Supporting Information

Visible light photocatalytic decarboxylative monofluoroalkenylation

of α-amino acids with gem-difluoroalkenes

Jingjing Li,^a Quentin Lefebvre,^b Haijun Yang,^a Yufen Zhao^a and Hua Fu*^a

^a Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. E-mail: fuhua@mail.tsinghua.edu.cn

^b School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

1.	General procedures	S2
2.	General procedures for synthesis of 1,1-difluoroalkenes	S2
3.	Optimization of conditions for photocatalytic	decarboxylative
	monofluoroalkenylation	S 4
4.	General procedures for synthesis of compounds 3a-ac	S6
5.	Characterization data of compounds 3a-ac and 7	S 6
6.	References	S26
7.	¹ H, ¹³ C and ¹⁹ F NMR spectra of compounds 3a-ac and 7	S27

1. General procedures

All reactions were carried out in dry solvents under an atmosphere of argon unless otherwise indicated. Reagents including carbonyl compounds and N-protected amino acids *N*-Cbz-proline, *N*-Boc-glycine, (*N*-Boc-proline, N-Boc-alanine, N-Boc-phenylalanine, N-Boc-serine) were purchased from commercial sources. 1,1-Difluoroalkenes were prepared according to the previous procedures. N-Boc-pipecolinic acid and N-Boc-methionine were prepared according to the reported procedures. The reactions were monitored by thin layer chromatography (TLC) and the products were isolated by column chromatography on silica gel. High resolution mass spectra (HRMS) were recorded on a Shimadzu LCMS-IT/TOF quadrupole-time of flight mass spectrometer. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on JNM-ECS 400 using tetramethylsilane (TMS) in the solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm, CHCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.16 ppm).

2. General procedures for synthesis of 1,1-difluoroalkenes

Method A^1

$$\begin{array}{c} O \\ Ph \end{array} \xrightarrow{\mathsf{NH}_2\mathsf{NH}_2 \cdot \mathsf{H}_2\mathsf{O}} \\ Ft \end{array} \xrightarrow{\mathsf{NH}_2\mathsf{NH}_2 \cdot \mathsf{H}_2\mathsf{O}} \\ \mathsf{EtOH, reflux, 12 h} \end{array} \xrightarrow{\mathsf{NNH}_2} \xrightarrow{\mathsf{MnO}_2, \mathsf{MgSO}_4} \xrightarrow{\mathsf{N}_2} \\ \mathsf{CH}_2\mathsf{Cl}_2, \mathsf{rt, 12 h} \xrightarrow{\mathsf{Ph}} \operatorname{Ph} \xrightarrow{\mathsf{Ph}} \operatorname{Ph} \end{array}$$

To a mixture of benzophenone (10 mmol, 1.82 g) and hydrazine monohydrate (80%, 6 mL, 100 mmol) in ethanol (20 mL) was added HOAc (0.2 mL), and the mixture was heated at reflux for 12 h. After cooling to room temperature, ethanol in the resulting solution was removed, and the residue was dissolved in ethyl acetate (50 mL). The separated organic phase was dried over anhydrous Na₂SO₄ and concentrated to give benzophenone hydrazone as a white solid.

Mixed solution of benzophenone hydrazone (10 mmol, 1.96 g), anhydrous MgSO₄ (1.0 g) and CH₂Cl₂ (30 mL) was cooled to 0 °C. To this rapidly stirring mixture was added activated MnO₂ (21.5 mmol, 3.5 g) in one portion. The reaction mixture was

warmed to room temperature and kept stirring for 12 h, then the solid was filtered off and washed with CH₂Cl₂. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography (pretreated with petroleum ether (PE) and Et₃N (PE/Et₃N = 10:1), final purification with PE/Et₃N = 20:1) to afford diphenyldiazomethane as a purple solid, which was kept at - 20 °C.

To a mixture of diphenyldiazomethane (5 mmol, 0.97 g) and NaI (2 mmol, 0.3 g) in THF (50 mL) under Ar was added TMSCF₃ (12 mmol, 1.77 mL) at room temperature, and the reaction mixture was stirred for 18 h until color of the reaction mixture was changed from purple to light yellow. Then ethyl acetate (50 mL) was added, and the mixture was washed with H₂O (20 mL), brine (20 mL) and dried over anhydrous Na₂SO₄. The organic phase was concentrated, and the residue was purified by silica gel column chromatography.

1,1-Difluoroalkenes **2a**, **2i**, **2j**, **2m** and **2n** were prepared according to Method A. Method B²

$$Ph_3P^+CF_2CO_2^- + R_{"}^{\square} \qquad 80 \ ^\circ C, 4 \ h \\ NMP, N_2 \qquad R_{"}^{\square} \qquad R_{"}^{\square}$$

To a 50 mL flask, (triphenylphosphonio)difluoroacetate (6 mmol, 2.14 g) and acetophenone (3 mmol) were mixed with NMP (6 mL). The mixture was degassed and filled with N₂. Then the reaction mixture was stirred at 80 °C for 4 h. After cooling to room temperature, the reaction mixture was treated with 30% H₂O₂ (10 mL), and extracted with ethyl acetate (3 \times 10 mL). The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. The solution was concentrated, and the residue was purified by silica gel column chromatography.

1,1-Difluoroalkenes 20, 2p and 2ab were prepared according to Method B.

Method C³

$$CICF_{2}CO_{2}Na + R \underbrace{\square}_{U} H \xrightarrow{PPh_{3}, 100 \circ C} R \underbrace{\square}_{U} H$$

To a mixture of benzaldehyde (3 mmol) and triphenylphosphine (3.6 mmol, 0.94 mg) in *N*-methylpyrrolidone (6 mL) was added solid ClCF₂CO₂Na (4.5 mmol, 0.68 mg)

slowly at 100 °C under an argon atmosphere, and the reaction mixture was stirred at the same temperature for about 3 h. After completion of the reaction, the reaction mixture was treated with 30% H₂O₂ (10 mL), and extracted with ethyl acetate (3 \times 10 mL). The combined organic phase was washed with brine and dried over anhydrous Na₂SO₄. The solution was concentrated, and the residue was purified by silica gel column chromatography.

1,1-Difluoroalkenes 2q-2aa were prepared according to Method C.

Preparation of 1-(*tert*-butoxycarbonyl)piperidine-2-carboxylic acid (2c) and 2-(*tert*-butoxycarbonyl)amino-4-(methylthio)butanoic acid (2h)⁴

To a mixture of α -amino acid (5 mmol) in dioxane (4 mL) and aqueous 1.25 M NaOH (4 mL) was added Boc₂O (5.25 mmol, 1.14 g) in dioxane (3 mL) at 0 °C in an ice bath under N₂. The mixture was stirred at room temperature for 18 h, and then the organic phase was evaporated in vacuo. The remaining aqueous layer was diluted with aqueous 1 M KHSO₄ (10 mL), and the solution was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and the solvent was removed in vacuo to get product **2c** or **2h**.

3. Optimization of conditions for photocatalytic decarboxylative monofluoroalkenylation

Table S1 Optimization of conditions for photocatalytic decarboxylative monofluoroalkenylation of *N*-Boc-proline (**1a**) with 1-(2,2-difluoro-1-phenylethenyl)benzene (**2a**)^{*a*}

1	А	Cs_2CO_3	DMSO	33
2	А	Na ₂ CO ₃	DMSO	59
3	А	NaHCO ₃	DMSO	65
4	А	Li ₂ CO ₃	DMSO	83
5	А	K ₂ CO ₃	DMSO	44
6	А	K ₃ PO ₄	DMSO	63
7	А	K ₂ HPO ₄	DMSO	74
8	А	KH ₂ PO ₄	DMSO	14
9	А	LiOH	DMSO	60
10	А	LiBr	DMSO	NR
11	А	^t BuOLi	DMSO	55
12	А	-	DMSO	NR
13	А	Li ₂ CO ₃	DMF	70
14	А	Li ₂ CO ₃	THF	7
15	А	Li ₂ CO ₃	CH_2Cl_2	NR
16	А	Li ₂ CO ₃	MeCN	NR
17	А	Li ₂ CO ₃	toluene	NR
18	В	Li ₂ CO ₃	DMSO	31
19	Ir(ppy) ₃	Li ₂ CO ₃	DMSO	5
20	$Ru(ppy)_3Cl_2$	Li ₂ CO ₃	DMSO	NR
21	-	Li ₂ CO ₃	DMSO	NR
22	А	Li ₂ CO ₃	DMSO	75^{c}
23	А	Li ₂ CO ₃	DMSO	76^d
24	А	Li ₂ CO ₃	DMSO	74^e
25	А	Li ₂ CO ₃	DMSO	20 ^f
26	А	Li ₂ CO ₃	DMSO	\mathbf{NR}^{g}

^{*a*} Reaction conditions: argon atmosphere and irradiation of visible light with 23 W CFL, *N*-Boc-proline (**1a**) (0.4 mmol), 1-(2,2-difluoro-1-phenylethenyl)benzene (**2a**) (0.2 mmol), photocatalyst (PC) (4 µmol), base (0.6 mmol), solvent (2 mL), temperature (rt, ~25 °C), time (36 h) in a sealed Schlenk tube. ^{*b*} Isolated yield. ^{*c*} PC (2 µmol). ^{*d*} Base (0.4 mmol). ^{*e*} Time (24 h). ^{*f*} The reaction was performed in air. ^{*g*} The reaction was carried out in the dark. DMSO = dimethyl sulfoxide. DMF = *N*,*N*-dimethylformamide. THF = tetrahydrofuran, *N*-Boc = *N*-tert-butoxycarbonyl. CFL = compact fluorescent light. NR = no reaction.

We started our investigation of the proposed reaction starting with *N*-tertbutoxycarbonyl proline (*N*-Boc-Pro) (1a) and 1-(2,2-difluoro-1-phenylethenyl) benzene (2a)under irradiation of visible light with photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy) (A) and Cs₂CO₃ as base (Table 1). To our delight, we found that the decarboxylative monofluoroalkenylation of 1a with gem-difluoroalkenes was feasible under this catalytic system, generating the target product 3a in 33% yield (entry 1). To optimize the reaction conditions, a series of factors including bases,

photocatalysts and solvents were tested. Among various bases examined (entries 1-11), Li₂CO₃ provided a prominent increase in yield of the decarboxylative monofluoroalkenylation (entry 4, 83% yield). Indeed, literature suggests that the lithium ion is beneficial for the departure of the fluorine atom in related transformations.⁵ No reaction occurred in the absence of base (entry 12). Next, the effect of solvents on the reaction was investigated (entries 13-17), showing that dimethylsulfoxide and dimethyl formamide (entries 4 and 10) were favourable to the progress of the reaction. However, the reaction did not work in dichloromethane, MeCN or toluene (entries 15-17). Other photocatalysts, $Ir(ppy)_2(dtbbpy)PF_6$ (**B**), $Ir(ppy)_3$ and $Ru(ppy)_3Cl_2$, were screened and gave poor results (entries 18-20). No reaction was observed in the absence of photocatalyst (entry 21). Yields decreased when the amount of photocatalyst **A** (entry 22) or base Li₂CO₃ (entry 23) was reduced. Shortening the reaction time led to a lower yield (entry 24). A poor result was obtained when the reaction was performed in air (entry 25) or in the absence of light (entry 26).

4. General procedures for synthesis of compounds 3a-ac

N-Protected α -amino acid (1) (0.4 mmol), substituted *gem*-difluoroalkene (2) (0.2 mmol), Ir[dF(CF₃)ppy]₂(dtbbpy) (A) (4 µmol, 4.5 mg), Li₂CO₃ (0.6 mmol, 44 mg), DMSO (2.0 mL) were added to a 25-mL Schlenk tube. The tube was filled with argon and then sealed, and irradiated with a 23 W fluorescent lamp (approximately 2 cm away from the light source). After the complete conversion of the substrates (monitored by TLC), the reaction mixture was concentrated, and the residue was purified by silica gel column chromatography to give the desired product (**3a-ac**).

5. Characterization data of compounds 3a-ac and 7

tert-Butyl 2-(1-fluoro-2,2-diphenylvinyl)pyrrolidine-1-carboxylate (3a): Eluent: petroleum ether (PE)/ethyl acetate (EA) (20:1). Yield (61 mg, 83%). White solid, mp 125 - 126 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.36 – 7.21 (m, 10H), 4.46 - 4.39 (m, 1H), 3.53 – 3.46 (m, 2H), 2.22 – 2.16 (m, 2H), 2.05 – 1.95 (m, 1H), 1.81 – 1.73 (m, 1H), 1.43 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 156.67 (d, *J* = 264.54 Hz), 154.22, 137.90, 137.50, 130.65 (d, *J* = 1.92 Hz), 129.72 (d, *J* = 4.79 Hz), 128.37, 128.10, 127.60, 127.20, 119.99 (d, *J* = 14.38 Hz), 79.84 (79.20), 55.56 (d, *J* = 24.92 Hz), 47.37, 33.23 (31.78), 28.72, (24.38) 23.80; ¹⁹F NMR (CDCl₃, 564 MHz) rotameric mixture: δ -122.07 (d, *J* = 26.31 Hz) (major), -122.75 (d, *J* = 23.02 Hz) (minor); HRMS (ESI): Calculated for C₂₃H₂₆NNaO₂F, [M+Na]⁺ m/z 390.1840. Found 390.1843.

Benzyl 2-(1-fluoro-2,2-diphenylvinyl)pyrrolidine-1-carboxylate (3b): Eluent: PE/EA (20:1). Yield (60 mg, 75%). White solid, mp 87 – 88 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture. δ 7.41 - 7.17 (m, 14H), 6.92 (d, J = 6.87 Hz, 1H), 5.21 – 4.99 (m, 2H), 4.61 – 4.39 (m, 1H), 3.65 – 3.51 (m, 2H), 2.17 – 2.01 (m, 3H), 1.84 – 1.72 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 156.00 (d, J =261.66 Hz) (major), 155.71 (d, J = 261.66 Hz) (minor), 154.70, 137.84 (major), 137.76 (minor), 137.01, 136.71, 130.55 (major), 130.32 (minor), 129.62 (major), 129.57 (minor), 128.60 (minor), 128.52 (major), 128.35, 128.10, 127.99, 127.73, 127.46, 127.19, 121.16 (d, J = 13.42 Hz) (minor), 120.58 (d, J = 12.46 Hz) (major), 67.14 (major), 66.78 (minor), 56.24 (d, J = 24.92 Hz) (minor), 55.54 (d, J = 24.92 Hz) (major), 47.73 (major), 47.24 (minor), 32.20 (major), 31.20 (minor), 24.60 (minor), 23.97 (major); ¹⁹F NMR (CDCl₃, 564 MHz): rotameric mixture, δ -124.13 (d, J =26.31 Hz) (major), -124.25 (d, J = 29.60 Hz) (minor); HRMS (ESI): Calculated for C₂₆H₂₅FNO₂, [M+H]⁺ m/z 402.1864. Found 402.1864.

tert-Butyl 2-(1-fluoro-2,2-diphenylvinyl)piperidine-1-carboxylate (3c): Eluent: PE/EA (20:1). Yield (54 mg, 71%). White solid, mp 86 -87 °C.¹H NMR (CDCl₃, 400 MHz): δ 7.37 – 7.20 (m, 10H), 5.10 – 5.02 (m, 1H), 4.02 (dd, J = 9.62 Hz, J = 3.21 Hz, 1H), 3.21 (tt, J = 12.82 Hz, J = 3.21 Hz, 1H), 1.97 – 1.92 (m, 1H), 1.78 – 1.66 (m, 4H), 1.47 – 1.41 (m, 1H), 1.32 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.14 (d, J = 270.29 Hz), 155.06, 137.92 (d, J = 7.67 Hz), 137.63, 130.27 (d, J = 1.92 Hz), 129.80 (d, J = 4.79 Hz), 128.49, 128.04, 127.54, 127.17, 120.96 (d, J = 15.34 Hz), 79.77, 49.22 (d, J = 22.04 Hz), 41.78 (d, J = 4.79 Hz), 29.69, 28.38, 24.91, 20.43; ¹⁹F NMR (CDCl₃, 564 MHz) δ -108.65; HRMS (ESI): Calculated for C₂₄H₂₈FNNaO₂, [M+Na]⁺ m/z 404.1996. Found 404.1995.

tert-Butyl (2-fluoro-3,3-diphenylallyl)carbamate (3d): Eluent: PE/EA (20:1). Yield (39 mg, 60%). White solid, mp 76 - 77 °C. ¹H NMR (CDCl₃, 400 MHz) 7.38 – 7.31 (m, 3H), 7.29 – 7.23 (m, 5H), 7.20 – 7.18 (m, 2H), 4.75 (brs, 1H), 4.00 (dd, J = 19.23 Hz, J = 5.50 Hz, 2H), 1.44 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 155.54, 153.30 (d, J = 261.66 Hz), 137.64 (d, J = 6.71 Hz), 136.84, 130.25 (d, J = 2.88 Hz), 129.72 (d, J = 4.79 Hz), 128.68, 128.14, 127.91, 127.52, 122.94 (d, J = 13.42 Hz), 79.85, 40.14 (d, J = 27.80 Hz), 28.46; ¹⁹F NMR (CDCl₃, 564 MHz): δ -113.47 (t, J = 19.51 Hz); HRMS (ESI): Calculated for C₂₀H₂₂NNaO₂F, [M+Na]⁺ m/z 350.1527. Found 350.1529.

tert-Butyl (3-fluoro-4,4-diphenylbut-3-en-2-yl)carbamate (3e): Eluent: PE/EA

(20:1). Yield (51 mg, 75%). White solid, mp 89 - 90 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.37 – 7.23 (m, 10H), 4.84 (brs, 1H), 4.61 – 4.50 (m, 1H), 1.44 (s, 9H), 1.35 (d, *J* = 6.87 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.17 (d, *J* = 262.62 Hz), 154.51, 137.46, 137.05, 130.25 (d, *J* = 2.88 Hz), 129.72 (d, *J* = 4.79 Hz), 128.66, 128.11, 127.82, 127.37, 120.45 (d, *J* = 14.38 Hz), 79.59, 45.84 (d, *J* = 27.80 Hz), 28.47, 19.64; ¹⁹F NMR (CDCl₃, 564 MHz): δ -125.42 (d, *J* = 26.31 Hz); HRMS (ESI): Calculated for C₂₁H₂₄NNaO₂F, [M+Na]⁺ m/z 364.1683. Found 364.1682.

tert-Butyl (3-fluoro-1,4,4-triphenylbut-3-en-2-yl)carbamate (3f): Eluent: PE/EA (20:1). Yield (70 mg, 84%). White solid, mp 85 - 86 °C. ¹H NMR (CDCl₃, 400 MHz) rotameric mixture: δ 7.30 - 7.18 (m, 11H), 7.11 - 7.10 (m, 2H), 6.77 (m, 2H), 5.00 (brs, 1H), 4.70 - 4.61 (m, 1H), 2.97 - 2.94 (m, 2H), 1.46 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 154.46, 153.82 (d, J = 263.58 Hz), 137.02, 130.06 (d, J = 1.92 Hz), 129.64, 129.45 (d, J = 4.79 Hz), 128.46, 128.29, 128.06, 127.58, 127.37, 126.76, 122.60 (d, J = 12.46 Hz), 79.75, 51.73 (d, J = 25.88 Hz), 39.75, 28.44; ¹⁹F NMR (CDCl₃, 564 MHz): δ -125.06 (d, J = 28.18 Hz); ESI: Calculated for C₂₇H₂₈FNNaO₂, [M+Na]⁺ m/z 440.21. Found 440.25.

tert-Butyl (3-fluoro-1-hydroxy-4,4-diphenylbut-3-en-2-yl)carbamate (3g): Eluent: PE/EA (2:1). Yield (53 mg, 82%). White solid, mp 129 - 130 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.23 (m, 10H), 5.08 (brs, 1H), 4.62 – 4.54 (m, 1H), 3.76 – 3.68 (m, 2H), 2.40 (m, 1H), 1.43 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 155.43, 153.47 (d, *J* = 261.66 Hz), 137.21, 136.72, 130.28 (d, *J* = 2.88 Hz), 129.70 (d, *J* = 4.79 Hz), 128.74, 128.15, 128.00, 127.62, 123.37 (d, *J* = 13.42 Hz), 80.25, 63.96, 52.11 (d, *J* = 23 Hz), 28.41; ¹⁹F NMR (CDCl₃, 564 MHz): δ -122.29 (d, *J* = 23.84 Hz); ESI: Calculated for C₂₁H₂₄FNNaO₃, [M+Na]⁺ m/z 380.17. Found 380.15.

tert-Butyl (3-fluoro-1-(methylthio)-4,4-diphenylbut-3-en-2-yl)carbamate (3h): Eluent: PE/EA (20:1). Yield (60 mg, 75%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.39 – 7.21 (m, 10H), 4.92 – 4.90 (m, 1H), 4.66 – 4.53 (m, 1H), 2.50 – 2.43 (m, 2H), 2.02 (s, 3H), 2.00 – 1.91 (m, 2H), 1.45 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 154.78 (d, *J* = 264.54 Hz), 154.64, 137.19, 136.89, 130.30 (d, *J* = 1.92 Hz), 129.65 (d, *J* = 5.75 Hz), 128.68, 128.14, 127.92, 127.51, 122.05 (d, *J* = 16.29 Hz), 79.79, 49.53 (d, *J* = 24.92 Hz), 33.43, 30.38, 28.43, 15.54; ¹⁹F NMR (CDCl₃, 564 MHz): δ 123.96 (d, *J* = 30.34 Hz). ESI: Calculated for C₂₃H₂₈FNNaO₂S, [M+Na]⁺ m/z 424.18. Found 424.15.

tert-Butyl 2-(1-fluoro-2,2-bis(4-fluorophenyl)vinyl)pyrrolidine-1-carboxylate (3i): Eluent: PE/EA (20:1). Yield (73 mg, 91%). White solid, mp 134 -135 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.34 – 7.16 (m, 4H), 7.05 (t, J = 8.70 Hz, 2H), 7.00 – 6.96 (m, 2H), 4.41 – 4.35 (m, 1H), 3.54 – 3.44 (m, 2H), 2.21 – 2.13 (m, 2H), 2.04 – 1.95 (m, 1H), 1.81 – 1.75 (m, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 162.33 (d, J = 247.03 Hz), 161.85 (d, J = 247.03 Hz), 156.84 (d, J = 266.20 Hz), 154.06, 133.67, 133.28, 132.27, 131.32 (dd, J = 7.67 Hz, J = 5.37 Hz), 118.17 (d, J = 15.34 Hz), 115.54 (d, J = 21.48 Hz), 115.15 (d, J = 20.71 Hz), 79.89 (79.34), 55.49 (d, J = 24.55 Hz), 47.40, 33.13 (31.55), 28.71, (24.46) 23.80; ¹⁹F NMR (CDCl₃, 564 MHz): rotameric mixture, δ -113.83 (s) (major), -114.62 (s) (minor), -114.28 (s) (major), -114.80 (s) (minor), -121,58 (d, J = 24.66 Hz) (major), -122.62 (d, J = 24.66 Hz) (minor); ESI: Calculated for C₂₃H₂₅F₃NO₂, [M+H]⁺ m/z

tert-Butyl 2-(2,2-bis(4-chlorophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate (3j): Eluent: PE/EA (20:1). Yield (84 mg, 96%). White solid, mp 99 - 100 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.34 - 7.22 (m, 5H), 7.16 - 7.12 (m, 3H), 4.39 - 4.33 (m, 1H), 3.53 - 3.43 (m, 2H), 2.20 - 1.94 (m, 3H), 1.80 - 1.73 (m, 1H), 1.40 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 157.30 (d, *J* = 269.33 Hz), 153.99, 135.83, 135.46, 133.92, 133.25, 131.90, 130.95 (d, *J* = 5.75 Hz), 128.81, 128.43, 118.04 (d, *J* = 15.34 Hz), 79.98 (79.42), 55.50 (d, *J* = 23.96 Hz), 47.40, 33.12 (31.46), 28.69, (24.52) 23.79; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -119.98 (d, *J* = 26.01 Hz) (major), -121.09 (d, *J* = 26.01 Hz) (minor); ESI: Calculated for C₂₃H₂₅Cl₂FNO₂, [M+H]⁺ m/z 436.12. Found 436.10.

1-Benzyl-2-(2,2-bis(4-chlorophenyl)-1-fluorovinyl)pyrrolidine (3k): Eluent: PE/EA (20:1). Yield (38 mg, 45%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.33 (d, *J* = 8.70 Hz, 2H), 7.30 – 7.21 (m, 7H), 7.08 (d, *J* = 8.70 Hz, 2H), 7.00 (d, *J* = 8.24 Hz, 2H), 3.84 (d, *J* = 13.28 Hz, 1H), 3.36 (d, *J* = 13.28 Hz, 1H), 3.28 (dt, *J* = 28.39 Hz, *J* = 8.24 Hz, 1H), 3.04 – 3.00 (m, 1H), 2.28 – 2.22 (m, 1H), 2.12 – 2.08 (m, 1H), 2.03 – 1.90 (m, 2H), 1.77 – 1.72 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.17 (d, *J* = 267.41 Hz), 139.11, 136.35 (d, *J* = 7.67 Hz), 135.47, 133.82, 133.18, 131.87 (d, *J* = 2.88 Hz), 131.00 (d, *J* = 4.79 Hz), 128.87 (d, *J* = 3.83 Hz), 128.29 (d, *J* = 1.92 Hz), 127.12, 120.89 (d, *J* = 15.34 Hz), 62.04 (d, *J* = 23.00 Hz), 58.26, 54.02, 29.14, 23.19; ¹⁹F NMR (CDCl₃, 282 MHz): δ -119.76 (d, *J* = 26.01 Hz); HRMS (ESI): Calculated for C₂₅H₂₃Cl₂FN, [M+H]⁺ m/z 426.1186. Found 426.1188.

4-(4,4-Bis(4-chlorophenyl)-3-fluorobut-3-en-2-yl)morpholine (3l): Eluent: PE/EA (10:1). Yield (36.6 mg, 48%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.33 (d, *J* = 8.24 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.18 – 7.16 (m, 2H), 7.10 (d, *J* = 8.24 Hz, 2H), 3.72 – 3.62 (m, 4H), 3.30 (dq, *J* = 31.60 Hz, *J* = 6.87 Hz, 1H), 2.62 – 2.59 (m, 2H), 2.42 – 2.39 (m, 2H), 1.32 (d, *J* = 6.87 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.89 (d, *J* = 273.16 Hz), 136.41 (d, *J* = 8.63 Hz), 135.13, 133.98, 133.38, 131.70 (d, *J* = 2.88 Hz), 130.96 (d, *J* = 5.75 Hz), 129.05, 128.42, 67.39, 58.22 (d, *J* = 23.00 Hz), 50.50, 14.87; ¹⁹F NMR (CDCl₃, 282 MHz): δ -114.82 (d, *J* = 26.00 Hz); HRMS (ESI): Calculated for C₂₀H₂₁Cl₂FNO, [M+H]⁺ m/z 380.0979. Found 380.0981.

tert-Butyl 2-(1-fluoro-2-(4-fluorophenyl)-2-phenylvinyl)pyrrolidine-1-carboxylate (3m): Z/E = 2:3. Eluent: PE/EA (20:1). Yield (66 mg, 86%). White solid, mp 107 – 108 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.37 – 7.29 (m, 3H), 7.28 – 7.20 (m, 4H), 7.04 (t, J = 8.70 Hz, 1H), 6.99 – 6.95 (m, 1H), 4.44 – 4.37 (m, 1H), 3.53 – 3.45 (m, 2H), 2.21 – 2.14 (m, 2H), 2.03 – 1.94 (m, 1H), 1.79 – 1.73 (m, 1H), 1.42 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 162.26 (d, J = 247.28 Hz), 161.78 (d, J = 247.28 Hz), 156.82 (d, J = 265.50 Hz), 156.70 (d, J = 269.33 Hz), 154.12, 137.60, 137.30, 133.87, 133.47, 132.30, 131.45 – 131.32 (m), 130.58 (d, J = 2.88 Hz), 129.64 (d, J = 4.79 Hz), 128.48, 128.18, 127.75, 127.34, 119.12, 115.41 (d, J = 21.09 Hz), 115.04 (d, J = 21.09 Hz), 79.85, 55.54 (d, J = 23.96 Hz), 47.38, 33.20, 28.72, 23.80; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -114.11 (major), -114.56 (major), -114.89 (minor), -115.07 (minor), -121.42 (d, J = 26.31 Hz) (major), -122.26 (d, J = 26.31 Hz, 1H), -123.06 (d, J = 26.31 Hz) (minor); ESI: Calculated for C₂₃H₂₆F₂NO₂, [M+H]⁺ m/z 386.19. Found 386.10.

cis-tert-Butyl 2-(2-(2-chlorophenyl)-1-fluoro-2-phenylvinyl)pyrrolidine-1-Carboxylate ((*Z*)-3n): Eluent: PE/EA (20:1). Yield (18 mg, 22%). White solid, mp 117 – 118 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.77 – 7.21 (m, 9H), 4.40 – 4.12 (m, 1H), 3.54 – 3.27 (m, 2H), 2.08 – 1.96 (m, 3H), 1.72 – 1.62 (m, 1H), 1.46 – 1.43 (m, 9H); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ – 120.90 (d, *J* = 19.73 Hz) (minor), – 123.25 (d, *J* = 24.66 Hz) (major); HRMS (ESI): Calculated for C₂₃H₂₅ClFNNaO₂, [M+Na]⁺ m/z 424.1450. Found 424.1455.

trans-tert-Butyl 2-(2-(2-chlorophenyl)-1-fluoro-2-phenylvinyl)pyrrolidine-1-Carboxylate ((*E*)-3n): Eluent: PE/EA (20:1). Yield (57 mg, 71%). White solid, mp 96 – 97 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.44 – 7.38 (m, 2H), 7.32 – 7.23 (m, 7H), 4.74 (dt, *J* = 27.02 Hz, *J* = 6.41 Hz, 1H), 3.53 – 3.44 (m, 2H), 2.27 – 2.14 (m, 2H), 2.05 – 2.00 (m, 1H), 1.83 – 1.81 (m, 1H), 1.51 – 1.39 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 157.58 (d, *J* = 256.87 Hz), 154.20, 136.66, 136.49, 134.12, 131.65, 129.90, 129.76, 128.92, 128.28, 127.46, 126.68, 118.04 (d, *J* = 26.84 Hz), 79.94 (79.23), 54.74 (d, *J* = 23.96 Hz), 47.27, 32.75 (major), 31.26 (minor), 28.69, (24.43) 23.81; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -114.52 (major), -115.10 (minor); HRMS (ESI): Calculated for C₂₃H₂₅ClFNNaO₂, [M+Na]⁺ m/z 424.1450. Found 424.1455.

(*E*/*Z*)-tert-Butyl 2-(1-fluoro-2-(4-(methylsulfonyl)phenyl)prop-1-en-1-yl)piperidine-1-carboxylate (30): Z/E = 1:1. Eluent: PE/EA (20:1). Yield (72 mg, 91%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.83 (t, J = 8.24 Hz, 2H), 7.46 (d, J = 8.24 Hz, 1H), 7.39 (d, J = 8.24 Hz, 1H), 5.13 (dd, J = 29.31 Hz, J = 5.04 Hz, 0.5H), 4.81 (d, J = 28.39 Hz, 0.5H), 3.95 (dd, J = 13.17 Hz, J = 2.99 Hz, 0.5H), 3.84 (d, J =10.53 Hz, 0.5H), 3.04 – 2.94 (m, 4H), 1.98 (d, J = 2.75 Hz, 1.5H), 1.90 (d, J = 3.66Hz, 1.5H), 1.81 – 1.69 (m, 1H), 1.60 – 1.56 (m, 4H), 1.45 – 1.36 (m, 5.5H), 1.24 – 1.17 (m, 4.5H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.99 (d, J = 263.58 Hz), 158.50 (d, J = 265.50 Hz), 154.82, 154.48, 145.08 (d, J = 9.58 Hz), 144.03, 139.01, 138.55, 129.27 (d, J = 2.88 Hz), 129.08 (d, J = 4.79 Hz), 127.43, 127.03, 114.06 (d, J = 21.09Hz), 111.89 (d, J = 11.50 Hz), 79.85, 79.55, 48.16 (d, J = 23.00 Hz), 44.37 (d, J =5.75 Hz), 41.54, 29.17, 28.35, 28.13, 28.04, 24.65, 20.20, 20.15, 16.36, 16.25; ¹⁹F NMR (CDCl₃, 282 MHz): δ -107.03 – -108.19 (m), -109.80 (d, J = 26.01 Hz); HRMS (ESI): Calculated for C₂₀H₂₈FNNaO4S, [M+Na]⁺ m/z 420.1615. Found 420.1615.

cis-tert-Butyl 2-(1-fluoro-2-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)piperidine-1-carboxylate ((*Z*)-3p): Eluent: PE/EA (20:1). Yield (15.4 mg, 20%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.58 – 7.56 (m, 2H), 7.44 – 7.42 (m, 2H), 5.24 – 5.16 (m, 1H), 4.04 – 4.01 (m, 1H), 3.09 – 3.02 (m, 1H), 2.05 – 2.02 (m, 3H), 1.90 – 1.67 (m, 6H), 1.48 – 1.47 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.18 (d, *J* = 263.58 Hz), 155.12, 142.18, 129.03 (q, *J* = 32.59 Hz), 128.69 (d, *J* = 3.83 Hz), 125.10 (d, *J* = 2.88 Hz), 124.31 (q, *J* = 271.25 Hz), 112.44 (d, *J* = 12.46 Hz), 80.07, 48.39 (d, *J* = 23.00 Hz), 41.80, 28.61, 28.37, 24.95, 20.44, 16.70 (d, *J* = 3.83 Hz); ¹⁹F NMR (CDCl₃, 282 MHz): δ -62.44 (s, 3H), -110.79 (d, *J* = 34.68 Hz, 1H); ESI: Calculated for C₂₀H₂₆F₄NO₂, [M+H]⁺ m/z 388.18. Found 388.10.

trans-tert-Butyl 2-(1-fluoro-2-(4-(trifluoromethyl)phenyl)prop-1-en-1-yl)piperidine-1-carboxylate ((*E*)-3p): Eluent: PE/EA (20:1). Yield (41.5 mg, 54%). White solid, mp 68 – 69 °C ¹H NMR (CDCl₃, 400 MHz): δ 7.57 (d, *J* = 7.33 Hz, 2H), 7.34 (d, J = 7.33 Hz, 2H), 4.89 (d, J = 31.14 Hz, 1H), 3.92 (d, J = 12.82 Hz, 1H), 3.11 - 3.05(m, 1H), 1.96 – 1.94 (m, 3H), 1.80 – 1.62 (m, 5H), 1.38 – 1.35 (m, 1H), 1.24 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.90 (d, J = 262.62 Hz), 154.76, 143.25 (d, J =8.63 Hz), 129.35 (q, J = 32.59 Hz), 128.83 (d, J = 2.88 Hz), 125.47 (d, J = 2.88 Hz), 124.26 (q, J = 272.20 Hz), 114.57 (d, J = 21.09 Hz), 79.72, 48.40 (d, J = 23 Hz), 41.68 (d, J = 3.83 Hz), 29.44, 28.27, 24.96, 20.52, 16.55 (d, J = 8.63 Hz); ¹⁹F NMR (CDCl₃, 282 MHz): δ -62.54 (s, 3H), -108.68 – -109.75 (m, 1H); ESI: Calculated for C₂₀H₂₆F₄NO₂, [M+H]⁺ m/z 388.18. Found 388.10.

cis-tert-Butyl 2-(1-fluoro-2-(*p*-tolyl)vinyl)pyrrolidine-1-carboxylate ((Z)-3q):Eluent: PE/EA (20:1). Yield (24 mg, 39%). White solid, mp 78 – 79 °C ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.36 (d, J = 7.79 Hz, 2H), 7.13 (d, J = 6.87 Hz, 2H), 5.52 (d, J = 38.93 Hz, 1H), 4.52 - 4.34 (m, 1H), 3.50 - 3.49 (m, 2H), 2.33 (s, 3H), 2.09 – 1.98 (m, 3H), 1.90 – 1.84 (m, 1H), 1.47 – 1.37 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 159.09 (d, J = 267.41 Hz), 154.43, 136.94, 130.46, 129.30, 128.47, 105.60, 79.92, 58.30 (d, J = 32.59 Hz), (46.82) 46.48, 30.61 (29.85), 28.52, (24.06) 23.24, 21.32; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -116.85 (dd, J = 39.01 Hz, J = 17.34 Hz); ESI: Calculated for C₁₈H₂₄FNNaO₂, [M+Na]⁺ m/z 328.18. Found 328.15.

trans-tert-Butyl 2-(1-fluoro-2-(*p*-tolyl)vinyl)pyrrolidine-1-carboxylate ((*E*)-3q): Eluent: PE/EA (20:1). Yield (19 mg, 31%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.29 – 7.11 (m, 4H), 6.18 (d, J = 21.52 Hz, 1H), 4.78 – 4.71 (m, 1H), 3.52 – 3.43 (m, 2H), 2.33 (s, 3H), 2.25 – 1.96 (m, 3H), 1.85 – 1.79 (m, 1H), 1.46 -1.25 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 160.70 (d, J =261.66 Hz), 154.21, 136.72, 130.50 (d, J = 12.46 Hz), 129.21, 128.70, 108.13 (d, J =

28.75 Hz), 79.92 (79.47), 54.24 (d, J = 24.92 Hz), 47.46 (minor), 47.10 (major), 32.26 (major), 31.51 (minor), 28.50, 24.45 (minor), 23.95 (major), 21.26; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -116.70 – -116.87 (m) (minor), -117.47 – -117.64 (m) (major); ESI: Calculated for C₁₈H₂₄FNNaO₂, [M+Na]⁺ m/z 328.18. Found 328.15.

cis-tert-Butyl 2-(1-fluoro-2-(naphthalen-2-yl)vinyl)piperidine-1-carboxylate ((*Z*)-3r): Eluent: PE/EA (20:1). Yield (38 mg, 54%). White solid, mp 82 – 83 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.93 (s, 1H), 7.83 – 7.80 (m, 3H), 7.69 – 7.67 (m, 1H), 7.49 – 7.45 (m, 2H), 5.73 (d, *J* = 39.84 Hz, 1H), 5.15 – 5.07 (m, 1H), 4.12 (d, *J* = 12.36 Hz, 1H), 3.03 (t, *J* = 12.82 Hz, 1H), 2.16 (d, *J* = 13.28 Hz, 1H), 1.75 – 1.61 (m, 4H), 1.52 – 1.49 (m, 10H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.75 (d, *J* = 273.16 Hz), 155.30, 133.54, 132.49, 130.81, 128.06 (d, *J* = 3.83 Hz), 127.61, 127.53, 126.65 (d, *J* = 7.67 Hz), 126.22, 126.00, 107.03 (d, *J* = 7.67 Hz), 80.18, 51.80 (d, *J* = 24.92 Hz), 40.63, 28.50, 26.26, 25.27, 19.96; ¹⁹F NMR (CDCl₃, 282 MHz): δ -109.37 (d, *J* = 43.35 Hz,); ESI : Calculated for C₂₂H₂₆FNNaO₂, [M+Na]⁺ m/z 378.19. Found 378.20.

trans-tert-Butyl **2-(1-fluoro-2-(naphthalen-2-yl)vinyl)piperidine-1-carboxylate** ((*E*)-**3r**): Eluent: PE/EA (20:1). Yield (25 mg, 35%). White solid, mp 99 – 100 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.82 – 7.79 (m, 3H), 7.68 (s, 1H), 7.50 – 7.43 (m, 2H), 7.37 (d, *J* = 8.24 Hz, 1H), 6.36 (d, *J* = 23.81 Hz, 1H), 5.36 (dd, *J* = 30.22 Hz, *J* = 4.58 Hz, 1H), 4.00 (dd, *J* = 13.05 Hz, *J* = 2.75 Hz, 1H), 3.15 (tt, *J* = 13.28 Hz, *J* = 3.21 Hz, 1H), 2.04 – 2.00 (m, 1H), 1.88 – 1.81 (m, 1H), 1.79 – 1.71 (m, 3H), 1.51 – 1.42 (m, 1H), 1.17 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.52 (d, *J* = 263.58 Hz), 155.12, 133.49, 132.40, 131.00, 128.18, 127.92, 127.66, 127.36 (d, *J* = 2.88 Hz), 126.82 (d, *J* = 1.92 Hz), 126.34, 126.00, 108.77 (d, *J* = 27.80 Hz), 79.85, 48.30 (d, *J* = 23.00 Hz), 41.87, 29.12, 28.16, 24.88, 20.43; ¹⁹F NMR (CDCl₃, 282 MHz): δ -102.24 (t, *J* =

26.01 Hz); ESI: Calculated for C₂₂H₂₆FNNaO₂, [M+Na]⁺ m/z 378.19. Found 378.20.

cis-tert-Butyl 2-(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)piperidine-1-carboxylate ((*Z*)-3s): Eluent: PE/EA (20:1). Yield (40 mg, 52%). White solid, mp 119 – 120 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.63 – 7.57 (m, 6H), 7.46 (t, *J* = 7.23 Hz, 2H), 7.36 (t, *J* = 7.33 Hz, 1H), 5.62 (dd, *J* = 40.30 Hz, *J* = 0.92 Hz, 1H), 5.11 – 5.06 (m, 1H), 4.11 (d, *J* = 12.82 Hz, 1H), 3.00 (t, *J* = 12.82 Hz, 1H), 2.14 (d, *J* = 13.28 Hz, 1H), 1.74 – 1.59 (m, 4H), 1.54 – 1.48 (m, 10H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.64 (d, *J* = 273.11 Hz), 155.27, 140.74, 139.87, 132.33, 129.02 (d, *J* = 7.67 Hz), 128.87, 127.40, 127.19, 127.02, 106.56 (d, *J* = 7.67 Hz), 80.16, 51.75 (d, *J* = 33.75 Hz), 40.59, 28.49, 26.23, 25.26, 19.95; ¹⁹F NMR (CDCl₃, 282 MHz): δ -109.30 (d, *J* = 34.68 Hz); ESI: Calculated for C₂₄H₂₉FNO₂, [M+H]⁺ m/z 382.21. Found 382.10.

trans-tert-Butyl 2-(2-([1,1'-biphenyl]-4-yl)-1-fluorovinyl)piperidine-1-carboxylate ((*E*)-3s): Eluent: PE/EA (20:1). Yield (31 mg, 41%). White solid, mp 99 – 100 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.59 – 7.56 (m, 4H), 7.44 (t, *J* = 7.33 Hz, 2H), 7.37 – 7.29 (m, 3H), 6.24 (d, *J* = 23.36 Hz, 1H), 5.32 (dd, *J* = 31.14 Hz, *J* = 4.58 Hz, 1H), 4.02 (dd, *J* = 11.22 Hz, *J* = 3.21 Hz, 1H), 3.14 (tt, *J* = 12.82 Hz, *J* = 2.75 Hz, 1H), 2.01 – 1.98 (m, 1H), 1.89 – 1.72 (m, 4H), 1.50 – 1.42 (m, 1H), 1.23 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.49 (d, *J* = 263.58 Hz), 155.09, 140.75, 139.92, 132.50 (d, *J* = 13.42 Hz), 129.01 (d, *J* = 2.88 Hz), 128.90, 127.44, 127.30, 127.02, 108.33 (d, *J* = 27.80 Hz), 79.88, 48.09 (d, *J* = 22.04 Hz), 41.78, 29.12, 28.17, 24.87, 20.41; ¹⁹F NMR (CDCl₃, 282 MHz): δ -102.27 (t, *J* = 26.01 Hz); ESI: Calculated for C₂₄H₂₉FNO₂, [M+H]⁺ m/z 382.21. Found 382.10.

2-(1-fluoro-2-(3-methoxyphenyl)vinyl)pyrrolidine-1-carboxylate cis-tert-Butyl ((Z)-3t): Eluent: PE/EA (20:1). Yield (28 mg, 43.5%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.25 – 7.20 (m, 1H), 7.03 – 7.01 (m, 2H), 6.78 – 6.77 (m, 1H), 5.51 (d, J = 38.47 Hz, 1H), 4.47 - 4.37 (m, 1H), 3.79 (s, 3H), 3.49 - 3.48 (m, 2H), 2.20 – 1.99 (m, 3H), 1.88 – 1.85 (m, 1H), 1.46 – 1.41 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 159.83 (d, J = 279.87 Hz), 159.69, 154.39, 134.56, 129.50, 121.18, 113.86 (d, J = 7.67 Hz), 112.98, 105.65, 79.98, 58.28 (d, J = 31.63Hz), 55.28, 46.79 (minor), 46.48 (major), 30.60 (major), 29.65 (minor), 28.52, 24.00 (minor), 23.22 (major); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -114.99 (dd, J = 39.01 Hz, J = 13.00 Hz); ESI: Calculated for C₁₈H₂₄FNNaO₃, [M+Na]⁺ m/z 344.17. Found 344.20.

trans-tert-Butyl 2-(1-fluoro-2-(3-methoxyphenyl)vinyl)pyrrolidine-1-carboxylate ((E)-3t): Eluent: PE/EA (20:1). Yield (28 mg, 43.5%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz) rotameric mixture: δ 7.26 – 7.22 (m, 1H), 7.14 – 6.97 (m, 1H), 6.80 – 6.75 (m, 2H), 6.19 (d, J = 21.52 Hz, 1H), 4.81 – 4.74 (m, 1H), 3.80 (s, 3H), 3.53 – 3.44 (m, 2H), 2.26 – 1.98 (m, 3H), 1.86 – 1.82 (m, 1H), 1.46 – 1.31 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 161.36 (d, J = 264.54 Hz), 159.62, 154.18, 134.85 (d. J = 12.46 Hz), 129.47, 121.35, 114.78, 112.19, 108.15 (d, J = 26.84 Hz), 79.96 (79.52), 55.32, 54.23 (d, J = 23.00 Hz), 47.39 (minor), 47.09 (major), 32.24 (major), 31.28 (minor), 28.49, 24.54 (minor), 23.94 (major); ¹⁹F NMR (CDCl₃, 282 MHz) rotameric mixture: δ -116.83 (m) (minor), -116.38 (m) (major); ESI: Calculated for C₁₈H₂₄FNNaO₃, [M+Na]⁺ m/z 344.17. Found 344.20.

tert-Butyl 2-(1-fluoro-2-(4-methoxyphenyl)vinyl)pyrrolidine-1-carboxylate (3u): Z/E = 3:2. Eluent: PE/EA (20:1). Yield (43 mg, 67%). Colorless oil. ¹H NMR (CDCl₃, S18

400 MHz): rotameric mixture, δ 7.40 – 7.38 (d, J = 8.7 Hz, 2.5H), 7.13 – 7.11 (m, 0.67H), 6.85 (d, J = 8.7 Hz, 3.5H), 6.15 (d, J = 21.52 Hz, 0.66H), 5.47 (d, J = 38.75 Hz, 1H), 4.76 – 4.69 (m, 0.68H), 4.49 – 4.32 (m, 1H), 3.79 (s, 5H), 3.48 – 3.44 (m, 3.33H), 2.23 – 1.97 (m, 5H), 1.88 – 1.80 (m, 1.69H), 1.47 – 1.29 (m, 15H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 158.63, 158.28 (d, J = 270.29 Hz), 154.45, 154.21, 129.94, 129.81, 126.02, 125.90, 113.98, 107.74 (d, J = 35.46 Hz), 105.23, 79.88, 58.29 (d, J = 27.80 Hz), 55.35, 54.15 (d, J = 14.38 Hz), 47.09, 46.48, 32.21, 30.61, 28.53, 23.96, 23.25; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -117.62 – -117.81 (m) (minor), -118.42 – -118.59 (m) (major), -118.84 (dd, J = 39.01 Hz, J = 13.00 Hz); ESI: Calculated for C₁₈H₂₄FNNaO₃, [M+Na]⁺ m/z 344.17. Found 344.20.

cis-tert-Butyl 2-(1-fluoro-2-(4-(methylthio)phenyl)vinyl)piperidine-1-carboxylate ((*Z*)-3v): Eluent: PE/EA (20:1). Yield (29 mg, 41%). White solid, mp 79 – 80 °C. ¹H NMR (CDCl₃, 400 MHz) : δ 7.40 (d, *J* = 8.24 Hz, 2H), 7.20 (d, *J* = 8.24 Hz, 2H), 5.49 (d, *J* = 39.84 Hz, 1H), 5.05 – 4.97 (m, 1H), 4.05 (d, *J* = 12.82 Hz, 1H), 2.94 (t, *J* = 12.82 Hz, 1H), 2.47 (s, 3H), 2.10 – 2.07 (m, 1H), 1.72 – 1.65 (m, 4H), 1.57 – 1.50 (m, 1H), 1.47 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.29 (d, *J* = 272.20 Hz), 155.27, 137.36, 130.14, 128.98 (d, *J* = 7.67 Hz), 126.60, 106.38 (d, *J* = 7.67 Hz), 80.15, 40.58 (d, *J* = 29.71 Hz), 40.58, 28.49, 26.21, 25.25, 19.93, 15.86; ¹⁹F NMR (CDCl₃, 282 MHz): δ -109.86 (d, *J* = 43.35 Hz); ESI: Calculated for C₁₉H₂₇FNO₂S, [M+H]⁺ m/z 352.17. Found 352.10.

trans-tert-Butyl 2-(1-fluoro-2-(4-(methylthio)phenyl)vinyl)piperidine-1-carboxylate ((*E*)-3v): Eluent: PE/EA (20:1). Yield (23 mg, 33%). White solid, mp 83 – 84 °C. ¹H NMR (CDCl₃, 400 MHz) : δ 7.21 (d, *J* = 8.24 Hz, 2H), 7.14 (d, *J* = 8.24 Hz, 2H), 6.14 (d, *J* = 23.81 Hz, 1H), 5.21 (dd, J = 30.68 Hz, J = 4.12 Hz, 1H), 3.97 (dd, J = 13.28 Hz, J = 3.66 Hz, 1H), 3.08 (tt, J = 12.82 Hz, J = 2.75 Hz, 1H), 2.46 (s, 3H), 1.94 – 1.91 (m, 1H), 1.82 – 1.75 (m, 1H), 1.71 – 1.68 (m, 3H), 1.48 – 1.40 (m, 1H), 1.24 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): 163.14 (d, J = 258.79 Hz), 155.08, 137.30, 130.30 (d, J = 13.42 Hz), 129.01 (d, J = 1.92 Hz), 126.87, 108.17 (d, J = 27.80 Hz), 79.89, 48.14 (d, J = 22.04 Hz), 41.80, 29.04, 28.22, 24.85, 20.39, 16.03; ¹⁹F NMR (CDCl₃, 282 MHz) : δ -102.91 (t, J = 26.01 Hz); ESI: Calculated for C₁₉H₂₇FNO₂S, [M+H]⁺ m/z 352.17. Found 352.10.

tert-Butyl 2-(2-(2-chlorophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate (3w): Z/E = 2:3. Eluent: PE/EA (20:1). Yield (38 mg, 58%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.89 – 7.74 (m, 1H), 7.37 – 7.33 (m, 1.68H), 7.25 – 7.14 (m, 4H), 6.32 (d, J = 20.61 Hz, 1H), 5.98 (d, J = 38.01 Hz, 1H), 4.73 – 4.63 (m, 1H), 4.54 – 4.41 (m, 0.66H), 3.51 – 3.42 (m, 3.41H), 2.23 – 1.82 (m, 6.79H), 1.50 – 1.43 (m, 9H), 1.30 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 161.93 (d, J = 258.79 Hz), 160.85 (d, J = 273.16 Hz), 154.28, 154.08, 134.13, 132,71, 131.83 (d, J = 14.38 Hz), 131.14, 130.34, 130.12, 129.64, 129.47, 128.51, 128.24, 126.76, 126.64, 105.81 (d, J = 30.67 Hz), 101.49 (d, J = 29.71 Hz), 80.05 (major), 79.53 (minor), 58.29 (d, J = 32.59 Hz), 53.94 (d, J = 24.92 Hz), 47.29 (minor), 47.04 (major), 46.70(minor), 46.46 (major), 32.11 (major), 31.18 (minor), 30.67 (major), 29.74 (minor), 28.46, 28.30, 24.42 (minor), 23.78 (major), 23.18; ¹⁹F NMR (CDCl₃, 282 MHz) rotameric mixture: -113.21 – -113.40 (m), -113.98 – -114.29 (m), -115.12 – -115.27 (m); ESI: Calculated for C₁₇H₂₂ClFNO₂, [M+H]⁺ m/z 326.12. Found 326.10.

cis-tert-Butyl 2-(2-(4-chlorophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate

((*Z*)-**3**x): Eluent: PE/EA (20:1). Yield (27 mg, 42%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.38 (d, *J* = 8.24 Hz, 2H), 7.28 – 7.25 (m, 2H), 5.61 – 5.45 (m, 1H), 4.49 – 4.35 (m, 1H), 3.48 – 3.38 (m, 2H), 2.08 – 1.88 (m, 3H), 1.87 – 1.86 (m, 1H), 1.46 – 1.40 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 160.18 (d, *J* = 278.91 Hz), 154.35, 132.75, 131.76, 129.74, 128.77, 104.72, 79.99, 58.24 (d, *J* = 31.63 Hz), 46.95 (minor), 46.50 (major), 30.61 (major), 29.80 (minor), 28.52, 24.05 (minor), 23.25 (major); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -114.72 – -114.81 (m); ESI: Calculated for C₁₇H₂₂ClFNO₂, [M+H]⁺ m/z 326.12. Found 326.10.

trans-tert-Butyl 2-(2-(4-chlorophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate ((*E*)-3x): Eluent: PE/EA (20:1). Yield (25 mg, 38%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.36 – 7.25 (m, 3H), 7.13 (m, 1H), 6.15 (d, *J* = 21.07 Hz, 1H), 4.72 – 4.65 (m, 1H), 3.52 – 3.42 (m, 2H), 2.24 – 1.99 (m, 3H), 1.83 – 1.82 (m, 1H), 1.44 – 1.24 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 161.53 (d, *J* = 254.95 Hz), 154.08, 132.84, 131.97 (d, *J* = 13.42 Hz), 130.03, 128.69, 107.26 (d, *J* = 28.75 Hz), 80.02 (major), 79.63 (minor), 54.09 (d, *J* = 23.00 Hz), 47.37 (minor), 47.08 (major), 32.17 (major), 31.30 (minor), 28.48, 24.54 (minor), 23.92 (major); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -115.05 – -115.24 (m); ESI: Calculated for C₁₇H₂₂ClFNO₂, [M+H]⁺ m/z 326.12. Found 326.10.

cis-tert-Butyl 2-(2-(3-bromophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate ((*Z*)-3y): Eluent: PE/EA (20:1). Yield (32 mg, 43%). White solid, mp 84 – 85 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.63 (s, 1H), 7.36 – 7.34 (m, 2H), 7.19 – 7.17 (m, 1H), 5.60 – 5.44 (m, 1H), 4.47 – 4.36 (m, 1H), 3.48 – 3.40 (m, 2H), 2.07 –

1.96 (m, 3H), 1.90 – 1.86 (m, 1H), 1.46 – 1.41 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz) rotameric mixture: δ 160.79 (d, J = 273.16 Hz), 154.30, 135.28, 131.27, 130.07, 127.05, 122.68, 104.49, 80.04, 58.18 (d, J = 31.63 Hz), 46.92 (minor), 46.48 (major), 30.61 (major), 29.78 (minor), 28.50, 24.03 (minor), 23.20 (major); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -113.09 – -113.41 (m); ESI: Calculated for C₁₇H₂₂BrFNO₂, [M+H]⁺ m/z 370.07. Found 370.00.

trans-tert-Butyl 2-(2-(3-bromophenyl)-1-fluorovinyl)pyrrolidine-1-carboxylate ((*E*)-3y): Eluent : PE/EA (20:1). Yield (30 mg, 41%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.53 – 7.35 (m, 2H), 7.21 – 7.13 (m, 2H), 6.14 (d, *J* = 20.61 Hz, 1H), 4.73 – 4.66 (m, 1H), 3.53 – 3.42 (m, 2H), 2.24 – 1.99 (m, 3H), 1.86 – 1.82 (m, 1H), 1.45 – 1.31 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 162.03 (d, *J* = 260.70 Hz), 154.03, 135.61 (d, *J* = 12.46 Hz), (131.90) 131.63, 130.00, (127.68) 127.40, 122.48, 107.06 (d, *J* = 28.75 Hz), 80.12 (79.62), 54.02 (d, *J* = 23.96 Hz), 47.35 (minor) 47.10 (major), 32.14 (major), 31.33 (minor), 28.45, 24.52 (minor) 23.88 (major); ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -113.93 – -114.40 (m); ESI: Calculated for C₁₇H₂₂BrFNO₂, [M+H]⁺ m/z 370.07. Found 370.00.

cis-tert-Butyl (3-fluoro-4-(4-iodophenyl)-1-phenylbut-3-en-2-yl)carbamate ((*Z*)-3z): Eluent: PE/EA (20:1). Yield (27 mg, 29%). White solid, mp 137 – 138 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.61 (d, *J* = 8.24 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.23 – 7.17 (m, 3H), 7.13 (d, *J* = 8.24 Hz, 2H), 5.44 (d, *J* = 38.93 Hz, 1H), 5.00 – 4.55 (m, 2H), 3.02 – 3.00 (m, 2H), 1.43 – 1.40 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.32 (d, *J* = 264.67 Hz), 154.85, 137.63, 136.46, 132.37, 130.47 (d, *J* = 6.90 Hz), 129.46, 128.92, 128.64, 126.99, 106.64, 92.75, 80.23, 53.85 (d, *J* = 32.22 Hz), 38.78, 28.42; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ -114.08 – -115.43 (m); ESI:

Calculated for C₂₁H₂₃FINNaO₂, [M+Na]⁺ m/z 490.08. Found 490.40.

trans-tert-Butyl (3-fluoro-4-(4-iodophenyl)-1-phenylbut-3-en-2-yl)carbamate ((*E*)-3z): Eluent: PE/EA (20:1). Yield (32 mg, 34%). White solid, mp 70 – 71 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.53 (d, *J* = 7.79 Hz, 2H), 7.26 – 7.21 (m, 3H), 7.12 – 7.10 (m, 2H), 6.61 (d, *J* = 7.79 Hz, 2H), 6.10 (d, *J* = 21.07 Hz, 1H), 4.93 – 4.80 (m, 2H), 3.00 – 2.87 (m, 2H), 1.42 (s, 9H); δ ; ¹³C NMR (CDCl₃, 100 MHz): δ 158.45 (d, *J* = 253.99 Hz), 154.60, 137.52, 136.50, 131.99 (d, *J* = 13.42 Hz), 130.40, 129.48, 129.26, 128.90, 128.51, 126.92, 109.47 (d, *J* = 26.84 Hz), 92.81, 80.02, 50.26 (d, *J* = 23.96 Hz), 39.24, 28.40; ¹⁹F NMR (CDCl₃, 282 MHz): δ -117.36 (t, *J* = 26.01 Hz); ESI: Calculated for C₂₁H₂₃FINNaO₂, [M+Na]⁺ m/z 490.08. Found 490.40.

cis-tert-Butyl 2-(2-(4-(ethoxycarbonyl)phenyl)-1-fluorovinyl)pyrrolidine-1carboxylate ((*Z*)-3aa): Eluent: PE/EA (20:1). Yield (25.7mg, 36%). White solid, mp 72 - 73 °C. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.99 – 7.98 (m, 2H), 7.51 (d, *J* = 8.24 Hz, 2H), 5.65 – 5.55 (m, 1H), 4.52 – 4.33 (m, 3H), 3.49 – 3.40 (m, 2H), 2.10 – 1.98 (m, 3H), 1.93 – 1.86 (m, 1H), 1.47 – 1.36 (m, 12H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 166.45, 161.45 (d, *J* = 275.00 Hz) (major), 161.03 (d, *J* = 277.00 Hz) (minor), 154.30, 137.74, 129.85, 128.90, 128.30, 105.15, 80.06, 60.98, 58.30 (d, *J* = 31.63 Hz), 46.94 (minor), 46.52 (major), 30.66 (major), 29.78 (minor), 28.49, 24.07 (minor), 23.27 (major), 14.42; ¹⁹F NMR (CDCl₃, 282 MHz) rotameric mixture: δ -111.78 (dd, *J* = 39.01 Hz, *J* = 13.00 Hz); ESI: Calculated for C₂₀H₂₇FNO₄, [M+H]⁺ m/z 364.18. Found 364.10.

trans-tert-Butyl 2-(2-(4-(ethoxycarbonyl)phenyl)-1-fluorovinyl)pyrrolidine-1carboxylate ((*E*)-3aa): Eluent: PE/EA (20:1). Yield (32.8 mg, 45%).Colorless oil. ¹H NMR (CDCl₃, 400 MHz): rotameric mixture, δ 7.98 (d, *J* = 8.24 Hz, 2H), 7.53 – 7.48 (m, 1H), 7.26 – 7.25 (m, 1H), 6.22 (d, *J* = 21.07 Hz, 1H), 4.76 – 4.69 (m, 1H), 4.35 (q, *J* = 7.28 Hz, 2H), 3.52 – 3.42 (m, 2H), 2.26 – 2.00 (m, 3H), 1.99 – 1.82 (m, 1H), 1.43 – 1.35 (m, 6H), 1.26 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): rotameric mixture, δ 166.38, 162.40 (d, *J* = 260.70 Hz), 154.05, 138.23 (d, *J* = 12.46 Hz), 129.77, 128.98, 128.64, 107.83 (d, *J* = 27.80 Hz), 80.07 (79.58), 61.04 (d, *J* = 10.54 Hz), 54.20 (d, *J* = 23.96 Hz), 47.39 (minor), 47.10 (major), 32.18 (major), 31.32 (minor), 28.45, 24.57 (minor), 23.95 (major), 14.43; ¹⁹F NMR (CDCl₃, 282 MHz) rotameric mixture: δ [-111.69 – -111.87 (m)] -112.82 – -112.99 (m); ESI: Calculated for C₂₀H₂₇FNO₄, [M+H]⁺ m/z 364.18. Found 364.10.

cis-tert-**Butyl 2-(1-fluoro-2-(1-tosyl-1***H***-indol-3-yl)vinyl)piperidine-1-carboxylate ((***Z***)-3ab**): Eluent : PE/EA (20:1). Yield (26 mg, 26%). Colorless oil. ¹H NMR (CDCl₃, 400 MHz): δ 7.98 (d, *J* = 8.24 Hz, 1H), 7.87 (s, 1H), 7.77 (d, *J* = 8.24 Hz, 2H), 7.49 (d, *J* = 7.79 Hz, 1H), 7.31 (t, *J* = 7.79 Hz, 1H), 7.26 – 7.19 (m, 3H), 5.71 (d, *J* = 39.38 Hz, 1H), 5.12 – 5.04 (m, 1H), 4.06 (d, *J* = 12.82 Hz, 1H), 2.98 – 2.95 (m, 1H), 2.31 (s, 3H), 2.13 – 2.10 (m, 1H), 1.76 – 1.59 (m, 4H), 1.55 – 1.44 (m, 10H); ¹³C NMR (CDCl₃, 100 MHz): δ ; ¹⁹F NMR (CDCl₃, 282 MHz): rotameric mixture, δ 159.54 (d, *J* = 273.16 Hz), 155.24, 145.05, 135.28, 134.48, 129.99, 129.66, 126.95, 125.07, 124.93, 123.33, 119.06, 114.30, 113.70, 96.75 (d, *J* = 11.50 Hz), 80.24, 51.53 (d, *J* = 21.09 Hz), 40.68, 28.49, 26.18, 25.23, 21.64, 19.98; ¹⁹F NMR (CDCl₃, 282 MHz): δ -101.98 (d, *J* = 43.35 Hz); HRMS (ESI): Calculated for C₂₇H₃₁FN₂NaO₄S, [M+Na]⁺ m/z 521.1881. Found 521.1884.

trans-tert-Butyl 2-(1-fluoro-2-(1-tosyl-1H-indol-3-yl)vinyl)piperidine-1carboxylate ((*E*)-3ab): Eluent: PE/EA (20:1). Yield (30 mg, 30%). Yellow solid, mp 154 – 155 °C. ¹H NMR (CDCl₃, 400 MHz): δ 8.00 – 7.96 (m, 1H), 7.80 (d, *J* = 8.24 Hz, 2H), 7.59 – 7.54 (m, 1H), 7.44 (d, *J* = 7.79 Hz, 1H), 7.32 (t, *J* = 11.50 Hz, 1H), 7.25 – 7.19 (m, 3H), 6.09 (d, *J* = 21.07 Hz, 1H), 5.18 (dd, *J* = 30.68 Hz, *J* = 4.12 Hz, 1H), 4.00 (dd, *J* = 13.51 Hz, *J* = 4.12 Hz, 1H), 3.16 – 3.08 (m, 1H), 2.31 (s, 3H), 1.92 – 1.81 (m, 2H), 1.72 – 1.70 (m, 3H), 1.50 – 1.45 (m, 1H), 1.13 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz): δ 164.49 (d, *J* = 265.50 Hz), 155.10, 145.09, 135.27, 134.85, 130.74, 130.00, 127.05, 125.20, 123.50, 123.22, 119.46, 115.14 (d, *J* = 13.42 Hz), 113.76, 98.01 (d, *J* = 29.71 Hz), 79.92, 48.45 (d, *J* = 21.09 Hz), 41.97, 28.96, 28.06, 24.83, 21.65, 20.46; ¹⁹F NMR (CDCl₃, 282 MHz): δ -100.83 (t, *J* = 26.01 Hz); HRMS (ESI): Calculated for C₂₇H₃₁FN₂NaO₄S, [M+Na]⁺ m/z 521.1881. Found 521.1880.

2-(1-Fluoro-2,2-diphenylvinyl)tetrahydrofuran (3ac): Eluent: PE/EA (20:1). Yield (42 mg, 78%). White solid, mp 91 – 92 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.38 – 7.22 (m, 10H), 4.56 (dt, *J* = 29.31 Hz, *J* = 7.33 Hz, 1H), 4.01 – 3.96 (m, 1H), 3.84 – 3.80 (m, 1H), 2.19 – 2.02 (m, 3H), 2.01 – 1.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 155.93 (d, *J* = 265.50 Hz), 137.94 (d, *J* = 7.67 Hz), 137.16, 130.57 (d, *J* = 2.88 Hz), 129.88 (d, *J* = 4.79 Hz), 128.45, 128.06, 127.70, 127.44, 123.30 (d, *J* = 14.38 Hz), 75.02 (d, *J* = 25.88 Hz), 69.33, 28.97, 26.95; ¹⁹F NMR (CDCl₃, 282 MHz) : δ -126.31 (d, *J* = 29.60 Hz); ESI: Calculated for C₁₈H₁₈FO, [M+H]⁺ m/z 269.13. Found 269.10.

tert-Butyl ((2S)-1-(((2S)-1-(2-(1-fluoro-2,2-diphenylvinyl)pyrrolidin-1-yl)-1-oxo-3-phenylpropan-2-yl)amino)-1-oxopropan-2-yl)carbamate (7) Eluent: PE/EA (2:1). Yield (84 mg, 72%). Waxy solid. ¹H NMR (CDCl₃, 400 MHz): δ 7.39 - 7.33 (m, 5H), 7.24 - 7.04 (m, 10H), 6.82 (brs, 1H), 4.99 - 4.91 (m, 2H), 4.68 - 4.46 (m, 1H), 4.14 - 4.08 (m, 1H), 3.54 - 3.39 (m, 1H), 3.03 - 2.92 (m, 2H), 2.82 - 2.76 (m, 1H), 1.93 - 1.86 (m, 4H), 1.44 - 1.30 (m, 12H); ¹³C NMR (CDCl₃, 100 MHz): 172.00, 169.34, 155.27 (d, J = 264.54 Hz), 155.18, 138.05 (d, J = 7.67 Hz), 137.20, 136.37, 130.57, 129.62, 129.54, 128.52 (d, J = 5.75 Hz), 128.36, 128.23, 127.94, 127.52, 127.06 (d, J = 6.71 Hz), 120.43 (d, J = 11.50 Hz), 80.02, 56.27 (d, J = 24.92 Hz), 52.49, 50.35, 47.46, 39.69, 30.63, 28.37, 24.49, 18.78; ¹⁹F NMR (CDCl₃, 282 MHz) : δ -119.92 (d, J = 26.01Hz) (minor), -123.26 (d, J = 26.01Hz) (major); ESI: Calculated for C₃₅H₄₁FN₃O₄, [M+H]⁺ m/z 586.30. Found 586.00.

6. References

- 1 M. Hu, C. Ni, L. Li, Y. Han and J. Hu, J. Am. Chem. Soc., 2015, 137, 14496.
- J. Zheng, J. Cai, J. H. Lin, Y. Guo and J. C. Xiao, *Chem. Commun.*, 2013, 49, 7513.
- 3 R. Loska, K. Szachowicz and D. Szydlik, *Cheminform*, 2013, **15**, 5706.
- 4 A. M. King, C. Salom é, J. Dinsmore, E. Salome-Grosjean, M. De Ryck, R. Kaminski, A. Valade and H. Kohn, *J. Med. Chem.*, 2011, 54, 4815.
- 5 M. Bergeron, T. Johnson and J.-F. Paquin, Angew. Chem., Int. Ed., 2011, 50, 11112.

7. ¹H, ¹³C and ¹⁹F NMR spectra of compounds 3a-ac and 7

