Supporting Information

Polyoxometalate-Based Gelating Networks for Entrapment and Catalytic Decontamination

Affiliations and current addresses: *Department of Chemistry, Emory University, Atlanta, GA 30322, USA. †Department of Polymer Science, University of Akron, Akron, OH 44325, USA. ‡ Present address: Chemical engineering and materials division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. § Present address: Department of Chemistry, Bethel University, St. Paul, MN 55112, USA. ¶ Present address: McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA. ‖ Present address: ABT Molecular Imaging, Inc., Louisville, TN 37777, USA. *Present address: School of Physics, Georgia Institute of Technology. Atlanta, Georgia 30332, USA. *Corresponding author. E-mail chill@emory.edu

Abstract: We report the synthesis and characterization of a new class of organic/inorganic hybrid polymers composed of covalently-bound 1,3,5-benzenetribarboxamide linkers and anionic polyoxovanadate clusters with varying counter-cations. These materials form gels within seconds upon contact with polar aprotic liquids and catalyze the degradation of odorants and toxic molecules under mild conditions, including aerobic oxidation of thiols, hydrogen peroxide-catalyzed oxidation of sulfides and hydrolysis of organophosphate chemical warfare agent analogues.
Materials and Methods (p. 2)
Experimental Procedures (p. 3)
Supplementary Figures S1-S23 (p. 5)
Supplementary Video 1 (p. 23)
Results and Discussion (p. 24)
References (p. 25)

Materials and Methods

General Instrumentation

All starting materials were used as received unless otherwise specified.

Elemental analyses were performed by Galbraith Laboratories, Inc. (C, H, N) and Atlantic Microlab Inc. (V, Li, Zr).

Infrared (FT-IR) spectra were recorded using a Nicolet TM 6700 FTIR spectrometer Smart Orbit Diamond ATR accessory.

Diffuse reflectance UV/Vis studies were performed using a PerkinElmer Lambda 1050 with 150mm integrating sphere. Spectra were obtained by immobilizing powdered samples on a film and hanging it using a center mount clamp coated in Spectralon® at 0˚.

Z-contrast STEM images were obtained on Hitachi HD2000 scanning transmission electron microscope with 20kV accelerating voltage. TEM images were obtained a Hitachi HD2000 scanning transmission electron microscope at an accelerating voltage of 30kV. Samples were prepared by dispersing TBA-polyV6 in wet DMF and dropping on Electron Microscopy Sciences CF200-Cu grids, followed by air drying at 40 °C for two days. Contrast enhanced for entire image using Microsoft Word software.

BET isotherms were obtained using a Quantachrome NOVA2000 using N2 as the adsorption gas.

GC data were obtained using a Hewlett Packard HP 6890 GC system equipped with a HP-5 5% phenyl methyl siloxane column.

XPS measurements were performed using a Thermo K-Alpha XPS. A monochromated aluminum Kα source (1486.6 eV) was used for excitation of photoelectrons. The base pressure of the analysis chamber was 10⁻⁷ Pa during collection. Survey scan spectra were measured over a pass energy of 200 eV at 1eV energy steps. High resolution scans were performed over a pass energy of 50 eV at 0.1 eV energy steps. Analysis of all spectra were done using CasaXPS software (version 2.3.14). A mixture of Gaussian and Lorentzian functions (GL(X%))were used to fit the high resolution peaks of V, N, and Zr. A reasonable fit was achieved using symmetric lineshapes for V(IV)2p, V(V)2p, N1s, and Br3d. Different GL parameters were used for different elements, but the same parameters were maintained across all measurements. Best fit was achieved using GL(90) for vanadium, GL(56) for nitrogen, GL(30) for oxygen, and GL(80) for bromine. Fitting constraints were applied in such a manner as to be chemically sensible. Doublet peaks for bromide were fit using a separation of 1.05 eV and a ratio of 3:2 between the 3d5/2 and the 3d3/2 peaks; doublet peaks for V(IV) and V(V) were fit using a separation of 7.33 eV and a ratio of 2:1 between the 2p3/2 and the 2p1/2 peaks; doublet peaks for Br were fit using a separation of 1.05 eV and a ratio of 3:2 between the 3d5/2 and the 3d3/2 peaks. V2p was recorded along with O1s, follow up analysis were also performed with a single Shirley baseline across the entire region. O1s peaks were fitted with the assumption that an insignificant amount of adventitious carbon is present on the powdered samples. The stoichiometry of the oxygen species in the linker are preserved in the fit. All measurements were done on dried powders of V₆O₁₃ polymers. Samples were standardized against V₂O₅ and TBA(PF₆) powder. All samples were vacuum dried via Schlenk line at 60 °C before introduction into the XPS chamber. The Thermo K-Alpha flood gun was used for charge neutralization during all experiments. Standard deviations of peak fitting parameters were obtained from an analysis of the error matrix generated using a Monte Carlo simulation on the relevant data sets.

Solution 31P NMR spectroscopic measurements were made on a Varian INOVA 600 MHz spectrometer and resonance signals were referenced to 85% H₃PO₄ in H₂O. T₁ = 3.1s, d1 = 15, and no ¹H decoupling was used. Solution ¹H spectroscopic measurements were made on a Varian INOVA 600 MHz spectrometer.

Solid-state cross-polarization magic angle spinning (CP-MAS) ¹³C spectra were collected on a BRUKER Avance 600 with ¹³C frequency of 150.918 MHz and an HCN biosolids probe and MAS speed of 10kHz with 500µs of ¹H-¹³C cross-polarization followed by a Hahn-echo π-pulse of 4µs with 125kHz SPINAL64 ¹H (600.13 MHz) decoupling. Dipolar dephasing spectra collected in the absence of ¹H decoupling with 50 µs of ¹H-¹³C cross-polarization (Supplementary Fig. 12).

CP-MAS (Figure S8) and Hahn-echo (Figure 1b, Figure S3) ¹³C (75.48 MHz) spectra were collected on a BRUKER Avance III 300 with an HCN biosolids probe and MAS speed of 13.5 kHz. CP-MAS spectra were collected with 250µs of ¹H-¹³C cross-polarization followed by a Hahn-echo π-pulse of 6µs. Hahn-echo ¹³C spectra were collected with excitation of all ¹³C resonances with a 3 µs π/2-pulse followed by a Hahn-echo π-pulse of 6 µs. The relaxation delay for the ¹³C Hahn-echo spectra was determined by measuring the ¹³C T₁ with the Torcha method via CP-MAS. All
spectra were collected with 100kHz SPINAL64 1H (300.13 MHz) decoupling. 13C chemical shifts are referenced externally to TMS using adamantane as a secondary reference.3

51V NMR: Solution (157.65MHz) 51V NMR spectrum of TBA-polyV6. Spectra were collected on a Varian INOVA 600. 20,000 scans were collected on TBA-polyV6 gel in DMF for the solution spectrum with a single broad (~15 ppm fwhm) peak at -499ppm. Spectra were processed with 2000 Hz exponential line broadening that matched the signal decay in the FID. Peaks were referenced to VOCl$_3$. The broad peak in the solution spectrum is consistent with reduced motion expected for a gel. Solid-state 51V (78.90 MHz) NMR spectra of TBA-polyV6 were collected at room temperature with a Bruker 4mm HX magic-angle spinning (MAS) probe and a Bruker Avance III 300 spectrometer. Spectra were measured using a rotor synchronized solid-echo with 51V pulse widths of 1.4µs at multiple MAS speeds (6, 8 and 10 kHz) to identify the center band. Spectra with and without 1H decoupling were identical. Chemical shift is referenced externally to VOCl$_3$ using V$_2$O$_5$ as a secondary reference at -609 ppm.4

Image analysis for swelling rate (main text Figure 2c and Video S1) was obtained using a Leica DM4500B bright-field microscope equipped with a COHU solid state CCD camera. A 10X objective lens was used. For Video S1, TBA-polyV6 powder was inserted into a 2mm-diameter capillary tube. Dimethylformamide was added to the tube during video capture. For the analysis of swelling rate for Figure 2c, a sample of powdered TBA-polyV6 was placed on a glass slide followed by addition of dimethylformamide and particle area was tracked over time. In each case, particle size analysis was conducted using IDL routine methods developed by J. Crocker and D. Grier,5 and images were processed using ImageJ software.

Experimental Procedures

Chemical Syntheses

Tetrabutylammonium decavanadate ([[n-C$_4$H$_9$]$_n$N]$_2$$[H_2V_2O_2])$ was synthesized according to reported literature procedures.6 Synthesis of [([n-C$_4$H$_9$]$_n$N]$_2$$[V_2O_2]]$([OCH$_2$]CNHCO)$$_x$$[OCH$_2$]CNHCO(C$_6$H$_3$)$$_y$$[OCH$_2$]CNHCO(C$_6$H$_3$)$$_z$] (NH$_2$V6) was also carried out according to reported literature procedures.7

Synthesis of C$_{6}$H$_{3}$CONH(CH$_2$OH)$_{3}$ (trisBTA). Tris(hydroxymethyl)aminomethane (4.54 g, 37.55 mmol) was dissolved in dry DMA with mild heating. The solution was cooled to 0 °C, followed by the addition of triethylamine (38 mmol). Trimesic acid trichloride (3.32 g, 12.5 mmol) dissolved in dry DMA was transferred dropwise under argon to the solution. The resulting clear, yellow solution was heated to room temperature and was stirred under argon overnight. A yellow/white precipitate was isolated via filtration, concentrated with mild heating. The solution was cooled to 0 °C, followed by the addition of triethylamine (38 mmol). Trimesic acid trichloride (3.32 g, 12.5 mmol) dissolved in dry DMA was transferred dropwise under argon to the solution. The resulting clear, yellow solution was heated to room temperature and was stirred under argon overnight. A yellow/white precipitate was isolated via filtration, concentrated with mild heating. The solution was cooled to 0 °C, followed by the addition of triethylamine (38 mmol). Trimesic acid trichloride (3.32 g, 12.5 mmol) dissolved in dry DMA was transferred dropwise under argon to the solution. The resulting clear, yellow solution was heated to room temperature and was stirred under argon overnight. A yellow/white precipitate was isolated via filtration, concentrated with mild heating. The solution was cooled to 0 °C, followed by the addition of triethylamine (38 mmol). Trimesic acid trichloride (3.32 g, 12.5 mmol) dissolved in dry DMA was transferred dropwise under argon to the solution. The resulting clear, yellow solution was heated to room temperature and was stirred under argon overnight. A yellow/white precipitate was isolated via filtration, concentrated with mild heating. The solution was cooled to 0 °C, followed by the addition of triethylamine (38 mmol). Trimesic acid trichloride (3.32 g, 12.5 mmol) dissolved in dry DMA was transferred dropwise under argon to the solution. The resulting clear, yellow solution was heated to room temperature and was stirred under argon overnight. A yellow/white precipitate was isolated via filtration, concentrated with mild heating.

Synthesis of TBA-polyV6 The trisBTA linker ([C$_6$H$_3$CONHC(CH$_2$OH)$_3$]). 1.00 g, 1.9 mmol) was dissolved in dry DMA under argon with mild heating. Tetrabutylammonium decavanadate ([[n-C$_4$H$_9$]$_n$N]$_2$$[V_2O_2])$ was transferred to the trisBTA solution under argon via cannula. The resulting clear, orange solution was stirred at 80 °C in the dark for one week, resulting in a green gel. The reaction mixture was cooled to room temperature and Et$_2$O was added, resulting in brown particles in a dark green solution. The solid was purified by repeated swelling in DMF, centrifugation and removal of the green supernatant, followed by contraction in Et$_2$O and removal of the supernatant. This process was repeated until the decanted liquid was colorless, affording a red solid powder (2.37 g). This was ground into a fine powder using a Wig-L-Bug instrument, followed by additional swelling and contraction steps until the supernatant was colorless. ([[n-C$_4$H$_9$]$_n$N]$_2$$[V_2O_2]$) was transferred to the trisBTA solution under argon via cannula. The resulting clear, orange solution was stirred at 80 °C in the dark for one week, resulting in a green gel. The reaction mixture was cooled to room temperature and Et$_2$O was added, resulting in brown particles in a dark green solution. The solid was purified by repeated swelling in DMF, centrifugation and removal of the green supernatant, followed by contraction in Et$_2$O and removal of the supernatant. This process was repeated until the decanted liquid was colorless, affording a red solid powder (2.37 g). This was ground into a fine powder using a Wig-L-Bug instrument, followed by additional swelling and contraction steps until the supernatant was colorless. ([[n-C$_4$H$_9$]$_n$N]$_2$$[V_2O_2]$) was transferred to the trisBTA solution under argon via cannula. The resulting clear, orange solution was stirred at 80 °C in the dark for one week, resulting in a green gel. The reaction mixture was cooled to room temperature and Et$_2$O was added, resulting in brown particles in a dark green solution. The solid was purified by repeated swelling in DMF, centrifugation and removal of the green supernatant, followed by contraction in Et$_2$O and removal of the supernatant.

Cation exchange to form Li-polyV6 and Zr-polyV6 A sample of TBA-polyV6 in a Pasteur pipette containing glass wool at its base was washed with CH$_4$CN. A solution of 0.1 M LiBF$_4$ in CH$_3$CN was eluted through the column, replacing the TBA$^+$ cations with Li$. To ensure that the exchange was complete, the eluent was collected, evaporated to dryness by rotary evaporation, and dried in vacuo, followed by extraction of the TABBF$_4$ with 1,4-dioxane. This solution was filtered, the solvent was removed by rotary evaporation and the resulting solid was dried in vacuo. The presence of TBA$^+$ was confirmed by observing the C-H stretching bands via FT-IR. Elution with the LiBF$_4$ solution was repeated until no C-H stretching bands in the eluent were observed using this method. The resulting product (Li-polyV6) in the column was washed with several volumes of CH$_3$CN to remove excess LiBF$_4$. The same process was repeated using a 0.1 M solution of zirconyl chloride in CH$_3$CN/H$_2$O to obtain Zr-polyV6. Li-polyV6 EA (wt%): C (18.71), H (6.255), N (4.095), Li (1.09), V (25.4). Zr-polyV6, EA (wt%): C (11.91), H (1.89), N (3.56), V (16.2), Zr (17.8).

Conditions for Catalytic Reactions

Oxidation of PrSH catalyzed by TBA-polyV6. A sample of TBA-polyV6 (7.6 mg; 5.4 µmol based on V$_6$ units) was added to 3.0 mL of 95% DMF / 5% H$_2$O. The solution was purged with O$_2$ for 15 minutes, and 1,3-dichlorobenzene internal standard (40 µL, 120 mM) and 1-propanethiol (60 µL, 220mM) were added. The molar ratio was 130 PrSH per V$_6$ unit. Reactions were monitored by GC analysis of PrSH and PrSSPr. A control reaction was run under the same conditions but without TBA-polyV6.

Oxidation of CEES catalyzed by TBA-polyV6 (Figure 4). A sample of TBA-polyV6 (3.3 µmol based on V$_6$ units) was added to 1.5 mL of MeOH and was stirred for 1 hour to disperse particles. The 1,3-dichlorobenzene internal standard was added (20 µL), followed CEES (48 µL, 411 µmol). The
zero time point was taken immediately after addition of CEES to the reaction mixture, followed by addition of a solution of 30% w/w \(\text{H}_2\text{O}_2 \) \((48 \ \mu\text{L}, 411 \ \mu\text{mol}) \) to initiate the reaction. Conversion to product was monitored by GC analysis of the CEES peak. A control reaction was run under the same conditions but without **TBA-polyV₆**. Each reaction was run in triplicate to obtain standard deviations.

The selectivity for 2-chloroethyl ethyl sulfide (CEESO) was determined using \(^1\text{H} \) NMR of the reaction mixture before and after the reaction. Conditions: \(3.3 \ \mu\text{mol} \ \text{TBA-polyV}_6 \) (based on \(\text{V}_6 \) units) was added to a 1.5 mL deuterated methanol (MeOD) and stirred for 1 hour. The 1,3-dichlorobenzene internal standard was added \((20 \ \mu\text{L}) \), followed CEES \((48 \ \mu\text{L}, 411 \ \mu\text{mol}) \). The first NMR aliquot was taken and the \(^1\text{H} \) spectrum was obtained. After this, a solution of 30% w/w \(\text{H}_2\text{O}_2 \) was added to initiate the reaction. After 40 minutes, the second NMR aliquot was taken and its \(^1\text{H} \) spectrum was obtained.

Oxidation of CEES catalyzed by TBA-polyV₆, Li-polyV₆, and Zr-polyV₆. A sample of TBA-polyV₆, Li-polyV₆, and Zr-polyV₆ \((3.3 \ \mu\text{mol based on \(\text{V}_6 \) units}) \) was added to 1.5 mL of MeOH and was stirred for 1 hour to disperse particles. The 1,3-dichlorobenzene internal standard was added \((20 \ \mu\text{L}) \), followed \(15 \ \mu\text{L} \) 30% aqueous \(\text{H}_2\text{O}_2 \) solution \((30\% \text{ aqueous solution, } 140 \ \mu\text{mol} \ \text{H}_2\text{O}_2) \). Lastly, \(16 \ \mu\text{L} \) CEES \((137 \ \mu\text{mol}) \) was added initiate the reaction, and the zero time point was taken immediately after addition of CEES to the reaction mixture. Conversion to product was monitored by GC analysis of the CEES peak. A control reaction was run under the same conditions but without **TBA-polyV₆**. Each reaction was run in triplicate to obtain standard deviations.

Hydrolysis of DECP catalyzed by TBA-polyV₆. TBA-polyV₆ \((3.3 \ \mu\text{mol based on \(\text{V}_6 \) units}) \) was dispersed in 3.0 mL DMF by stirring overnight, then \(600 \ \mu\text{L} \) of this dispersion was put into a high-pressure NMR tube, followed by addition of \(10 \ \mu\text{L} \) of diethyl cyanophosphonate \((66 \ \mu\text{mol}) \) and \(50 \ \mu\text{L} \) of water \((900 \ \mu\text{mol}) \) to initiate the reaction. Reaction progress was monitored by \(^{31}\text{P} \) NMR. The control reaction was run using the same method but without **TBA-polyV₆**.

Hydrolysis of DMNP catalyzed by Zr-polyV₆. A sample of Zr-polyV₆ \((5 \ \text{mg}, 2.45 \ \mu\text{mol based on \(\text{Zr}_4 \) clusters}) \) was added to a vial containing 1.0 mL aqueous \(\text{N-ethylmorpholine buffer at } \text{pH} = 10.00 \) and stirred for 1 hour to disperse the powder. To initiate the reaction, dimethyl \(p \)-nitrophenylphosphate \((\text{DMNP}) \) was added \((4 \ \mu\text{L}, 25 \ \mu\text{mol}) \), and reaction progress was monitored by UV/Vis of the \(p \)-nitrophenolate anion product at 407 nm. Control reactions were run under identical conditions but without the catalyst. Reactions were run in triplicate to obtain standard deviations. Filtration control to test for heterogeneity of the system was done using similar conditions, except all reagents other than DMNP were added to the reaction mixture and were stirred for 2 hours before filtration using 0.2 µm syringe filters. The supernatant was collected and \(4 \ \mu\text{L} \) \((25 \ \mu\text{mol}) \) DMNP were added to initiate the reaction.

Gelation Studies

The swelling behavior of TBA-polyV₆ and Li-polyV₆ in various solvents was measured by adding 5 mL of liquid to the solid polymer \((~25 \ \text{mg}) \) and allowing it to gel for 24 hours. Glass wool was inserted into a glass Pasteur pipet to create a filter, and this pipet was weighed. The gel was placed in the pipet and the excess solvent filtered through while the gel was retained on the glass wool barrier. The pipet containing the gel was then weighed to determine the amount of liquid immobilized by the solid gel material. Each experiment was repeated in triplicate to determine the standard deviation.
Supplementary Figures

Figure S1. 51V NMR characterization of TBA-polyV$_6$. (a) Solid-state magic-angle spinning 51V NMR spectrum of TBA-polyV$_6$ powder. The center band was located by spinning at multiple magic-angle spinning speeds, indicating the presence of one peak in the spectrum with its associated spinning sidebands. (b) Solution 51V NMR spectrum of TBA-polyV$_6$ in the gel phase when dispersed in N,N-dimethylformamide.

Figure S2. ATR FT-IR spectra of TBA-polyV$_6$. TBA-polyV$_6$ (●) and the known monomeric species NH$_2$V$_6$ (●). Peaks at 950, 810, 790, 715 are attributed to V-O vibrations. The peaks in the V-O stretching frequency region agree well with reported literature values and with the known monomer NH$_2$V$_6$, revealing that the hexavanadate core is intact in TBA-polyV$_6$.
Figure S3. Peak deconvolution of the 13C Hahn-echo natural abundance solid-state spectrum of TBA-polyV6. Direct excitation of the 13C resonances with a Hahn-echo ensures that the spectral intensities are directly related to relative 13C concentration. Due to overlap of the peaks in the 50-70 ppm range, alternate methods were used to ascertain the ratios of the peaks in this region. The ratios of peaks A (amide carbon), B, C (aromatic carbons), and E (quaternary carbon) should be identical based on the molecular structure. We therefore took the average of A, B, and C, and assumed E to be equal to that value (98.53). Additionally, the sum of D (vanadium-bound methylene carbon) and F (unbound methylene carbon) should be equal to three times E. We can therefore solve for the value of F (117.6).
Figure S4. XPS spectra of TBA-polyV₆. (a) Survey scan, (b) high resolution scan of the C1s region, (c) high resolution scan of the N1s region with fitted peak deconvolution, (d) high resolution scan of the V2p and O1s regions with fitted peak deconvolution, (e) high resolution scan of the Br3d region with fitted peak deconvolution. (f) compilation of data from a-e.
Figure S5. Electron microscopy of TBA-polyV₆. Images taken after swelling in DMSO and drying under vacuum. Contrast enhanced using Microsoft Word software. (a, b) STEM images in Z-contrast mode of TBA-polyV₆. (c) TEM image of TBA-polyV₆.
Figure S6. Hydrogen-bond-induced carbonyl peak shifts. ATR FT-IR spectra of DMF with varying amounts of TBA-polyV6 added. The amide 1 band, consisting of the amide C=O stretch, is shown. The peak is observed for pure DMF at 1661 cm⁻¹(●). When 8 wt% gelator is added, a red-shifted amide peak is observed at 1652 cm⁻¹(●). This shift is indicative of hydrogen-bonding interactions between the gelator molecules and the DMF carbonyl. This suggests that gelation occurs through formation of hydrogen bonding networks between the N-H hydrogen bond donors in TBA-polyV6 and the C=O hydrogen bond acceptors in DMF. The spectrum of TBA-polyV6 (●) alone (no solvent) demonstrates that an increase in the amount of gelator alone is not the cause of the observed red shift in the DMF amide peak.
Figure S7. Comparison of index of swellability (Q) between TBA-polyV6, Li-polyV6 and other adsorbents. Index of swellability for activated charcoal 100-4000 mesh (AC-2), molecular sieves 3Å (MS), y-zeolite (Y-Z), fluorobenzene-derived highly crosslinked polymer (F-HCP), and toluene-derived highly crosslinked polymer (T-HCP). In each case, the gel was swollen for 24 hours prior to analysis. Data indicated with [*] is from Wilson et. al. using similar procedures to determine Q.10

Figure S8. ATR-FTIR spectra of Li-polyV6 and Zr-polyV6 polymers. TBA-polyV6 (●), Zr-polyV6 (●) and Li-polyV6 (●). Tetrabutylammonium peaks † are present in the TBA-polyV6 sample at 2930 cm⁻¹, 2950 cm⁻¹, 2870 cm⁻¹, 1490 cm⁻¹ and 1390 cm⁻¹ but are not present in the cation-exchanged polymers.
Figure S9. 13C (75.5 MHz) CP-MAS spectra of TBA-, Li-, and Zr-polyV6. (a) TBA- (●) and Li- (●) polyV6 spectra are shown. TBA$^+$ cation (*), and DMSO (†) peaks are indicated. The increased resolution between the triol carbons at 54 and 62 ppm is consistent with distinct H-bonding environments in the Q- and Li-polyV6 samples. TBA$^+$ counter cations are not observed in Li-polyV6. (b) 13C NMR before and after cation exchange. 13C (75.5 MHz) CP-MAS spectra of TBA-, Li-, and Zr-polyV6. TBA$^-$ cation (*), and DMSO (†) peaks are indicated.
Figure S10. Aerobic oxidation of propane thiol. (a) Oxidation of propane thiol (●) to dipropyl disulfide (▲). The mole ratio is 127 PrSH per V₆. A control (■) was run with the omission of TBA-polyV₆. (b) TBA-polyV₆ in DMF before (above) and after (below) addition of PrSH.

Figure S11. Gas chromatography peaks for propane thiol reaction. (a) GC peaks taken from near the start of the catalytic reaction and (b) GC peaks taken at the end of the catalytic reaction. Propane thiol (1.5 min elution time) is converted to dipropyl disulfide (3.8 min elution time). DMF (2.1 min elution time) and the internal standard 1,3-dichlorobenzene (3.2 min elution time) are also shown.
Figure S12. Diffuse reflectance UV/Vis spectra of TBA-polyV₆. Sample of TBA-polyV₆ before (●) and after (●) reduction by excess ascorbic acid, resulting in a very broad peak arising from IVCT bands in the region from 600-1000 nm. Upon addition of PrSH (●), reduction of the V₆ center results in a green color, consistent with reduction of V₆ sites within the material.

Figure S13. ¹H NMR used to determine speciation. ¹H NMR of reaction mixture before (below) and after (above) completion of the catalytic reaction, demonstrating near-quantitative conversion of CEES to CEESO without the formation of CEESO₂.
Figure S14. CEEs sulfoxidation by H₂O₂ and polyV₆ polymers. The mole ratio of the catalyzed reaction was 1 V₆: 40 CEEs: 40 H₂O₂ in all cases. The uncatalyzed control reaction (●) was run with the omission of TBA-polyV₆. Reactions were repeated in triplicate and error bars are reported. TBA-polyV₆ (●), Li-polyV₆ (●), and Zr-polyV₆ (●) reactions are shown. Interestingly, the reaction using Zr-polyV₆ as the catalyst initially shows a very rapid oxidation of ~50% of the CEEs, followed by slower kinetics to achieve complete conversion.

Figure S15. Hydrolysis of DECP catalyzed by TBA-polyV₆. Hydrolysis of diethyl cyanophosphonate (DECP) catalyzed by TBA-polyV₆ in DMF. The DECP: TBA-polyV₆ molar ratio was 20:1 based on V₆ units. Reactions were monitored by ³¹P NMR. The control reaction (●) was run using the same conditions as the catalyzed reaction (●) but with the omission of TBA-polyV₆.
Figure S16. Powder X-ray diffraction (PXRD) of TBA-polyV₆. Distances are indicative of local ordering of V₆ clusters within the material. Measurements were obtained using a D8 Discover powder X-ray diffractometer with VANTECH detector. A Kryoflex X-ray generator with a Co sealed tube running at 1.4 kW (35 kV, 40 mA) of power output provided the X-ray radiation.
Figure S17. Dipolar dephasing 13C solid-state NMR spectra. 13C (150.9 MHz) spectra of TBA-polyV$_6$ (bottom) without and (top) with 40µs dipolar dephasing. TBA peaks in the dipolar dephased spectrum are consistent with motional averaging of the 13C-1H dipolar coupling. The resonance at 167 ppm is assigned to the amide carbon, the resonance at 136 ppm is assigned to the non-protonated aromatic carbon of TBA-polyV$_6$ and 62.9 ppm resonance to the quartenary carbon of the triol. TBA cation (*), DMSO (†), and spinning sideband (◆) peaks are indicated.
Figure S18. Static light scattering of TBA-polyV₆. Zimm plot of the static light scattering measurements of the solutions of TBA-polyV₆ in DMF/water mixed solvent (85% DMF/15% H₂O). The solution of TBA-polyV₆ was prepared by dissolving 1.8 mg of TBA-polyV₆ in 20 mL DMF/water mixed solvent (vol. % 85/15). The solid hybrid sample was fully dissolved after the solution was put in 70 °C oven overnight. The solution was then filtered and used as stock solution. Solutions with concentrations from 0.01 mg/mL to 0.09 mg/mL in the mixed solvent were prepared. The dn/dc for the hybrid in the mixed solvent was determined to be -0.112 mL/g within the above concentration range. SLS experiments were performed at scattering angles (θ) between 30 and 100°, at 2° intervals. Solutions with concentrations of 0.90 (●), 0.68 (●), and 0.45 (●) mg/mL were used. Derived from Rayleigh-Gans-Debye equation 11, a Zimm plot was used to analyze the SLS data to obtain the molecular weight of the hybrid. The average molecular weight was determined to be (1.58±0.03) x 10⁶ g/mol. Data were obtained using a commercial Brookhaven Instrument LLS spectrometer equipped with a solid-state laser operating at 532 nm.
Figure S19. Hydrolysis of diethyl cyanophosphonate (DECP) catalyzed by linker and monomer. trisBTA linker (▲, 11 μmol) and the monomeric NH2V6 (◆, 5.4 μmol). The trisBTA linker enhances the hydrolytic rate. The monomer exhibits a similar rate of hydrolysis to TBA‐polyV6 (●, 3.9 μmol based on V6 units). The control reaction (■) was run identical conditions as the catalyzed reaction but with the omission of TBA‐polyV6.

Figure S20. Hydrolysis of dimethyl p-nitrophenylphosphate (DMNP) catalyzed by Zr-polyV6. Zr-polyV6 (5.0 mg, 2.45 µmol) and 4 µL (25 µmol) DMNP were added to aqueous 0.45M N-ethylmorpholine (NEM) at pH 10 (●). Reactions were monitored by UV/Vis spectroscopy, detecting the formation of the 4-nitrophenolate hydrolysis product. To ensure a heterogeneous reaction, 5.0 mg of Zr-polyV6 was stirred in 0.45M NEM buffer at pH = 10.00 for two hours, followed by filtration using 0.2 µm syringe filters. The supernatant was collected and 4 µL DMNP were added to initiate the reaction, which exhibited negligible activity (●).
Figure S21. Log plot of the swelling data from Figure 2c. The semi-log plot is roughly linear, suggesting exponential swelling kinetics.

Figure S22. 31P NMR of DMMP after exposure to TBA-polyV₆ for 24 hours. To confirm that TBA-polyV₆ does not react with DMMP after exposure for 24 hours during the gelation experiments, we added 20 mg TBA-polyV₆ to a vial containing 300 μL DMMP and obtained the NMR spectrum after 24 hours demonstrating that negligible conversion to products occurred over this time.
Figure S23. Hydrolysis of dimethyl p-nitrophenylphosphate (DMNP) in the presence of cation exchange resins. Two commercially available cation exchange resins were used to compare their activity towards hydrolysis of DMNP against Zr-polyV₆. Dowex 50WX8-100-H⁺ ion exchange resin (●) and Amberlite IRC86-H⁺ (●) were used under the same conditions as the Zr-polyV₆ experiments in Figure 4. Zr-polyV₆ (●) and control experiments (●) are also shown. The cation exchange resins demonstrate negligible hydrolytic activity under these conditions.

Video S1. Real-time swelling of TBA-polyV₆ particles. Uploaded as a separate attachment.
Video was obtained using a Leica DM4500B bright-field microscope equipped with a COHU solid state CCD camera. A 10X objective lens was used. The TBA-polyV₆ powder was inserted into a 2mm-diameter capillary tube. DMF was added to the tube during video capture. Particle size analysis was conducted using IDL routines.⁵

Video S2. Swelling of TBA-polyV₆ after exposure to DMSO. Uploaded as a separate attachment.
Videos were obtained using an Apple iPhone and were processed using Adobe Premiere software. Video is real-time addition of 500mL of dimethyl sulfoxide to a sample of TBA-polyV₆. DMSO swells the gel upon contact, preventing the liquid from penetrating through the solid powder.
Results and Discussion

Additional characterization

Powder X-ray diffraction conducted on a sample of TBA-polyV₆ shows peaks with maxima at 11.41 Å and 3.87 Å, which correspond to local ordering of V₆ clusters, as anticipated in a material composed of linked V₆ units (Figure S11).

To confirm our assignments of the ¹³C solid-state NMR spectrum for TBA-polyV₆, we obtained spectra with and without dipolar dephasing to determine which carbon peaks are attached to protons, allowing us to distinguish between the methylene carbon and quaternary carbon in the triol units of trisBTA (Figure S12).

We used deconvolution of ¹³C NMR and XPS data to obtain additional information about the structure of the polymer material. Quantitative ¹³C solid-state NMR was conducted without cross-polarization to determine the relative peak areas. Deconvolution of these peaks estimates a ratio of 3 hexavanadate-bound to 2 unbound methylene carbons (Figure S3). Singularly-capped V₆ units are unstable, meaning that each POM is found in its doubly-capped form, confirmed by the presence of a single ⁵¹V NMR peak. The theoretical limit assuming only monomers is 1 bound methylene: 2 unbound methylene, whereas a linear polymer with alternating V₆ and trisBTA units reaches a theoretical ratio of 2 bound methylene: 1 unbound methylene. The polymer can therefore not simply be composed of linear strands and must adopt a complex structure. Deconvolution of the carbon and nitrogen peaks obtained from XPS data determined a ratio of 1.1 V₆ units per trisBTA linker (Figure S4). Theoretically, an infinite 2-dimensional polymer of V₆ units and linker molecules reaches an upper limit of 1.5 V₆: 1 trisBTA, a monomer would have a ratio of 0.5 V₆: 1 trisBTA, and an infinitely long linear polymer would achieve a ratio of 1 V₆: 1 trisBTA. A V₆: trisBTA ratio higher than 1:1 signifies that there are points where a triply-bound linker is creating a closed loop in the polymer. The observed 1.1 V₆: 1 trisBTA ratio for TBA-polyV₆ therefore indicates the presence of roughly 9% closed-loop points in the network. Each closed loop requires two triply-bound linkers, so 18% represents a minimum estimate of the number of triply-bound linkers in the material (Fig. 2d). By compiling the molecular weight estimate from SLS, the ratio of bound linkers to unbound linkers from solid-state ¹³C NMR, and elemental ratios obtained by both NMR and XPS we can infer that TBA-polyV₆ is a cross-linked polymer with a complex non-linear structure.

To obtain an average molecular weight estimate, static light scattering (SLS) measurements conducted on a dispersion of TBA-polyV₆ in DMF/H₂O determined the average molecular weight to be 1600 kDa (Figure S13) indicating the average polymer is comprised of roughly 1,000 monomer units. However, due to low solubility, this molecular weight determination can only be a rough approximation of the average molecular weight, and represents a low estimate.

Gelation behavior

The primary gelation mechanism in 1,3,5-benzenetricarboxamide-based gels is the formation of hydrogen-bonding networks.¹²,¹³ ATR FT-IR studies of TBA-polyV₆ demonstrate a red shift in the amide 1 band of DMF from 1661 cm⁻¹ to 1652 cm⁻¹ upon addition of TBA-polyV₆, indicative of hydrogen bonding interactions between the gelator and the carbonyl oxygen of DMF (Figure S6). Several reports suggest that OP agents interact significantly with hydrogen-bond donors through interactions with the phosphoryl oxygen.¹⁴,¹⁵ Pore-filling by the solvent in the cross-linked polymer is also likely to contribute to the gel formation behavior of TBA-polyV₆.

Catalysis

Our group has investigated several POM-based sulfoxidation systems, which are referenced here for the reader’s convenience.¹⁶⁻²⁰

The color change in TBA-polyV₆ during the aerobic oxidation of sulfides was investigated. The yellow color when the material is dispersed in DMF is reflective of the oxygen-to-metal charge transfer absorption manifold of a fully-oxidized [(V₆O₆)(OR)₆]²⁻ core (R = trisBTA linkers). Upon reduction of the POM, TBA-polyV₆ becomes dark green as a broad peak between 600 and 900 nm increases, attributed to intervalence charge-transfer bands in the reduced POM.²¹ The persistent observation of a green reduced hexavanadate species during the course of the reaction indicates that reoxidation of TBA-polyV₆ by O₂ is rate-limiting under these conditions and demonstrates the colorimetric detection capabilities of the polymer material (Figure S9).

The oxidation of propane thiol is significantly enhanced by the addition of hydrogen peroxide. Adding a 1:1 ratio of hydrogen peroxide to propane thiol results in very rapid conversion to the disulfide product both in the presence and absence of TBA-polyV₆ faster than the timescale of the experiments capable of being observed using a gc instrument. We therefore focused primarily on aerobic oxidation of thiols, which represents a more significant ideal in decontamination/deodorization applications.

When investigating the hydrolytic activity of TBA-polyV₆ towards DECP, we wanted to determine whether the monomeric units would demonstrate activity and if this activity would be retained in the polymeric material. Both trials using trisBTA and the monomer NH₄V₆ show hydrolytic rate enhancements (Fig. S14). These data suggest that both the linker and the hexavanadate core are contributing to catalyzing the hydrolysis of the OP analogue, and that the incorporation of these units into the heterogeneous polymer retains their catalytic activity. Additionally, it should be noted that the hydrolysis of DECP produces HCN, so caution should be employed when using this G-agent analogue.

After substitution of TBA⁺ for tetrameric zirconium hydroxide to form Zr-polyV₆, we wanted to ensure that the reaction was truly heterogeneous. A sample of Zr-polyV₆ was stirred in NEM buffer at pH 10.00 for two hours, followed by filtration using a 2 µm syringe filter to remove the solid
material. The supernatant was found to have negligible catalytic activity, confirming that Zr-polyV₆ catalyzes the hydrolysis as a solid material (Figure S15).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

References

10. C. Wilson, M. Main, N. Cooper, M. E. Briggs, A. I. Cooper and D. Adams, Polymer Chemistry, 2017, DOI: 10.1039/C7PY00040E.