Supporting Information

Experimental details

To synthesis the Ag$_9$GaSe$_6$ compound, high purity raw elements, Ag (shots, 99.999%, Alfa Aesar), Ga (shots, 99.999%, Alfa Aesar), and Se (pieces, 99.999%, Alfa Aesar) were weighted out in stoichiometric proportions and then sealed in silica tubes under vacuum. The tubes were heated to 1373 K and held at this temperature for 12 hours before quenching into cold water. Then, the quenched ingots were annealed at 873 K for 5 days. Finally, the products were ground into fine powders and sintered by Spark Plasma Sintering (Sumitomo SPS-2040) at 813–833 K under a pressure of 40 MPa for 10 minutes. High densities (> 99% of the theoretical density) were obtained for all samples.

Characterization methods

The phase purity and crystal structure were examined by the powder X-ray diffraction (PXRD) with Cu Kα radiation at 300 K. The electrical conductivity and Seebeck coefficient were measured by using ZEM-3 (ULVAC) from 300 to 800 K. The thermal conductivity was calculated from $\kappa = DC_p\rho$, where the thermal diffusivity (D) was obtained by using a laser flash method (Netzsch LFA 457), the specific heat (C_p) was measured by differential scanning calorimetric (Netzsch DSC 404F3), and the density (ρ) was measured by using the Archimedes method. Hall coefficient (R_H) was measured in a Physical Property Measurement System (Quantum Design) by sweeping the magnetic field up to 3 T in both positive and negative directions. Hall carrier concentration (p_H) and Hall mobility (μ_H) were estimated by $p_H = 1/eR_H$ and $\mu_H = \sigma R_H$, respectively. Measurements of the transverse and longitudinal sound velocities were performed on a sample with a diameter of 10 mm and a thickness of 2 mm using an Advanced Ultrasonic Measurement System (TECLAB).

Calculation details$^{1-5}$

Average sound velocity (v_o) is calculated from the sound velocity
where v_l is the longitudinal sound velocity and v_t is the transverse sound velocity.

Young’s modulus (E) is calculated by

$$E = \frac{\rho v_l^2 (3v_t^2 - 4v_l^2)}{(v_t^2 - v_l^2)},$$ \quad (2)

where ρ is the sample density.

Poisson ratio (ν_p) is calculated by

$$\nu_p = \frac{1 - 2(v_t/v_l)^2}{2 - 2(v_t/v_l)^2}. \quad (3)$$

Shear modulus (G) is calculated by

$$G = \frac{E}{2(1 + \nu_p)}. \quad (4)$$

The Gruneisen parameter (γ) is calculated by

$$\gamma = \frac{3(1 + \nu_p)}{2(2 - 3\nu_p)}. \quad (5)$$

Debye temperature (θ_D) is calculated by

$$\theta_D = \frac{h}{k_B} \left(\frac{3N}{4\pi V} \right)^{1/3} v_a,$$ \quad (6)

where h is Planck’s constant, k_B is the Boltzmann constant, N is the number of atoms in the primitive unit cell ($N = 64$ for Ag$_9$GaSe$_6$) and V is the unit cell volume.

Phonon mean free path (l) is calculated by

$$\kappa_L = \frac{1}{3} C_V v_a l,$$ \quad (7)

where C_V is the heat capacity at constant volume.

Table S1 Sound velocities (longitudinal sound velocity v_l, transverse sound velocity v_t, average sound velocity v_a) and lattice thermal conductivity κ_L of Ag$_9$GaSe$_6$. The elastic properties (Young’s modulus E, Shear modulus G, Poisson ratio ν_p), the Gruneisen parameter γ, Debye temperature θ_D and phonon mean free path l are
derived based on Eq. (1)-(7) based on the measured sound velocity.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>κ_l (Wm$^{-1}$K$^{-1}$)</th>
<th>ν_l (ms$^{-1}$)</th>
<th>ν_i (ms$^{-1}$)</th>
<th>ν_a (ms$^{-1}$)</th>
<th>E (GPa)</th>
<th>G (GPa)</th>
<th>ν_F</th>
<th>γ</th>
<th>θ_0 (K)</th>
<th>l (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.23</td>
<td>2865</td>
<td>1130</td>
<td>1281</td>
<td>26.25</td>
<td>9.321</td>
<td>0.408</td>
<td>2.72</td>
<td>137.1</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Fig. S1 (a) Temperature dependence and (b) Hall carrier concentration (n) dependence of PF_s for Ag$_9$GaSe$_{6-x}$. The solid curve in Fig. S1b shows the calculated curve based on the single parabolic band (SPB) model with $m^* = 0.11m_e$ dominated by acoustic phonon scattering.

References