3

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 6.86 (s, 1H, H_d), 6.10 (dd, $J = 8.3$, 1.4 Hz, 1H, H_a), 4.82 (dt, $J = 8.1$, 3.4 Hz, 1H, H_b), 3.00 – 2.98 (m, 2H, H_c), 1.24 (s, 12H, pin).

Characterization of minor products:

N-boryl-3-cyano-1,2-dihydropyridine and N-boryl-3-cyano-1,6-dihydropyridine could not be fully assigned due to their low concentration in solution. However, they can be identified as the
1,2- and 1,6-isomers by characteristic peaks at δ 4.03 (s, 2H, H_e) and 4.08 (dd, $J = 3.8, 1.8$ Hz, 2H, H_f), respectively.

Figure S10. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 19 hours (*peaks arising from the minor 1,2- and 1,6- products; C$_6$H$_6$ likely resulting from BPh$_4^-$ decomposition.)

- Methyl nicotinate

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 7.25 (d, $J = 0.7$ Hz, 1H, H_d), 6.11 (ddd, $J = 8.1, 3.1, 1.7$ Hz, 1H, H_a), 4.89 (dt, $J = 8.0, 3.4$ Hz, 1H, H_b), 3.65 (s, 3H, OCH$_3$), 3.00 – 2.92 (m, 2H, H_c), 1.26 (s, 12H, pin).

Characterization of minor products:

N-boryl-1,2-dihydropyridine-3-methylcarboxylate and N-boryl-1,6-dihydropyridine-3-methylcarboxylate could not be fully assigned due to their low concentration in solution. However, they can be identified as the 1,2- and 1,6-isomers by characteristic peaks at δ 4.12 (d, $J = 0.7$ Hz, H_e) and 4.05 (dd, $J = 3.7, 1.9$ Hz, H_f), respectively.
Figure S11. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 18 hours (C_6H_6 likely resulting from BPh$_4^-$ decomposition).

- N,N-diethylnicotinamide

![Chemical structures and spectra](image)

Characterization of N-boryl-1,4-dihydropyridine-3-(N,N-diethylamide):

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 6.33 (s, 1H, H_d), 6.13 (dd, J = 8.2, 1.2 Hz, 1H, H_a), 4.76 (dt, J = 8.0, 3.3 Hz, 1H, H_b), 3.35 (q, J = 7.1 Hz, 4H, Et), 3.00 – 2.94 (m, 2H, H_c), 1.23 (s, 12H, pin), 1.10 (t, J = 7.1 Hz, 6H, Et); 13C NMR (101 MHz, 298.0 K, CD$_3$CN) δ 171.62, 128.06, 126.65, 110.71, 104.20, 84.90, 83.98, 41.88, 24.86, 24.76, 24.45, 14.04; 11B NMR (128 MHz, 298.0 K, CD$_3$CN) δ 23.70. HRMS (positive mode, CH$_3$CN) m/z calcd for C$_{16}$H$_{28}$BN$_2$O$_3$ (M+H$^+$): 307.2187, found: 307.2177 (-3.2 ppm).

Characterization of minor products:

N-boryl-1,2-dihydropyridine-3-(N',N'-diethylamide) and N-boryl-1,6-dihydropyridine-3-(N',N'-diethylamide) could not be fully assigned due to their low concentration in solution. However, they can be identified as the 1,2- and 1,6-isomers by characteristic peaks at δ 3.98 (d, J = 0.5 Hz, H_e) and 3.95 (dd, J = 4.1, 1.6 Hz, H_f), respectively.
Figure S12. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 25 hours (C$_6$H$_6$ likely resulting from minor BPh$_4^-$ decomposition).

- 3,5-leutidine

\[
\text{Conversion} = >95\%
\]

Characterization of N-boryl-1,4-dihydro-3,5-lutidine.\(^4\)

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 5.99 (s, 2H, H$_a$), 2.60 (s, 2H, H$_c$), 1.55 (s, 6H, H$_b$), 1.22 (s, 12H, pin).

Characterization of N-boryl-1,2-dihydro-3,5-lutidine:

N-boryl-1,2-dihydro-3,5-lutidine could not be fully assigned due to its low concentration in solution. However, it can be identified by the characteristic peak at δ 3.77 (s, 2H, H$_d$).
Figure S13. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 69 hours.

- 2-methylyridine

Characterization of N-boryl-2-methyl-1,4-dihydropyridine:

1H NMR (400 MHz, 298.0 K, CD$_3$CN) δ 6.30 (d, J = 8.2 Hz, 1H, H$_a$), 4.63 (m, 1H, H$_b$), 4.42 (m, 1H, H$_d$), 2.77 – 2.71 (m, 2H, H$_c$), 1.86 (d, J = 1.2 Hz, 3H, H$_e$), 1.22 (s, 12H, pin).

Characterization of N-boryl-2-methyl-1,2-dihydropyridine:

N-boryl-2-methyl-1,2-dihydropyridine could not be fully assigned due to its low concentration in solution. However, it can be identified by a characteristic multiplet at δ 3.79 (d, J = 4.2 Hz, 2H, H$_d$).
Figure S14. 1H NMR (400 MHz, 298.0 K, CD$_3$CN) spectrum of the reaction mixture after 17 hours.

- 4-methylpyridine

Characterization of N-boryl-4-methyl-1,2-dihydropyridine:

1H NMR (400 MHz, 298.0 K, heptane) δ 6.23 (d, $J = 7.4$ Hz, 1H, H_d), 4.78 (m, 1H, H_b), 4.71 (dd, $J = 7.5$, 1.4 Hz, 1H, H_d), 3.85 (dd, $J = 3.8$, 1.7 Hz, 2H, H_a), 1.54 (d, $J = 1.4$ Hz, 3H, H_c), 1.12 (s, 12H, pin).

Characterization of N-boryl-4-methyl-1,4-dihydropyridine:

N-boryl-4-methyl-1,4-dihydropyridine could not be fully assigned due to its low concentration in solution. However, it can be identified by characteristic peaks at δ 6.08 (d, $J = 7.4$ Hz, 2H, H_f), 4.39 (dd, $J = 8.4$, 3.2 Hz, 2H, H_g), 2.95 – 2.89 (m, 1H, H_h).
Figure S15. 1H NMR (400 MHz, 298.0 K, heptane) spectrum of the reaction mixture after 41 hours (spectrum referenced to DMSO-d_6 in a glass capillary).

Figure S16. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum of the reaction mixture after 48 hours (* indicates unreacted starting material).
Figure S17. 1H NMR (400 MHz, 298.0 K, heptane) spectra of N-boryl-4-methyl-1,2-dihydropyridine interconversion to N-boryl-4-methyl-1,4-dihydropyridine (* indicates starting material). Bottom: 4-methylpyridine; middle: hydroboration reaction mixture after 48 hours at 90 °C; top: hydroboration reaction mixture after subsequent heating at 110 °C for 72 hours.

- Quinoline

Characterization of N-boryl-1,2-dihydroquinoline:4,7

1H NMR (400 MHz, 298.0 K, heptane) δ 7.24 (d, $J = 8.2$ Hz, 1H, H_g), 6.83 – 6.77 (m, 1H, H_f), 6.66 (m, 1H, H_d), 6.58 (td, $J = 7.4,1.1$ Hz, 1H, H_e), 6.13 (d, $J = 9.6$ Hz, 1H, H_c), 5.55 (dt, $J = 9.4,4.2$ Hz, 1H, H_b), 3.90 (dd, $J = 4.2,1.7$ Hz, 2H, H_a), 1.07 (s, 12H, pin).
Characterization of N-boryl-1,4-dihydroquinoline:

N-boryl-1,4-dihydroquinoline could not be fully assigned due to its low concentration and overlapping signals in solution. However, it can be identified by characteristic peaks at δ 6.43 (dt, J = 8.1, 1.7 Hz, 1H, H_j), 4.64 – 4.60 (m, 1H, H_i), 3.25 (dd, J = 3.3, 1.4 Hz, 2H, H_h).

Figure S18. \(^1\text{H} \text{NMR} \) (400 MHz, 298.0 K, heptane) spectrum of the reaction mixture after 20 hours (spectrum referenced to DMSO-d\(_6\) in a glass capillary; C\(_6\)H\(_6\) likely resulting from BPh\(_4^-\) decomposition).

Figure S19. \(^1\text{H} \text{NMR} \) (400 MHz, 298.0 K, CD\(_3\)CN) spectrum of the reaction mixture after 21 hours.
- Isoquinoline

\[
\begin{align*}
1.5 \text{ eq} \quad \text{BH} \quad \text{[NH}_4\text{]}\text{BPh}_4 \quad 2.5 \text{ mol \%} \\
\text{heptane, 90°C} \\
\end{align*}
\]

\text{Conversion = >95%}

\text{Characterization of N-boryl-1,2-dihydroisoquinoline:}^4

\text{1H NMR (400 MHz, 298.0 K, heptane) \(\delta 6.79\) (td, \(J = 7.5, 1.3\) Hz, 1H, \(H_d\)), 6.73 (d, \(J = 7.4, 1.3\) Hz, 1H, \(H_c\)), 6.62 (d, \(J = 7.3\) Hz, 1H, \(H_b\)), 6.58 (dd, \(J = 7.4, 0.8\) Hz, 1H, \(H_x\)), 6.31 (d, \(J = 7.5\) Hz, 1H, \(H_g\)), 5.31 (d, \(J = 7.5\) Hz, 1H, \(H_p\)), 4.27 (s, 2H, \(H_a\)), 1.00 (s, 12H, pin).

\text{Figure S20. 1H NMR (400 MHz, 298.0 K, heptane) spectrum of the reaction mixture after 18 hours (spectrum referenced to DMSO-\textit{d}_6 in a glass capillary; * indicates unknown by-product (ca. 6%) hypothesized to be a 1,2,3,4-tetrahydroisoquinoline species).}
Figure S21. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum of the reaction mixture after 18 hours (* indicates unknown by-product (ca. 11%) hypothesized to be a 1,2,3,4-tetrahydroisoquinoline species).

NMR spectra of products isolated from preparative-scale reactions:

- N-boryl-1,4-dihydropyridine

Figure S22. 1H NMR (400 MHz, 298.0 K, C$_6$D$_6$) spectrum.
- *N*-boryl-3-methyl-1,4-dihydropyridine

![Figure S23](image)

Figure S23. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.

- *N*-boryl-3-phenyl-1,4-dihydropyridine

![Figure S24](image)

Figure S24. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.
- N-boryl-3-bromo-1,4-dihydropyridine

![Figure S25](image)

Figure S25. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.

- N-boryl-3-cyano-1,4-dihydropyridine

![Figure S26](image)

Figure S26. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.
- \textit{N}-boryl-1,4-dihydropyridine-3-methylcarboxylate

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_s27}
\caption{\textit{1H NMR (400 MHz, 298.0 K, CH\textsubscript{3}CN) spectrum.}}
\end{figure}

- \textit{N}-boryl-1,4-dihydropyridine-3-\textit{(N',N'-diethylamide)}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure_s28}
\caption{\textit{1H NMR (400 MHz, 298.0 K, CH\textsubscript{3}CN) spectrum.}}
\end{figure}
Figure S29. 13C NMR (101 MHz, 298.0 K, CH$_3$CN) spectrum.

- N-boryl-1,4-dihydro-3,5-lutidine

Figure S30. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.
• *N*-boryl-2-methyl-1,4-dihydropyridine

![N-boryl-2-methyl-1,4-dihydropyridine spectrum](image1)

Figure S31. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.

• *N*-boryl-4-methyl-1,2-dihydropyridine

![N-boryl-4-methyl-1,2-dihydropyridine spectrum](image2)

Figure S32. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.
- N-boryl-1,2-dihydroquinoline

![N-boryl-1,2-dihydroquinoline structure](image)

Figure S33. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.

- N-boryl-1,2-dihydroisoquinoline

![N-boryl-1,2-dihydroisoquinoline structure](image)

Figure S34. 1H NMR (400 MHz, 298.0 K, CH$_3$CN) spectrum.
SI.4 Crystallographic Details:

Table 1. Crystal data and structure refinement for pinBPy$_2$BPh$_4$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>DW_B2_0282</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C${40}$H${42}$B$_2$N$_2$O$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>604.37</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>180.0</td>
</tr>
<tr>
<td>Crystal system</td>
<td>triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>a/Å</td>
<td>10.5637(3)</td>
</tr>
<tr>
<td>b/Å</td>
<td>10.8714(3)</td>
</tr>
<tr>
<td>c/Å</td>
<td>15.2958(4)</td>
</tr>
<tr>
<td>α/°</td>
<td>95.1220(10)</td>
</tr>
<tr>
<td>β/°</td>
<td>102.8720(10)</td>
</tr>
<tr>
<td>γ/°</td>
<td>95.0690(10)</td>
</tr>
<tr>
<td>Volume/Å3</td>
<td>1694.99(8)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>ρ_{calc}/g/cm3</td>
<td>1.184</td>
</tr>
<tr>
<td>μ/mm$^{-1}$</td>
<td>0.550</td>
</tr>
<tr>
<td>F(000)</td>
<td>644.0</td>
</tr>
<tr>
<td>Crystal size/mm3</td>
<td>0.7 × 0.17 × 0.05</td>
</tr>
<tr>
<td>Radiation</td>
<td>CuKα ($\lambda = 1.54184$)</td>
</tr>
<tr>
<td>2Θ range for data collection/°</td>
<td>5.964 to 133.832</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-12 ≤ h ≤ 12, -12 ≤ k ≤ 12, -18 ≤ l ≤ 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>32118</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5953 [R${int}$ = 0.0737, R${sigma}$ = 0.0475]</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>5953/74/470</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.059</td>
</tr>
<tr>
<td>Final R indexes [I>=2σ (I)]</td>
<td>R$_1$ = 0.0604, wR$_2$ = 0.1381</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R$_1$ = 0.0800, wR$_2$ = 0.1525</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å$^{-3}$</td>
<td>0.22/-0.24</td>
</tr>
</tbody>
</table>

SI.5 References:

