Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

SUPPLEMENTARY INFORMATION

Visible-Light-Mediated Oxidative Demethylation of N⁶-Methyl Adenines

Li-Jun Xie,^{a,c} Rui-Li Wang,^{a,c} Dong Wang,^a Li Liu,^{a,c} and Liang Cheng,^{a,b,c,*}

<u>chengl@iccas.ac.cn</u>

^a Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^b Key Lab of Functional Molecular Engineering of Guangdong Province (South China University of Technology), Guangzhou 510640, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

Table of Contents

1	General information	S2
2	Photochemical screening	S3-S4
3	Experimental details	S5-S6
4	HPLC assay for the detection of HCHO	S7
5	NMR spectra	S8-S9
6	References	S10

1. General information

Unless otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification. Tetrahydrofuran (THF), toluene and diethyl ether (Et₂O) were distilled from sodium/benzophenone. Dry dichloromethane (CH₂Cl₂) was distilled over calcium hydride. *N*,*N*-dimethylformate (DMF), dimethyl sulphoxide (DMSO) were dried over molecular sieves 3Å.

The ¹H NMR and ¹³C NMR spectra were collected with a Bruker Avance III 300 (300 MHz) spectrometers. Chemical shifts are given in ppm relative to tetramethylsilane (TMS). Multiplicities are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t), quartet (q), multiplet (m).

HPLC data was collected with Waters ACQUITY H-Class or Shimadzu CTO_10ASVP. The HPLC-ESI-IT-MS analysis was performed on an UltiMate 3000 UHPLC system equipped with a diode-array detector and an LCQ Fleet mass spectrometer (ThermoFisher, San Jose, CA, USA). The reaction was monitored on a HPLC system equipped with an Agilent Eclipse Plus C₁₈ 5 µm analysis column (250 × 4.6 mm) with mobile phase H₂O/CH₃OH (85/15) with a flow rate of 1 mL/min at room temperature. The detection wavelength was set as 260 nm. For LC-MS analysis, the reaction was monitored with a ThermoFisher Hypersil-gold C₁₈ column with 3 µm particle diameter (column dimensions 100 × 2.1 mm) with a flow rate of 0.2 mL/min at room temperature. 0.1% Formic acid in H₂O (buffer A) and 0.1% formic acid in CH₃CN (buffer B) were applied as mobile phase. A gradient of 10 min 3%-30% B, 3 min 8% B, 3 min 3% B was used.

2. Optimization of photo-induced demethylation

Entry	Photosensitizer	hv (nm)	Time (h)	Isolated yield (%)
1	N N N N N N N N N N N N N N N N N N N	365	20	N. R.
2		365	3	56
3	[Ru(bpy)3]2Cl2	470	10	71
4		470	18	7
5	C ₈ H ₁₇ C ₈ H ₁₇ C ₈ H ₁₇	470	12	N. R.
6		470	2	86
7	0 C ₆ H ₁₃ -N O	530	22	11

8	NaO O O O Na^+ Cl Cl Cl Cl Cl Cl Cl Cl	530	12	trace
9		530	12	trace
10	Br Br O ⁻ Br CO ₂ ⁻ 2Na ⁺	530	12	trace
11	COOH	530	24	11
12		620	22	71

3. Experimental details

To a reaction tube was added *N*⁶-methyladenosine **1** (m⁶A, 28.1mg, 0.1mmol), Selectfluor (2.2 eq., 0.22 mmol, 78 mg) and riboflavin **2a** (0.1 eq., 3.8 mg, 0.01 mmol), CH₃CN:H₂O (1/1, 2 mL total) was then added under nitrogen protection and the reaction mixture was stirred under illumination. After the disappearance of m⁶A, saturated NaHCO₃ solution was added to the aqueous solution until pH = 7. The residue was concentrated in vacuum and purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 12/1 as eluents) to yield 23 mg of adenosine A **3** (yield 86%). ¹H NMR (DMSO-*d*₆, 300 MHz) δ 8.34 (s, 1H), 8.13 (s, 1H), 7.33 (s, 2H), 5.88 (d, *J* = 6.0 Hz, 1H), 5.44-5.39 (m, 2H), 5.18-5.16 (d, *J* = 4.5 Hz, 1H), 4.63-4.58 (m, 1H), 4.16-4.12 (m, 1H), 3.96-3.95 (m, 1H), 3.70-3.64 (m, 1H), 3.58-3.52 (m, 1H). ¹³C NMR (DMSO-*d*₆, 75 MHz) δ 156.6, 152.8, 149.5, 140.4, 119.8, 88.4, 86.3, 73.9, 71.1, 62.1.¹

To a reaction tube was added N^6 , N^6 -dimethyladenosine **4** (m^{6,6}A, 29.5 mg, 0.1 mmol), Selectfluor (2.2 eq., 78 mg, 0.22 mmol) and riboflavin **2a** (0.1 eq., 3.8 mg, 0.01 mmol), CH₃CN:H₂O (1/1, 2 mL total) was then added under nitrogen protection and the reaction mixture was stirred under illumination. After the disappearance of m^{6,6}A, saturated NaHCO₃ solution was added to the aqueous solution until pH = 7. The residue was concentrated in vacuum and purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 12/1 as eluents) to yield 5 mg of *N*⁶-methyladenosine m⁶A **1** (yield 17%) and 21 mg of adenosine **3** (yield 78%).

To a reaction tube was added *N*⁶-methyl-2'-deoxy-adenosine **5** (m⁶dA, 29.5mg, 0.1mmol), Selectfluor (2.2 eq., 78 mg, 0.22 mmol) and riboflavin **2a** (0.1eq., 3.8 mg, 0.01 mmol), CH₃CN:H₂O (1/1, 2 mL total) was then added under nitrogen protection and the reaction mixture was stirred under illumination for 3 hours. After the disappearance of m⁶dA, saturated NaHCO₃ solution was added to the aqueous solution until pH = 7. The residue was concentrated in vacuum and purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 12/1 as eluents) to yield 2'-deoxy-adenosine dA 15mg (yield 60%). ¹H NMR (DMSO-*d*₆, 300 MHz) δ 8.33 (s, 1H), 8.13 (s, 1H), 7.31 (s, 2H), 6.36-6.31 (m, 1H), 5.31 (d, *J* = 4.2 Hz, 1H), 5.26-5.22 (m, 1H), 4.42-4.38 (m, 1H), 3.89-3.86 (m, 1H), 3.65-3.60 (m, 1H), 3.58-3.48 (m, 1H).

To a reaction tube was added N^6 -methyladenine **6** (29.8 mg, 0.2 mmol), Selectfluor (2.2 eq., 156 mg, 0.44 mmol,) and riboflavin **2a** (0.1 eq., 7.5 mg, 0.02 mmol), CH₃CN:H₂O (1/1, 2 mL total) was then added under nitrogen protection and the reaction mixture was stirred under illumination for 3 hours. After the disappearance of N^6 -methyladenine, saturated NaHCO₃ solution was added to the aqueous solution until pH = 7. The residue was concentrated in vacuum and purified by column chromatography (SiO₂, CH₂Cl₂/CH₃OH = 12/1 as eluents) to yield 19mg of adenine (yield 71%). ¹H NMR (DMSO-*d*⁶, 300 MHz) δ 12.8 (s, 1H), 8.1 (d, *J* = 5.4 Hz, 2H), 7.1 (s, 2H)².

4. HPLC assay for the detection of HCHO

After completion of the demethylation process, excess (2,4-dinitrophenyl)hydrazine (DNPH) was added to the reaction mixture, and then analyzed on a HPLC system equipped with a Chiralpak AD-H 5 μm column (250 × 4.6 mm) with the mobile phase *n*-butanol/cyclohexane (1:9) in a flow rate of 1 mL/min at room temperature. The detection wavelength was set as 220 nm.

5. NMR spectra

S8

6. References

[1]. J. Wu, H. Xiao, T. Wang, T. Hong, B. Fu, D. Bai, Z. He, S. Peng, X. Xing, J. Hu, P. Gao and X. Zhou, *Chem. Sci.*, 2015, 6, 3013.

[2]. R. Liu, H. Luo, Y. Li, M. Yang, X. Xu, H. Li, Y. Shen, C. Zhang, J. Su and W. Zhang, *Chem. Nat. Compd.*, 2009, **45**, 599.