Electronic Supplementary Information (ESI)

Two solvent-induced porous hydrogen-bonded organic frameworks:

Solvent-effect on structure and functionality

Hailong Wang,^a Zongbi Bao,^{a,c} Hui Wu,^b Rui-Biao Lin,^a Wei Zhou,^b Tong-Liang Hu,^d Bin Li,^a John Cong-Gui Zhao,^a and Banglin Chen^{*,a}

^a Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas

78249-0698, USA, Email: banglin.chen@utsa.edu

^b NIST Center for Neutron Research, National Institute of Standards & Technology, Gaithersburg, Maryland 20899-6102, USA

^c Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^d School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China

S1. Experimental Section

General Remarks. All reagents and solvents have been purchased from commercial suppliers and utilized directly without further purification. The building block, DAT-TPE, has been prepared according to the reported literature.¹ NMR spectrum was recorded on a Varian INOVA 500 MHz spectrometer at room temperature. Thermal (TGA) was performed Shimadzu **TGA-50** gravimetric analysis on а thermogravimetric analyzer under N₂ atmosphere with a heating rate of 3 °C/min. Powder X-ray diffraction (PXRD) data were collected on a Rigaku Ultima IV diffractometer which was operated at 40 kV for CuKa ($\lambda = 0.1543$ nm) radiation. UVvis absorption spectra were collected on a Cary 5000 UV-vis-NIR spectrophotometer, and diffused reflectance spectra were recorded on the same spectrophotometer using KBr as reflectance standard at room temperature. Room-temperature solid-state fluorescence spectroscopic studies were performed on an F4500 (Hitachi) spectrofluorometer. Energy-dispersive X-ray spectroscopy (EDX) analyses were performed on a SIRION-100 instrument which was performed on a dried powder sample. X-ray photoelectron spectroscopy (XPS) measurements to confirm the presence of Ag(I) were performed on a combined VG ESCALAB MARK II instrument. Gas sorption isotherms of activated HOFs were measured on a Micromeritics ASAP 2020 surface area analyzer, and the measurement temperature was maintained at 77 K with liquid nitrogen, 196 K with a dry ice-acetone slurry, 273 K with an ice-water bath, and 296 K with a water bath in an air-conditioned 23 °C laboratory. FTIR spectra were performed at a Bruker Vector 22 infrared spectrometer at room temperature.

Syntheses of HOF-10 and HOF-5. Nearly colorless needle-shaped crystals of HOF-10 were obtained using the slow diffusion of THF vapor into a mixed DMF/DMSO (4 mL, v:v = 1:1) solution containing DAT-TPE (60~115 mg) at room temperature. While slightly pale yellowish block-shaped crystals of HOF-5 were prepared through the slow diffusion of THF vapor into a 6 mL DMF/DMSO (v:v = 2:1) solution containing DAT-TPE 65 mg.¹

Fluorescence Sensing of HOF-10 and HOF-5 towards Different Metals. The treated HOF-10 and HOF-5 samples were prepared by introducing HOF powder (about 25 mg) into a 40.0 mL THF/water (v:v = 100:1) solution of $M(NO_3)_x$ (M = Na⁺, Ag⁺, Ca²⁺, Cd²⁺; Co²⁺, Cu²⁺, Mn²⁺; Ni²⁺, and Zn²⁺) with the concentration of 5.0 mM for two hours. These treated phases were isolated by filtration and directly used to measure the solid luminescence.

Activation of HOF-10 and HOF-5. The as-synthesized HOF-10 and HOF-5 crystals were exchanged with dry acetone for six times and then degassed to 6 μ mmHg at room temperature to afford activated phases HOF-10a and HOF-5a, respectively.

X-ray Crystallographic Investigation of HOF-10 and HOF-5. Crystallographic data of HOF-10 and HOF-5 single crystals were collected on an Oxford Diffraction SuperNova diffractometer with Cu K α radiation ($\lambda = 1.54184$ Å) at 100.00(16) K. The structure was solved based on the direct method (SHELXS-97) and refined utilizing full-matrix least-squares (SHELXL-97) on $F^{2,2}$ In order to reveal the solvent effect on the crystal structure, we tried to resolve the solvent molecules in HOF-10 and HOF-5. However, because of the seriously disordered solvent molecules in the HOF-10 and HOF-5 pores, PLATON/SQUEEZE program still was utilized to remove these disordered molecules in the pores.³ Selected crystallographic data and pertinent information for these two phases are summarized in Table S1. CCDC 1567204 and 1052040 for HOF-10 and HOF-5, respectively, contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from Crystallographic the Cambridge Data Centre via www.ccdc.cam.ac.uk/data request/cif.

S2. Characterizations and Properties Section

Figure S1. Crystal photos of HOF-10 (a) and HOF-5 (b).

Figure S2. Crystal structures of HOF-10 and HOF-5 showing (a) neighboring DATs and DMSO molecules in HOF-10 connected through the hydrogen bonding; (b) neighboring DATs and solvent molecules in HOF-5 connected through the hydrogen bonding interactions; (c and d) hydrogen-bonded supramolecular grids in HOF-10 and HOF-5, respectively (carbon: black; hydrogen: white; nitrogen: blue; oxygen: red; sulfur: yellow; other solvent molecules are omitted for clarity)

Figure S3. Crystal structure of HOF-10 showing (a) the organic building block acting as a 4-connected node (cyan ball); (b) DMSO-bridged neighboring DATs connected through the hydrogen bonding [the center acting as a 4-connected node (red ball)]; (c) a single binodal (4,4)-connected net; (d) a 2-fold interpenetrated topology.

Figure S4. Crystal structure of HOF-5 showing (a) the organic building block acting as a 4-connected node (cyan ball); (b) six neighboring DATs connected through the hydrogen bonding and weak van der Waals interactions [the center acting as a 6-connected node (red ball)]; (c) a binodal (4,6)-connected net.

Figure S5. ¹H NMR spectrum of HOF-10 (DMF: square, THF: triangle, DMSO: circle). * denotes DMSO- d_6 solvent impurity.

Figure S6. Powder X-ray diffraction profile of as-synthesized HOF-10 in the presence of mother liquid (blue line), in comparison with a simulated powder pattern based on the single-crystal HOF-10 structure (black line).

Figure S7. TGA curve of HOF-10 in the range of 25-800°C under N₂ atmosphere.

Figure S8. N_2 adsorption isotherms of HOF-10a and HOF-5a at 77 K (solid symbols: adsorption, open symbols: desorption).

Figure S9. CO₂ adsorption isotherm of HOF-10 and HOF-5a at 196 K.

Figure S10. Powder X-ray diffraction profile of as-synthesized HOF-10a (blue line) in comparison with a powder pattern of as-synthesized HOF-10 (black line).

Figure S11. Comparison of DAT-TPE linkers in HOF-10 (yellow bond) and HOF-5 (blue bond) (carbon: black; hydrogen: white; nitrogen: blue).

Figure S12. Fluorescence spectra of HOF-10, HOF-5, and ETTC at room temperature (excitation wavelength: 360 nm)

Figure S13. Diffused reflectance spectra of HOF-10, HOF-5, and ETTC at room temperature.

Figure S14. Digital photograph under sunlight (top) and UV irradiation at 365 nm (bottom).

Figure S15. Maximum wavelength of emission peak of HOF-10 after immersion in Ag⁺ solution for different time (excitation wavelength: 360 nm).

Figure S16. Maximum wavelength of emission peak of HOF-5 after immersion in Ag⁺ solution for different time (excitation wavelength: 360 nm).

Figure S17. Emission spectra of HOF-10 after immersion in Ag⁺ solution with different concentrations (excitation wavelength: 360 nm).

Figure S18. Emission spectra of HOF-5 after immersion in Ag^+ solution with different concentrations (excitation wavelength: 360 nm).

Figure S19. Fluorescence spectra (a) and digital photograph under UV irradiation (b) of as-made HOF-10 samples after treatment with THF/water solutions containing different metal ions.

Figure S20. Fluorescence spectra (a) and digital photograph under UV irradiation (b) of as-made HOF-5 samples after treatment with THF/water solutions containing different metal ions.

Figure S21. PXRD patterns of as-made HOF-10 samples after treatment with THF/water solutions containing different metal ions.

Figure S22. PXRD patterns of as-made HOF-5 samples after treatment with THF/water solutions containing different metal ions.

Figure S23. Fluorescence spectra of as-made HOF-5-Ag⁺ sample after treatment with a THF/water solution containing KSCN (5.0 mM).

Figure S24. Element Analysis for HOF-10-Ag⁺ by EDX.

46.338

0.979

50.253

1.747

47.571

1.358

Figure S25. Element Analysis for HOF-5-Ag⁺ by EDX.

1.346

Ag

Figure S26. XPS spectra of Ag⁺-incorporated HOFs.

Figure S27. N1s XPS spectra of HOFs and Ag⁺-treated HOFs (solid line represents fitting line, dotted straight line for comparison).

Figure S28. IR spectra of HOFs and Ag⁺-treated HOFs (HOF-10: black, Ag⁺-HOF-10: blue, HOF-5: red, Ag⁺-HOF-10: yellow).

Figure S29. N1s XPS spectra of HOFs and metal-treated HOFs (solid line represents fitting line, dotted straight line for comparison).

crystal data	HOF-10	HOF-5
system	monoclinic	monoclinic
space group	C2/c	<i>C</i> 2/c
MF ^[a]	$C_{46}H_{56}N_{20}O_4S_4$	$C_{62}H_{84}N_{22}O_7S$
FW ^[a]	1081.35	1281.57
<i>a</i> /Å	34.2654(9)	21.6470(5)
b/Å	22.1261(9)	22.0832(5)
c /Å	9.8254(3)	14.1759(3)
<i>α</i> /º	90	90
ß/o	105.358(2)	92.692(2)
$\gamma / ^{o}$	90	90
volume /Å ³	7183.2(4)	6769.1(3)
Ζ	4	4
density /g/cm ³	1.000	1.258
solvent-accessible4	55.2	56.6
void space /%		
theoretical pore	0.78 ^[b]	0.75 ^[b]
volume /cm ³ /g		
refinement	$R_1 = 0.0819$ ^[c]	$R_1 = 0.1243$ [c]
parameters	$wR_2 = 0.2344^{[d]}$	$wR_2 = 0.3846$ ^[d]

Table S1. The crystallographic and refinement parameters for HOF-10 and HOF-5.

^[a] Molecular formula (MF) and formula weight (FW) were calculated based on the crystal structures after using the Platon/Squeeze program; ^[b]Calculated based on the HOF crystal structures using PLATON software; ^[c] $R_1 = \Sigma |F_0| + |F_0| + |F_0| + |F_0| + |\Sigma| |F_0|$; ^[d] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$.

D-H···A	distance of D····A	angle of D-H···A
	(Å)	(0)
HOF-10		
N1-H1A…O1#1	2.919	159.70
N1-H1B…O2#2	2.866	152.70
N2-H2A…N10#3	3.023	149.41
N2-H2B…N8#4	3.178	153.77
N6-H6A…O1#5	2.899	139.49
N6-H6B…O2#6	2.958	159.17
N7-H7A…N3#7	2.981	177.14
HOF-5		
N4-H4A…N7#1	2.924(4)	175.8
N4-H4B…N6#2	2.986(4)	176.3
N5-H5B…N3#3	3.030(5)	153.8
N9-H9A…N2#4	3.193(4)	166.8
N9-H9B…N1#2	3.385(4)	160.5
N10-H10B…O6	2.873(5)	144.0
N5-H5A…O7	2.856(8)	165.1

Table S2. Comparison of the hydrogen bonding interactions and close contact in the crystal structures of HOFs and activated phases.

Symmetric code for HOF-10, #1: -x+1/2, y-1/2, -z+3/2, #2: -x+1/2, -y+1/2, #3: -z+1, -x+1, -y, -z+1, #4: x - 1/2, y - 1/2, z - 1, #5: -x+1, y, -z+3/2, #6: -x+1, -y+1, -z+1, #7: x+1/2, y+1/2, z+1. For HOF-5, #1: 1.5-x, 0.5+y, 1.5-z, #2: 1.5-x, 1.5-y, 1-z, #3: 1-x, y, 1.5-z, #4: 1.5-x, -0.5 +y, 1.5-z.

Reference:

- (1) H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang and B. Chen, *J. Am. Chem. Soc.*, 2015, **137**, 9963.
- (2) G. M.Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, A64, 112
- (3) (a) A. L. Spek, Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009, 65, 148; (b) A. L. Spek, J. Appl. Crystallogr. 2003, 36, 7.
- (4) A. L. Spek, PLATON, A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, the Netherlands, 2005.