Electronic Supplementary Material (ESI) for Chemical Communications.

This journal is © The Royal Society of Chemistry 2017

Pd(NHC)-Catalyzed Alkylsulfonylation of Boronic Acids: A General

and Efficient Approach for Sulfone Synthesis

Haibo Zhu,^a Yajing Shen,^a Qinyue Deng,^a Jinjin Chen^{*^c} and Tao Tu^{*a,b}

 ^a Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China E-mail: <u>taotu@fudan.edu.cn</u>
^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
^c Department of Children Healthcare, Shanghai Children Hospital affiliated to Shanghai Jiaotong University, No.355, Rd.Luding, shanghai, 20062, China

Supporting Information

1.	Ge	neral	2
2.	Exp	perimental sections	2
ź	2.1	General procedure for sulfones	2
ź	2.2	Optimization of reaction conditions	3
ź	2.3	Synthesis of catalyst.	4
3.	Dat	ta for the amination products	5
4.	Cry	ystal structure information for dimeric palladium intermediate 30.	16
5.	^{1}H	NMR, ¹³ C NMR and MS spectra for important compounds	29
6.	Ref	ferences	109

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. Dry dimethylsulfoxide (DMSO) was purchased from J & K chemical, stored over 4 Å molecular sieves and handled under N₂. Anhydrous methanol (MeOH) was distilled from anhydrous calcium chloride, Dioxane, Tetrahydrofuran (THF) and toluene were distilled from sodium/benzophenone, 1,2-Dichloroethane (DCE) was distilled from calcium hydride prior to use. All schlenk tubes and sealed vessels (50 mL) were purchased from Beijing Synthware Glass. CDCl₃ was purchased from Cambridge Isotope Laboratories.¹H NMR and ¹³C NMR spectra were recorded on Jeol ECA-400 and Bruker 400 DRX spectrometers. ¹³C NMR spectra were referenced to the carbon signal of CDCl₃ (77.0 ppm). GC-MS spectra were recorded on Agilent Technologies 1890A GC system and 5975C inert MSD with Triple-Axis Detector.

2. Experimental sections

2.1 General procedure for sulfones.

To a 50 mL schlenk tube containing boronic acid (0.5 mmol), $K_2S_2O_5$ (1.0 equiv), TBAB (1.0 equiv), and NHC palladium complex **1a** (5 mol%) were added and the tube was purged with N₂ for 3 times, followed by 2 mL of Dioxane and *tert*-butyl bromoacetate (2.0 equiv). The resulted reaction mixture was allowed to stir for 24h at 100 °C under the atmosphere of nitrogen. After the completion of the reaction, the resulting mixture was concentrated under the vacuum and directly purified by flash chromatography to give the desired product.

2.2 Optimization of reaction conditions

B(OH) ₂ +	Br $OtBu$ $TBAB, Solvent$ 100 °C	3a
Entry	Solvent	Yield ^b (%)
1	MeOH	NR
2	DMF	43
3	DMSO	NR
4	MeCN	52

Table S1. Solvent effects (excluded data in the Table 1)^{*a*}

^{*a*} Conditions: 4-tolylboronic acid (0.5 mmol, 1.0 equiv), TBAB, $K_2S_2O_5$ (2.0 equiv), **1a** (5 mol%) were stirred in Dioxane (2 mL) about 24 h at 100 ^oC under atmosphere of N_2 . ^{*b*} Isolated yield based on 4-tolylboronic acid.

Table S2.	The	loading	of	TBAB	and	the	source	of	sulfur	dioxide	(excluded	data i	n t	:he
Table 1) ^a														

B(O	$(H)_2 + Br OtB$	u Dioxane, TBAB	3a
Entry	TBAB (equiv)	[SO ₂]	Yield ^b (%)
1	1.1	DABSO	NR
2	1.1	$Na_2S_2O_5$	96
3	1.1	$K_2S_2O_5$	>99
4	0.5	$K_2S_2O_5$	86
5	0.2	$K_2S_2O_5$	54
6	0.1	$K_2S_2O_5$	44
7	/	$K_2S_2O_5$	Trace

^{*a*} Conditions: 4-tolylboronic acid (0.5 mmol, 1.0 equiv), TBAB, sulfur dioxide surrogate (2.0 equiv), **1a** (5 mol%) were stirred in Dioxane (2 mL) about 24 h at 100 ^oC under atmosphere of N_2 . ^{*b*} Isolated yield based on 4-tolylboronic acid.

2.3 Synthesis of catalyst.

Scheme S1. Synthesis of Pd-NHC complex 1a.

Pd-NHC complex 1a:^{S1} To a schlenk tube containing IPr(BIAN) imidazolium chloride (315 mg, 0.57 mmol), [Pd(allyl)Cl]₂ (100 mg, 0.24 mmol), *t*BuOK (76.7 mg, 0.68 mmol) and a stirrer bar, THF (6 mL) was added. The reaction mixture was allowed to stir at room temperature for 24 hours under a nitrogen atmosphere. The reaction mixture was loaded on a plug of silica gel and eluted with DCM. A small amount of silica gel was added and the solvent was removed in vacuo. The product was loaded directly on a silica gel column and purified by flash chromatography to give a yellow solid. Yield: 340 mg, 85%. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.70 (d, *J* = 8.0 Hz, 2H), 7.54 (t, *J* = 8.0 Hz, 2H), 7.39-7.32 (m, 6H), 6.84 (d, *J* = 6.8Hz, 2H), 4.97-4.87 (m, 1H), 3.98 (dd, *J* = 7.2 Hz, *J* = 1.2 Hz, 1H), 3.37-3.27 (m, 3H), 3.16-3.10 (m, 2H), 2.90 (d, *J* = 13.2 Hz, 1H), 1.86 (d, *J* = 12.0 Hz, 1H), 1.37 (dd, *J* = 6.0 Hz, J = 1.6 Hz, 12H), 0.99-0.94 (m,12H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ = 192.95, 146.36, 146.20, 140.34, 134.61, 130.19, 129.87, 129.62, 127.75, 127.29, 126.25, 124.42, 124.16, 121.58, 114.44, 73.56, 50.26, 28.69, 28.65, 25.59, 25.31, 23.79, 23.28.

Scheme S2. Synthesis of Pd-NHC complex 1b.

Pd-NHC complex 1b:^{S2} To a schlenk tube containing IPr(BIAN) imidazolium chloride (346 mg, 0.63 mmol), *t*BuOK (85 mg, 0.76 mmol) and a stirrer bar, THF (20 mL) was added and the reaction was stirred at room temperature 12 h. [Pd(cinnamyl)Cl]₂ (147.6 mg, 0.285

mmol) in 10 mL was added to the resulted mixture. Then the reaction mixture was allowed to stir at 50 °C for 24 hours under a nitrogen atmosphere. The reaction mixture was loaded on a plug of silica gel and eluted with DCM. A small amount of silica gel was added and the solvent was removed in vacuo. The product was loaded directly on a silica gel column and purified by flash chromatography to give a yellow solid. Yield: 526 mg, 60%. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.70 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 7.6 Hz, 4H), 7.36-7.33 (m, 3H), 7.17-7.13 (m, 5H), 6.86 (d, *J* = 7.2 Hz, 2H), 5.17-5.09 (m, 1H), 4.39 (d, *J* = 12.8 Hz, 1H), 3.27-3.22 (m, 6H), 1.34 (d, *J* = 6.4 Hz, 12H), 0.97 (d, *J* = 6.4 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ = 192.27, 146.34, 140.33, 138.07, 134.72, 130.17, 129.81, 129.60, 128.12, 128.02, 127.89, 127.75, 127.49, 127.27, 126.60, 126.27, 124.26, 121.56, 109.05, 90.06, 47.63, 28.69, 28.55, 25.68, 25.43, 23.73, 23.58. HR-MS (ESI): m/z 735.2931 (Calcd. [M-Cl]⁺), 735.2915 (Found. [M-Cl]⁺).

Palladium dimer complex 30: The yellow solid (10 mg) was dissolved in DCM (1 mL) in 10 mL test tube and the open vial was placed in a 50 mL Schlenk tube containing diethyl ether. The Schlenk tube was closed and single crystals were allowed to grow via the process of vapor diffusion in refrigerator during 3 days. The crystals were collected and examined by ¹H NMR and X-ray diffraction analysis. These data can be obtained from The Cambridge Crystallographic Data Centre. ¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.68-7.63 (m, 14H), 7.43-7.39 (m, 7H), 7.35-7.32 (m, 14H), 7.11-7.08 (m, 1H), 6.91-6.89 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ = 134.97, 134.91, 134.85, 130.32, 128.07, 128.02, 127.73, 123.97; ³¹P NMR (161 MHz, CDCl₃): δ = 26.69.

3. Data for the amination products

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.82 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 4.01 (s, 2H), 2.46 (s, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl3, 298 K, ppm) δ 161.20, 145.02, 135.80, 129.55, 128.32, 83.26, 61.97, 27.46, 21.45.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.75-7.74 (m, 2H), 7.48-7.46 (m, 2H), 4.02 (s, 2H), 2.45 (s, 3H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 161.15, 139.29, 138.65, 134.78, 128.92, 128.63, 125.51, 83.38, 62.03, 27.53, 21.19.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.04-8.01 (m, 1H), 7.56-7.52 (m, 1H), 7.41-7.35 (m, 2H), 4.08 (s, 2H), 2.72 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 160.98, 138.06, 136.92, 133.99, 132.58, 130.55, 126.34, 83.38, 61.42, 27.43, 20.17.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.86 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 4.02 (s, 2H), 1.35 (s, 18H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 161.29, 158.04, 135.90, 128.33, 126.07, 83.38, 62.16, 35.24, 30.97, 27.58.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.87 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 4.00 (s, 2H), 3.89 (s, 3H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 164.03, 161.50, 130.72, 130.36, 114.24, 83.39, 62.28, 55.69, 27.65.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.01 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.4 Hz, 2H),

7.63-7.61 (m, 2H), 7.52-7.44 (m, 3H), 4.08 (s, 2H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.25, 146.99, 138.96, 137.36, 129.01, 128.67, 127.64, 127.32, 83.56, 62.12, 27.62.

HR-MS (ESI): m/z 355.0980 (Calcd. [M+Na]⁺), 355.0975 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.01 (d, *J* = 9.2 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 4.05 (s, 2H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.08, 153.21, 137.07, 130.95, 120.79, 83.83, 61.92, 27.56.

¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ = -57.67.

HR-MS (ESI): m/z 363.0490 (Calcd. [M+Na]⁺), 363.0484 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.96-7.94 (m, 2H), 7.70-7.67 (m, 2H), 7.60-7.56 (m, 2H), 4.04 (s, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 161.03, 138.67, 133.95, 128.26, 83.34, 61.83, 27.42.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.54 (s, 2H), 7.28 (s, 1H), 4.01 (s, 2H), 2.40 (s, 6H), 1.37 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 161.13, 139.04, 138.47, 135.57, 125.75, 83.20, 62.03, 27.45, 21.00.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.51-7.49 (m, 2H), 7.16-7.11 (m, 1H), 4.05 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 163.97, 163.86, 162.09, 161.43, 161.32, 160.70, 142.05, 141.97, 141.89, 112.36, 112.27, 112.16, 112.07, 109.98, 109.48, 84.14, 61.66, 27.60.

¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ = -104.92.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.99-7.96 (m, 2H), 7.28-7.24 (m, 2H), 4.04 (s, 2H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 167.15, 164.59, 161.11, 131.45, 131.36, 116.41, 116.18, 83.58, 61.89, 27.51; ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ = -102.60.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.88 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 4.03 (s, 2H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.03, 140.74, 137.24, 129.97, 129.30, 83.68, 61.81, 27.54.

7a: EtO₂C

6b:

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.23 (s, 2H), 8.03 (s, 2H), 4.43 (q, *J* = 7.2 Hz, 2H), 4.06 (s, 2H), 1.42 (t, *J* = 7.2 Hz, 3H), 1.38 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 164.75, 160.89, 142.36, 135.32, 130.04, 128.48, 83.74, 61.71, 61.67, 27.52, 14.08. HR-MS (ESI): m/z 346.1324 (Calcd. [M+NH₄]⁺), 346.1319 (Found. [M+NH₄]⁺).

7b: BocHN

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.84 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 6.80 (s, 1H), 4.00 (s, 2H), 1.53 (s, 9H), 1.39 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.44, 152.04, 144.17, 131.51, 129.72, 117.59, 83.52, 81.42, 62.13, 28.08, 27.57. HR-MS (ESI): m/z 389.1746 (Calcd. [M+NH₄]⁺), 389.1741 (Found. [M+NH₄]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.80 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 4.01 (s, 2H), 2.53 (s, 3H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ = 161.28, 147.81, 134.31, 128.68, 125.03, 83.49, 62.08, 27.60, 14.59.

HR-MS (ESI): m/z 325.0544 (Calcd. [M+Na]⁺), 325.0539 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.17 (s, 4H), 4.09 (s, 2H), 3.11 (s, 3H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, 298 K, ppm) δ 160.82, 145.64, 143.87, 129.81, 128.27, 84.29, 61.65, 44.25, 27.68.

HR-MS (ESI): m/z 357.0442 (Calcd. [M+Na]⁺), 357.0437 (Found. [M+Na]⁺).

10a:

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.69 (dd, *J* = 8.4 Hz, *J* = 0.4 Hz, 1H), 8.4 (dd, *J* = 7.6 Hz, *J* = 1.2 Hz, 1H), 8.17 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.76-7.72 (m, 1H), 7.67-7.60 (m, 2H), 4.24 (s, 2H), 1.25 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.00, 135.61, 134.10, 133.82, 131.31, 129.36, 128.94, 128.71, 127.04, 124.19, 123.67, 83.38, 61.80, 27.49.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.52 (d, J = 0.8 Hz, 1H), 8.01 (t, J = 8.8 Hz, 2H), 7.95-7.89 (m, 2H), 7.71-7.62 (m, 2H), 4.11 (s, 2H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.20, 135.73, 135.37, 131.89, 130.43, 129.42, 129.38, 129.36, 127.94, 127.71, 122.86, 83.52, 62.10, 27.55.

HR-MS (ESI): m/z 329.0823 (Calcd. [M+Na]⁺), 329.0818 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.82-8.80 (m, 1H), 8.77-8.69 (m, 3H), 8.06 (d, *J* = 7.6 Hz, 1H), 7.87-7.83 (m, 1H), 7.81-7.76 (m, 2H), 7.74-7.70 (m, 1H), 4.29 (s, 2H), 1.18 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 160.97, 134.46, 132.73, 132.42, 131.17, 130.73, 130.36, 128.98, 128.17, 127.78, 127.71, 126.07, 124.61, 123.66, 122.78, 83.37, 61.61, 27.43.

HR-MS (ESI): m/z 379.0980 (Calcd. [M+Na]⁺), 379.0975 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.41 (s, 1H), 8.16 (s, 1H), 7.90 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 1H), 4.14 (s, 3H), 4.07 (s, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.45, 141.28, 134.69, 130.99, 125.10, 124.41, 123.12, 109.60, 83.49, 62.38, 35.88, 27.63.

HR-MS (ESI): m/z 311.1066 (Calcd. [M+H]⁺), 311.1060 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.25 (d, *J* = 2.0 Hz, 1H), 7.90-7.88 (m, 1H), 7.79 (d, *J* = 2.0 Hz, 1H), 7.67 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 1.2 Hz, 1H), 4.07 (s, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.34, 157.35, 147.47, 133.55, 127.81, 124.48, 123.08, 112.07, 107.08, 83.44, 62.41, 27.57.

HR-MS (ESI): m/z 319.0616 (Calcd. [M+Na]⁺), 319.0611 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.50 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.33 (d, J = 2.0 Hz,

1H), 6.93 (d, J = 8.4 Hz, 1H), 6.11 (s, 2H), 3.99 (s, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) $\delta = 161.28$, 152.45, 148.06, 131.97, 124.56, 108.37, 108.23, 102.47, 83.42, 62.13, 27.58.

HR-MS (ESI): m/z 323.0565 (Calcd. [M+Na]⁺), 323.0560 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.14-8.13 (m, 1H), 7.48-7.43 (m, 2H), 4.05 (s, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.14, 139.11, 133.52, 127.95, 126.24, 83.46, 62.10, 27.54.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.72 (d, *J* = 1.2 Hz, 1H), 8.25-8.23 (m, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 8.00-7.97 (m, 1H), 7.92-7.90 (m, 1H), 7.58-7.55 (m, 2H), 4.13 (s, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.28, 145.51, 139.82, 135.65, 134.99, 134.32, 127.99, 125.48, 125.22, 123.33, 122.93, 122.19, 122.07, 83.61, 62.41, 27.63. HR-MS (ESI): m/z 385.0544 (Calcd. [M+Na]⁺), 385.0539 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.63 (d, *J* = 15.2 Hz, 1H), 7.54-7.52 (m, 2H), 7.46-7.41 (m, 3H), 7.07 (d, J = 15.6 Hz, 1H), 4.00 (s, 2H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.79, 145.07, 132.00, 131.47, 129.12, 128.63, 124.92, 83.79, 61.20, 27.79. HR-MS (ESI): m/z 305.0823 (Calcd. [M+Na]⁺), 305.0818 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 6.97-6.95 (m, 1H), 3.85 (s, 2H), 2.42-2.38 (m, 2H), 2.31-2.28 (m, 2H), 1.81-1.75 (m, 2H), 1.69-1.63 (m, 2H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 161.48, 141.22, 137.90, 83.18, 58.23, 27.64, 25.42, 23.32, 21.67, 20.58.

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.56 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.34-7.24 (m, 3H), 7.11-7.09 (m, 2H), 4.29 (s, 2H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.62, 134.95, 130.80, 128.62, 128.43, 128.38, 128.18, 125.80, 62.86, 30.98, 27.35.

19a: *t*Bu

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.58 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.07 (d, *J* = 7.6 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 4.25 (s, 2H), 2.33 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.50, 138.51, 135.09, 130.65, 129.15, 128.36, 125.78, 124.99, 62.52, 35.14, 30.98, 21.14.

HR-MS (ESI): m/z 325.1238 (Calcd. [M+Na]⁺), 325.1233 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.62 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.52-7.43 (m, 6H), 7.38-7.34 (m, 1H), 7.19 (d, J = 8.4 Hz, 2H), 4.34 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.67, 141.43, 140.17, 135.04, 131.21, 128.76, 128.38, 127.56, 127.10, 127.02, 126.97, 125.86, 62.51, 35.16, 30.97.

HR-MS (ESI): m/z 387.1395 (Calcd. [M+Na]⁺), 387.1389 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 8.14 (d, *J* = 8.8 Hz, 4H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.50 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.8 Hz, 2H), 4.38 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 158.39, 148.05, 135.40, 134.60, 131.78, 128.30, 126.20, 123.56, 62.14, 30.96, 27.35.

HR-MS (ESI): m/z 356.0932 (Calcd. [M+H]⁺), 356.0927 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.65-7.62 (m, 4H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.52-7.44 (m, 3H), 4.54 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 158.29, 134.48, 132.76, 132.65, 132.09, 131.57, 129.21, 128.36, 126.16, 116.50, 114.33, 60.46, 35.17, 30.88.

HR-MS (ESI): m/z 314.1215 (Calcd. [M+H]⁺), 314.1219 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.63-7.56 (m, 3H), 7.52-7.41 (m, 4H), 7.26 (s, 1H), 4.30 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 158.41, 135.19, 134.32, 134.12, 132.24, 129.96, 129.42, 128.35, 126.16, 117.88, 112.71, 62.01, 35.29, 30.96. HR-MS (ESI): m/z 314.1215 (Calcd. [M+H]⁺), 314.1209 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.61-7.59 (m, 4H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.28-7.26 (m, 2H), 4.35 (s, 2H), 1.36 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 158.31, 134.61, 133.48, 132.15, 131.54, 128.30, 126.15, 118.21, 112.70, 62.46, 30.97, 27.36. HR-MS (ESI): m/z 314.1215 (Calcd. [M+H]⁺), 314.1213 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.56 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.10-7.07 (m, 2H), 6.98-6.94 (m, 2H), 4.25 (s, 2H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 164.25, 157.86, 132.61, 132.52, 128.40, 125.95, 115.66, 115.45, 61.99, 31.01, 27.38; ¹⁹F NMR (CDCl₃, 376 MHz, 298 K): δ = -112.61. HR-MS (ESI): m/z 307.1168 (Calcd. [M+H]⁺), 307.1163 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.82 (d, *J* = 7.6 Hz, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.50-7.46 (m, 3H), 7.41 (d, *J* = 8.8 Hz, 2H), 7.24 (dd, *J* = 8.4 Hz, *J* = 1.6 Hz, 1H), 4.45 (s, 2H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.50, 134.68, 132.85, 132.82, 130.39, 128.01, 127.76, 127.70, 127.48, 126.43, 126.16, 125.70, 125.56, 62.88, 30.82, 27.21.

HR-MS (ESI): m/z 339.1419 (Calcd. [M+H]⁺), 339.1413 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.93 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 4.34 (s, 2H), 3.92 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 166.46, 157.92, 134.69, 133.17, 130.80, 130.29, 129.57, 128.32, 125.94, 62.53, 52.16, 35.18, 30.93.

HR-MS (ESI): m/z 347.1317 (Calcd. [M+H]⁺), 347.1315 (Found. [M+H]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.67-7.57 (m, 3H), 7.48-7.41 (m, 4H), 7.14 (d, *J* = 8.4 Hz, 2H), 6.43 (d, *J* = 16 Hz, 1H), 4.30 (s, 2H), 3.81 (s, 3H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 167.11, 157.85, 143.81, 134.88, 134.66, 131.31, 130.21, 128.32, 128.01, 125.92, 118.59, 62.54, 51.70, 35.18, 30.95.

HR-MS (ESI): m/z 395.1293 (Calcd. [M+Na]⁺), 395.1288 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.92 (d, J = 7.2 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H),

7.62-7.59 (m, 1H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.46 (t, *J* = 8.0 Hz, 2H), 4.72 (s, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 188.06, 158.15, 135.77, 134.18, 129.19, 128.74, 128.37, 126.16, 63.43, 30.96, 27.34.

HR-MS (ESI): m/z 317.1211 (Calcd. [M+H]⁺), 317.1219 (Found. [M+H]⁺).

25b: *t*Bu

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.78 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.38-7.34 (m, 3H), 7.30-7,27 (m, 2H), 5.12 (s, 2H), 4.14 (s, 2H), 1.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 162.26, 158.13, 135.53, 134.41, 128.51, 128.28, 127.96, 127.12, 126.11, 67.89, 60.89, 35.18, 30.91.

HR-MS (ESI): m/z 369.1136 (Calcd. [M+Na]⁺), 369.1131 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.86 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 4.14 (q, *J* = 14.4 Hz, *J* = 7.2 Hz, 2H), 4.10 (s, 2H), 1.35 (s, 9H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 162.33, 158.14, 135.62, 128.27, 126.08, 62.13, 60.95, 35.17, 30.88, 13.69.

HR-MS (ESI): m/z 307.0980 (Calcd. [M+Na]⁺), 307.0975 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.84 (d, *J* = 8.4 Hz, 2H), 7.58 (d, *J* = 8.8 Hz, 2H), 4.22 (s, 2H), 3.77 (t, *J* = 4.4 Hz, 2H), 3.70 (t, *J* = 4.0 Hz, 2H), 3.65-3.61 (m, 4H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 159.78, 158.11, 135.72, 128.06, 126.16, 66.45, 66.38, 59.36, 47.36, 42.50, 35.17, 30.87.

HR-MS (ESI): m/z 348.1245 (Calcd. [M+Na]⁺), 348.1240 (Found. [M+Na]⁺).

28a: *t*Bu

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.82 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.8 Hz, 2H), 3.07 (t, *J* = 8.0 Hz, 2H), 1.74-1.67 (m, 2H), 1.44-1.37 (m, 2H), 1.36 (s, 9H), 0.90 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.39, 136.12, 127.80, 126.15, 56.03, 35.15, 30.98, 24.51, 21.46, 13.43.

HR-MS (ESI): m/z 277.1238 (Calcd. [M+Na]⁺), 277.1233 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.82 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 3.06 (t, *J* = 8.0 Hz, 2H), 1.75-1.68 (m, 2H), 1.35 (s, 9H), 1.32-1.22 (m, 18H), 0.87 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 157.46, 136.24, 127.88, 126.21, 56.37, 35.23, 31.88, 31.06, 29.55, 29.45, 29.30, 29.24, 28.99, 28.28, 22.66, 22.60, 14.10.

HR-MS (ESI): m/z 389.2490 (Calcd. [M+Na]⁺), 389.2485 (Found. [M+Na]⁺).

¹H NMR (CDCl₃, 400 MHz, 298 K): δ = 7.85-7.80 (m, 4H), 7.75-7.72 (m, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 3.78 (t, *J* = 6.8 Hz, 2H), 3.15 (t, *J* = 8.0 Hz, 2H), 2.15-2.08 (m, 2H), 1.34 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ = 168.09, 157.72, 135.63, 134.13, 131.79, 127.93, 126.33, 123.34, 53.96, 36.26, 35.21, 30.99, 22.39.

HR-MS (ESI): m/z 386.1426 (Calcd. [M+H]⁺), 386.1421 (Found. [M+H]⁺).

4. Crystal structure information for dimeric palladium intermediate 30.

Figure S1 Molecular structure of palladium sulfinate dimer intermediate 30.

Table 1. Crystal data and structure refi	nement for 30 .		
Identification code	mo_61121aa		
Empirical formula	C48 H40 Cl2 O4 P2 Pd2 S2		
Formula weight	1090.56		
Temperature	173(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P21212		
Unit cell dimensions	a = 15.3761(15) Å	= 90°.	
	b = 17.6529(17) Å	= 90°.	
	c = 8.9032(9) Å	= 90°.	
Volume	2416.6(4) Å ³		
Z	2		
Density (calculated)	1.499 Mg/m ³		
Absorption coefficient	1.048 mm ⁻¹		
F(000)	1096		
Crystal size	0.490 x 0.410 x 0.340 mm ³		
Theta range for data collection	1.756 to 27.538°.		
Index ranges	-11<=h<=19, -22<=k<=19, -1 S17	.1<=l<=6	

Reflections collected	12143
Independent reflections	5521 [R(int) = 0.0238]
Completeness to theta = 25.242°	98.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.647 and 0.585
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5521/0/271
Goodness-of-fit on F ²	1.101
Final R indices [I>2sigma(I)]	R1 = 0.0368, wR2 = 0.1282
R indices (all data)	R1 = 0.0397, wR2 = 0.1375
Absolute structure parameter	-0.004(15)
Extinction coefficient	n/a
Largest diff. peak and hole	0.768 and -1.257 e.Å ⁻³

Table 2.	Atomic coordinates	(x 10^4) and equivalent	isotropic displacement
parameter	rs (Å ² x 10 ³)		

for **30**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	х	У	Z	U(eq)	
Pd(1)	9129(1)	524(1)	6848(1)	17(1)	
P(1)	7775(1)	259(1)	7717(2)	16(1)	
S(1)	9044(1)	1728(1)	7671(2)	22(1)	
Cl(1)	10591(1)	739(1)	5988(2)	25(1)	
O(1)	8237(3)	1938(3)	8442(6)	27(1)	
O(2)	9298(4)	2213(3)	6409(7)	36(1)	
C(1)	9863(5)	1828(4)	9087(9)	24(1)	
C(2)	9664(5)	1641(4)	10544(9)	28(2)	
C(3)	10270(7)	1771(6)	11703(12)	47(2)	
C(4)	11062(7)	2087(6)	11334(13)	49(3)	
C(5)	11262(6)	2281(6)	9869(15)	52(3)	
C(6)	10664(6)	2148(5)	8719(11)	35(2)	
C(7)	7387(4)	-698(3)	7340(8)	20(1)	
C(8)	7302(5)	-914(4)	5882(9)	27(2)	
C(9)	6968(5)	-1641(5)	5498(11)	35(2)	
C(10)	6705(5)	-2126(5)	6669(13)	40(2)	
C(11)	6788(6)	-1907(5)	8107(13)	41(2)	
C(12)	7123(5)	-1188(5)	8443(10)	33(2)	
C(13)	7816(5)	325(4)	9696(8)	25(2)	
C(14)	8464(5)	-87(4)	10500(8)	26(2)	
C(15)	8579(6)	-4(5)	12033(9)	35(2)	
C(16)	8052(6)	489(5)	12816(8)	36(2)	
C(17)	7408(6)	893(5)	12095(9)	39(2)	
C(18)	7285(5)	813(4)	10556(8)	28(2)	
C(19)	6887(4)	843(4)	6961(10)	23(1)	
C(20)	7046(5)	1417(4)	5960(8)	23(1)	
C(21)	6358(5)	1818(5)	5336(8)	27(2)	
C(22)	5510(5)	1635(5)	5739(9)	30(2)	

C(23)	5353(5)	1073(5)	6715(12)	38(2)
C(24)	6038(5)	680(4)	7445(9)	27(2)

_

Pd(1)-S(1)	2.2516(17)
Pd(1)-P(1)	2.2699(18)
Pd(1)-Cl(1)#1	2.3963(17)
Pd(1)-Cl(1)	2.4047(17)
Pd(1)-Pd(1)#1	3.2551(9)
P(1)-C(13)	1.767(7)
P(1)-C(7)	1.822(6)
P(1)-C(19)	1.838(7)
S(1)-O(1)	1.465(5)
S(1)-O(2)	1.466(6)
S(1)-C(1)	1.791(8)
Cl(1)-Pd(1)#1	2.3963(17)
C(1)-C(2)	1.372(11)
C(1)-C(6)	1.394(11)
C(2)-C(3)	1.410(12)
C(3)-C(4)	1.379(16)
C(4)-C(5)	1.383(18)
C(5)-C(6)	1.396(14)
C(7)-C(8)	1.360(10)
C(7)-C(12)	1.371(11)
C(8)-C(9)	1.423(11)
C(9)-C(10)	1.409(14)
C(10)-C(11)	1.344(16)
C(11)-C(12)	1.402(12)
C(13)-C(18)	1.413(11)
C(13)-C(14)	1.427(10)
C(14)-C(15)	1.384(11)
C(15)-C(16)	1.378(12)
C(16)-C(17)	1.379(13)
C(17)-C(18)	1.390(11)
C(19)-C(20)	1.371(11)
C(19)-C(24)	1.405(10)
C(20)-C(21)	1.388(10)
C(21)-C(22)	1.391(12)
C(22)-C(23)	1.341(13)
C(23)-C(24)	1.419(11)

Table 3.	Bond lengths [[Å] and angles	[°] for 30 .

S(1)-Pd(1)-P(1)	91.73(6)
S(1)-Pd(1)-Cl(1)#1	172.99(7)
P(1)-Pd(1)-Cl(1)#1	94.70(6)
S(1)-Pd(1)-Cl(1)	90.53(6)
P(1)-Pd(1)-Cl(1)	176.80(6)
Cl(1)#1-Pd(1)-Cl(1)	82.93(7)
S(1)-Pd(1)-Pd(1)#1	125.76(5)
P(1)-Pd(1)-Pd(1)#1	129.62(5)
Cl(1)#1-Pd(1)-Pd(1)#1	47.42(4)
Cl(1)-Pd(1)-Pd(1)#1	47.20(4)
C(13)-P(1)-C(7)	104.9(3)
C(13)-P(1)-C(19)	110.7(4)
C(7)-P(1)-C(19)	102.1(3)
C(13)-P(1)-Pd(1)	107.1(3)
C(7)-P(1)-Pd(1)	115.4(2)
C(19)-P(1)-Pd(1)	116.1(2)
O(1)-S(1)-O(2)	115.9(3)
O(1)-S(1)-C(1)	103.9(3)
O(2)-S(1)-C(1)	107.1(4)
O(1)-S(1)-Pd(1)	116.2(2)
O(2)-S(1)-Pd(1)	106.6(3)
C(1)-S(1)-Pd(1)	106.3(2)
Pd(1)#1-Cl(1)-Pd(1)	85.37(6)
C(2)-C(1)-C(6)	121.1(8)
C(2)-C(1)-S(1)	119.0(6)
C(6)-C(1)-S(1)	119.7(6)
C(1)-C(2)-C(3)	120.3(9)
C(4)-C(3)-C(2)	118.4(10)
C(3)-C(4)-C(5)	121.4(9)
C(4)-C(5)-C(6)	120.3(9)
C(1)-C(6)-C(5)	118.5(9)
C(8)-C(7)-C(12)	118.6(7)
C(8)-C(7)-P(1)	117.9(5)
C(12)-C(7)-P(1)	123.4(6)
C(7)-C(8)-C(9)	121.1(8)
C(10)-C(9)-C(8)	118.3(8)
C(11)-C(10)-C(9)	120.2(8)

C(10)-C(11)-C(12)	119.9(9)
C(7)-C(12)-C(11)	121.9(9)
C(18)-C(13)-C(14)	116.3(6)
C(18)-C(13)-P(1)	124.1(6)
C(14)-C(13)-P(1)	119.4(6)
C(15)-C(14)-C(13)	122.0(7)
C(16)-C(15)-C(14)	119.4(8)
C(15)-C(16)-C(17)	120.8(7)
C(16)-C(17)-C(18)	120.3(8)
C(17)-C(18)-C(13)	121.1(8)
C(20)-C(19)-C(24)	121.1(7)
C(20)-C(19)-P(1)	121.4(5)
C(24)-C(19)-P(1)	117.5(6)
C(19)-C(20)-C(21)	120.0(7)
C(20)-C(21)-C(22)	119.5(7)
C(23)-C(22)-C(21)	120.5(7)
C(22)-C(23)-C(24)	121.7(7)
C(19)-C(24)-C(23)	116.7(7)

Symmetry transformations used to generate equivalent atoms:

#1 -x+2,-y,z

Table 4.	Anisotropic displacement parameter	(Å ² x 10 ³) for 30 .	The anisotropic	
displaceme	nt factor exponent takes the form:	-2	2[h ² a*2U ¹¹ +	+ 2 h k a* b*

U¹²]

	U11	U22	U33	23 _ل	U13	U12
Pd(1)	16(1)	17(1)	18(1)	1(1)	0(1)	2(1)
P(1)	19(1)	17(1)	13(1)	1(1)	1(1)	1(1)
S(1)	23(1)	15(1)	27(1)	2(1)	0(1)	1(1)
Cl(1)	23(1)	24(1)	29(1)	8(1)	5(1)	3(1)
O(1)	21(2)	30(3)	29(3)	-6(2)	-1(2)	3(2)
O(2)	40(3)	23(3)	46(3)	7(2)	2(3)	1(2)
C(1)	24(3)	19(3)	29(4)	-9(3)	-3(3)	2(3)
C(2)	32(4)	23(3)	29(4)	-2(3)	-5(3)	7(3)
C(3)	50(5)	45(5)	47(5)	-20(5)	-8(5)	16(4)
C(4)	38(5)	44(5)	65(6)	-27(5)	-24(5)	16(4)
C(5)	26(4)	36(5)	94(9)	-26(5)	-9(5)	-6(4)
C(6)	31(4)	29(4)	44(4)	-4(3)	1(4)	-5(3)
C(7)	18(3)	9(3)	32(3)	1(2)	-3(3)	-2(2)
C(8)	29(4)	29(4)	24(3)	-5(3)	3(3)	-6(3)
C(9)	31(4)	32(4)	43(5)	-13(4)	-1(4)	-2(3)
C(10)	27(4)	25(4)	67(6)	-4(4)	-1(4)	-1(3)
C(11)	36(4)	34(4)	54(5)	9(4)	1(5)	-8(4)
C(12)	30(4)	33(4)	36(4)	3(3)	-3(3)	-4(3)
C(13)	23(3)	23(3)	28(4)	7(3)	-1(3)	-3(3)
C(14)	37(4)	22(3)	21(3)	-2(3)	-2(3)	6(3)
C(15)	48(5)	34(4)	21(3)	3(3)	-5(3)	3(4)
C(16)	57(5)	36(4)	16(3)	3(3)	2(3)	2(4)
C(17)	48(5)	42(5)	26(4)	-9(3)	6(4)	4(4)
C(18)	32(4)	27(3)	24(3)	0(3)	2(3)	6(3)
C(19)	17(3)	10(3)	42(4)	-7(3)	-5(3)	2(2)
C(20)	25(3)	27(4)	16(3)	-4(3)	0(3)	0(3)
C(21)	32(4)	34(4)	16(3)	2(3)	-2(3)	4(3)

C(22)	30(4)	29(4)	32(4)	-6(3)	-8(3)	8(3)
C(23)	17(3)	41(4)	56(5)	3(4)	-3(4)	1(3)
C(24)	26(4)	19(3)	35(4)	0(3)	-1(3)	2(3)

	x	У	Z	U(eq)
H(2)	9115	1422	10772	34
H(3)	10137	1644	12714	56
H(4)	11480	2172	12103	59
H(5)	11808	2506	9645	62
H(6)	10800	2273	7708	42
H(8)	7469	-575	5106	33
H(9)	6923	-1794	4478	42
H(10)	6469	-2610	6440	48
H(11)	6619	-2239	8895	50
H(12)	7169	-1037	9464	40
H(14)	8828	-429	9968	32
H(15)	9016	-284	12541	42
H(16)	8134	552	13866	44
H(17)	7047	1228	12652	46
H(18)	6835	1092	10075	33
H(20)	7627	1541	5693	27
H(21)	6466	2214	4639	33
H(22)	5038	1910	5320	36
H(23)	4768	934	6924	46
H(24)	5929	324	8223	32

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x

10 ³)

for **30**.

Table 6. Torsion angles [°] for **30**.

O(1)-S(1)-C(1)-C(2)	36.0(7)
O(2)-S(1)-C(1)-C(2)	159.2(6)
Pd(1)-S(1)-C(1)-C(2)	-87.1(6)
O(1)-S(1)-C(1)-C(6)	-138.9(6)
O(2)-S(1)-C(1)-C(6)	-15.8(7)
Pd(1)-S(1)-C(1)-C(6)	97.9(6)
C(6)-C(1)-C(2)-C(3)	0.1(12)
S(1)-C(1)-C(2)-C(3)	-174.8(6)
C(1)-C(2)-C(3)-C(4)	-0.2(12)
C(2)-C(3)-C(4)-C(5)	0.7(14)
C(3)-C(4)-C(5)-C(6)	-1.2(15)
C(2)-C(1)-C(6)-C(5)	-0.5(12)
S(1)-C(1)-C(6)-C(5)	174.4(7)
C(4)-C(5)-C(6)-C(1)	1.0(13)
C(13)-P(1)-C(7)-C(8)	-179.1(6)
C(19)-P(1)-C(7)-C(8)	65.3(7)
Pd(1)-P(1)-C(7)-C(8)	-61.6(6)
C(13)-P(1)-C(7)-C(12)	5.4(7)
C(19)-P(1)-C(7)-C(12)	-110.2(7)
Pd(1)-P(1)-C(7)-C(12)	122.9(6)
C(12)-C(7)-C(8)-C(9)	-1.6(12)
P(1)-C(7)-C(8)-C(9)	-177.3(6)
C(7)-C(8)-C(9)-C(10)	1.6(12)
C(8)-C(9)-C(10)-C(11)	-1.2(13)
C(9)-C(10)-C(11)-C(12)	1.0(14)
C(8)-C(7)-C(12)-C(11)	1.3(12)
P(1)-C(7)-C(12)-C(11)	176.8(7)
C(10)-C(11)-C(12)-C(7)	-1.1(14)
C(7)-P(1)-C(13)-C(18)	-114.5(7)
C(19)-P(1)-C(13)-C(18)	-5.1(8)
Pd(1)-P(1)-C(13)-C(18)	122.4(6)
C(7)-P(1)-C(13)-C(14)	70.7(6)
C(19)-P(1)-C(13)-C(14)	-179.8(6)
Pd(1)-P(1)-C(13)-C(14)	-52.3(6)
C(18)-C(13)-C(14)-C(15)	-1.2(12)
P(1)-C(13)-C(14)-C(15)	174.0(7)

-

C(13)-C(14)-C(15)-C(16)	0.1(14)
C(14)-C(15)-C(16)-C(17)	0.8(14)
C(15)-C(16)-C(17)-C(18)	-0.6(15)
C(16)-C(17)-C(18)-C(13)	-0.5(14)
C(14)-C(13)-C(18)-C(17)	1.4(12)
P(1)-C(13)-C(18)-C(17)	-173.6(7)
C(13)-P(1)-C(19)-C(20)	120.8(6)
C(7)-P(1)-C(19)-C(20)	-128.0(6)
Pd(1)-P(1)-C(19)-C(20)	-1.6(7)
C(13)-P(1)-C(19)-C(24)	-59.3(7)
C(7)-P(1)-C(19)-C(24)	51.9(7)
Pd(1)-P(1)-C(19)-C(24)	178.3(5)
C(24)-C(19)-C(20)-C(21)	-4.0(11)
P(1)-C(19)-C(20)-C(21)	175.9(6)
C(19)-C(20)-C(21)-C(22)	0.3(11)
C(20)-C(21)-C(22)-C(23)	-0.5(12)
C(21)-C(22)-C(23)-C(24)	4.3(13)
C(20)-C(19)-C(24)-C(23)	7.4(11)
P(1)-C(19)-C(24)-C(23)	-172.5(6)
C(22)-C(23)-C(24)-C(19)	-7.6(13)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,z

5. ¹H NMR, ¹³C NMR and MS spectra for important compounds.

Bruker Compass DataAnalysis 4.0 printed: 6/7/2016 2:15:14 PM Page 1 of 1

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\2016MS\TT\0908\H-12_RE7_01_11005.d tune_200-800_hcoona-pos-2.5min.m H-12

Display Report

Acquisition Date 9/8/2016 2:16:38 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Analysis Info

Analysis Name D:\Data\2016MS\TT\1202\H5_RB5_01_12553.d Method tune_200-800_hcoona-pos-8min.m Sample Name H5 Acquisition Date 12/2/2016 10:23:57 PM

Operator gftang

Instrument / Ser# micrOTOF II 10257

Analysis Info

Analysis Name D:\Data\2016MS\TT\1202\H4_RB4_01_12552.d Method tune_200-800_hcoona-pos-8min.m Sample Name H4 Acquisition Date 12/2/2016 10:14:24 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

S53

Analysis Info

Analysis Name Method Sample Name Comment

 Image
 D:\Data\2016MS\TT\0908\H-3_RD6_01_10996.d

 tune_200-800_hcoona-pos-2.5min.m

 ame
 H-3

Acquisition Date 9/8/2016 1:40:14 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Bruker Compass DataAnalysis 4.0 printed: 9/13/2016 2:27:56 PM Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 9/13/2016 2:43:43 PM

S56

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\2016MS\TT\1202\H3_RB3_01_12551.d tune_200-800_hcoona-pos-8min.m H3 Acquisition Date 12/2/2016 10:04:52 PM

Operator gftang

Instrument / Ser# micrOTOF II 10257

Acquisition Date 9/8/2016 2:00:27 PM

Analysis Info Analysis Name Method Sample Name

D:\Data\2016MS\TT\0908\H-8_RE3_01_11001.d tune_200-800_hcoona-pos-2.5min.m H-8 Comment

gftang Operator micrOTOF II Instrument / Ser# 10257

Bruker Compass DataAnalysis 4.0 printed: 9/13/2016 2:32:35 PM Page 1 of 1

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\2016MS\TT\0908\H-5_RD8_01_10998.d tune_200-800_hcoona-pos-2.5min.m H-5

9/8/2016 1:48:19 PM Acquisition Date

Operator gftang

Instrument / Ser# micrOTOF II 10257

Acquisition Para	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.6 Bar	
Focus	Not active			Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set Capillary	2500 V	Set Dry Gas	4.0 l/min	
Scan End	1000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste	

Bruker Compass DataAnalysis 4.0 printed: 9/13/2016 2:29:45 PM

Analysis Name Method Sample Name Comment

me D:\Data\2016MS\TT\0908\H-7_RE2_01_11000.d tune_200-800_hcoona-pos-2.5min.m ne H-7 Acquisition Date 9/8/2016 1:56:24 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Analysis Info

Analysis Name Method Sample Name Comment

Name D:\Data\2016MS\TT\0908\H-6_RE1_01_10999.d tune_200-800_hcoona-pos-2.5min.m ame H-6 Acquisition Date 9/8/2016 1:52:21 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Analysis Info

Analysis Name Method Sample Name Comment

D:\Data\2016MS\TT\0908\H-4_RD7_01_10997.d tune_200-800_hcoona-pos-2.5min.m H-4

Acquisition Date 9/8/2016 1:44:16 PM

Operator gftang

Instrument / Ser# micrOTOF II 10257

Bruker Compass DataAnalysis 4.0 printed: 9/13/2016 2:28:53 PM

D:\Data\2016MS\TT\0908\16_BD3_01_11080.d

tune_200-800_hcoona-pos-6min.m

9/13/2016 2:51:33 PM Acquisition Date

Operator gftang Instrument / Ser# micrOTOF II 10257

Analysis Info Analysis Name Method Sample Name Comment

Acquisition Parameter

16

Bruker Compass DataAnalysis 4.0 printed:

Analysis Info

Analysis Name Method Sample Name Comment

lame D:\Data\2016MS\TT\0908\H-2_RD5_01_10995.d tune_200-800_hcoona-pos-2.5min.m ame H-2 Acquisition Date 9/8/2016 1:36:11 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Bruker Compass DataAnalysis 4.0

printed: 9/13/2016 2:16:21 PM

Page 1 of 1

Bruker Compass DataAnalysis 4.0 printed: 6/7/2016 2:21:39 PM Page 1 of 1

Analysis Info Acquisition Date 9/8/2016 1:32:09 PM Analysis Name D:\Data\2016MS\TT\0908\H-1_RD4_01_10994.d Method tune_200-800_hcoona-pos-2.5min.m gftang Operator Instrument / Ser# micrOTOF II 10257 Sample Name H-1 Comment **Acquisition Parameter** Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve Source Type Focus Scan Begin ESI Not active 50 m/z 0.6 Bar 180 ℃ 4.0 I/min Ion Polarity Positive Set Capillary Set End Plate Offset 2500 V -500 V 1000 m/z Scan End Waste Intens. x10⁵ +MS, 0.2min #11 307.0969 2.5-2.0-591.2050 1.5-393.1332 1.0-0.5 677.2404 763.2773 226.9515 0.0 100 200 800 500 900 300 400 700 6**0**0 m/z Intens. x10⁵ +MS, 0.2min #11 307.0969 2.5 2.0 1.5 1.0 0.5 0.0 C14H20O4S, M+nNa ,307.10 2500 307.0975 2000 1500 1000 500-0 305 315 300 310 320 m∕z

S101

printed:

Bruker Compass DataAnalysis 4.0

9/13/2016 2:15:32 PM

Page 1 of 1

Display Report

Analysis Info

Analysis Name Method Sample Name Comment

ame D:\Data\2016MS\TT\1108\H2_BC4_01_12041.d tune_200-800_hcoona-pos-2.5min.m H2 Acquisition Date 11/8/2016 4:08:46 PM

Operator gftang Instrument / Ser# micrOTOF II 10257

Bruker Compass DataAnalysis 4.0 printed: 11/9/2016 10:59:28 AM Page 1 of 1

6. References.

- S1 W. Fang, Q. Deng, M. Xu and T. Tu, Org. Lett., 2013, 15, 3678-3681.
- S2 G. Jung, Y. T. Lee, S. Y. Choi, D. S. Choi, Y. K. Kang and Y. K. Chung, J. Organomet. Chem., 2009, 694, 297-303.