Supporting Information

Facile Insertion of a Cyclic Alkyl(Amino) Carbene Carbon into the B-B Bond of Diboron(4) Reagents

Antonius F. Eichhorn^a, Laura Kuehn^a, Todd B. Marder^{*a} and Udo Radius^{*a}

Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Corresponding author E-Mail address:

todd.marder@uni-wuerzburg.de, u.radius@uni-wuerzburg.de

Contents

1. Experimental Section and NMR Spectra		3
1.1	General Considerations	3
1.2	Synthesis of the Compounds	3
Sy	nthesis of cAAC ^{Me} (Bpin) ₂ 1	3
Sy	nthesis of cAAC ^{Me} (Bcat) ₂ 2	8
Sy	nthesis of cAAC ^{Me} (Bneop) ₂ 3	12
Sy	nthesis of cAAC ^{Me} (Beg) ₂ 4	16
2. Crys	tallographic Details	20
3. Refe	rences	25

1. Experimental Section and NMR Spectra

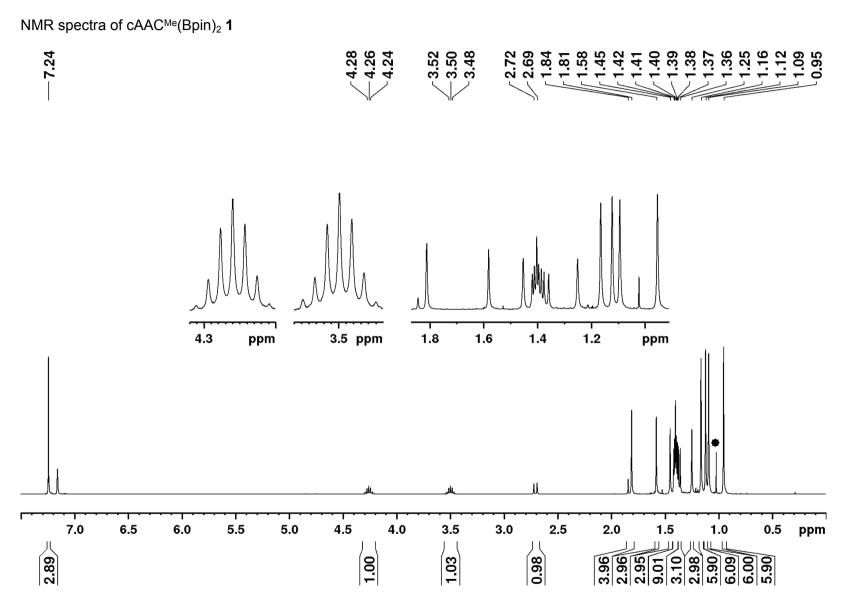
1.1 General Considerations

All reactions and subsequent manipulations were performed under an argon atmosphere using standard Schlenk techniques as reported previously.^[S1] NMR spectra were recorded on a Bruker Avance 500 (¹H, 500.1 MHz; ¹³C, 125.8 MHz; ¹¹B, 160.4 MHz), Avance 400 (¹H, 400.4 MHz; ¹³C, 100.7 MHz, ¹¹B, 128.5 MHz) and Avance 200 (¹H, 199.9 MHz, ¹¹B, 64.1 MHz), using C₆D₆. ¹³C NMR spectra are broad-band proton-decoupled (¹³C{¹H}). Assignment of the ¹³C NMR data was supported by ¹³C,¹H correlation experiments. Chemical shifts are listed in parts per million (ppm) and were determined relative to internal C₆D₅H (¹H, δ = 7.16; C₆D₆ natural-abundance carbon resonances C₆D₆ (¹³C, δ = 128.06; C₆D₆). Coupling constants are quoted in hertz. High resolution mass spectroscopy was measured on a Thermo Scientific Exactive Plus mass spectrometer, equipped with an Orbitrap Mass Analyzer. Measurements were accomplished using an ASAP/APCI source with a corona needle, and a carrier-gas (N₂) temperature of 250 °C. The starting compounds cAAC^{Me}, B₂cat₂ and B₂eg₂ were prepared according to published procedures.^[S2-S5] The diboron reagents B₂pin₂, and B₂neop₂ were a generous gift from AllyChem Co. Ltd.

1.2 Synthesis of the Compounds

Synthesis of cAAC^{Me}(Bpin)₂ 1

In a Schlenk-tube B_2pin_2 (178 mg, 700 µmol) and cAAC^{Me} (200 mg, 700 µmol) were dissolved in 12 mL of toluene. After stirring the reaction mixture for 15 h at room temperature, the solvent was removed under reduced pressure. The residue was washed with 8 mL of *n*-hexane and dried *in vacuo*. Yield: 170 mg (315 µmol, 45%) of a white solid.


For X-Ray diffraction: Single-crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of a saturated solution of $cAAC^{Me}(Bpin)_2$ in C_6D_6 .

Elemental analysis for [C₃₂H₅₅B₂NO₄] [539.41 g/mol] Calc. (obs.): C 71.25 (71.25), H 10.28 (10.32), N 2.60 (2.67).

¹**H-NMR** (400 MHz, 23 °C, C₆D₆): δ (ppm) = 0.95 (s, 6 H, OC_qCH₃), 1.09 (s, 6 H, OC_qCH₃), 1.12 (s, 6 H, OC_qCH₃), 1.16 (s, 6 H, OC_qCH₃), 1.25 (s, 3 H, NC_qCH₃), 1.37 (d, 3 H, ³J_{HH} = 7 Hz, CHCH₃), 1.39 (d, 3 H, ³J_{HH} = 7 Hz, CHCH₃), 1.41 (d, 3 H, ³J_{HH} = 6.6 Hz, CHCH₃), 1.42 (d, 3 H, ³J_{HH} = 7 Hz, CHCH₃), 1.45 (s, 3 H, NC_qCH₃), 1.58 (s, 3 H, C_qC_qCH₃), 1.81 (s, 3 H, C_qC_qCH₃), 1.84 (d, 1 H, ²J_{HH} = 12 Hz, C_qCH₂), 2.71 (d, 1 H, ²J_{HH} = 12 Hz, C_qCH₂), 3.50 (qq, 1 H, ³J_{HH} = 7 Hz, CHCH₃), 4.26 (qq, 1 H, ³J_{HH} = 7 Hz, CHCH₃), 7.24 (overlapping m, 3H, arylCH).

¹¹**B-NMR** (128 MHz, 23 °C, C₆D₆): δ (ppm) = 32.0 (s). ¹³C{¹H}-NMR (100 MHz, 23 °C, C₆D₆): δ (ppm) = 24.3 (OC_qCH₃), 24.5 (CHCH₃), 24.7 (CHCH₃), 25.2 (OC_qCH₃), 26.4 (OC_qCH₃), 26.7 (CHCH₃), 27.1 (OC_qCH₃), 27.4 (NC_qCH₃), 27.6 (CHCH₃), 27.8 (CHCH₃), 28.8 (CHCH₃), 30.1 (NC_qCH₃), 30.2 (C_qC_qCH₃), 31.2 (C_qC_qCH₃), 44.1 (BC_qC_q), 56.8 (NC_qCH₂), 62.6 (NC_qCH₂), 82.6 (OC_q), 83.3 (OC_q), 124.3 (*m*^{dipp}-CH), 124.5 (*m*^{dipp}-CH), 126.4 (*p*^{dipp}-CH), 140.8 (*i*^{dipp}-CH), 152.5 (*o*^{dipp}-CH), 153.5 (*o*^{dipp}-CH).

HRMS-ASAP (m/z): $[M + H]^+$ calc. for $C_{32}H_{55}B_2NO_4$, 540.4390 found 540.4388.

Figure 1. ¹H NMR spectrum of compound **1** in C₆D₆ (400 MHz, 23 °C). Asterisk = residual starting material.

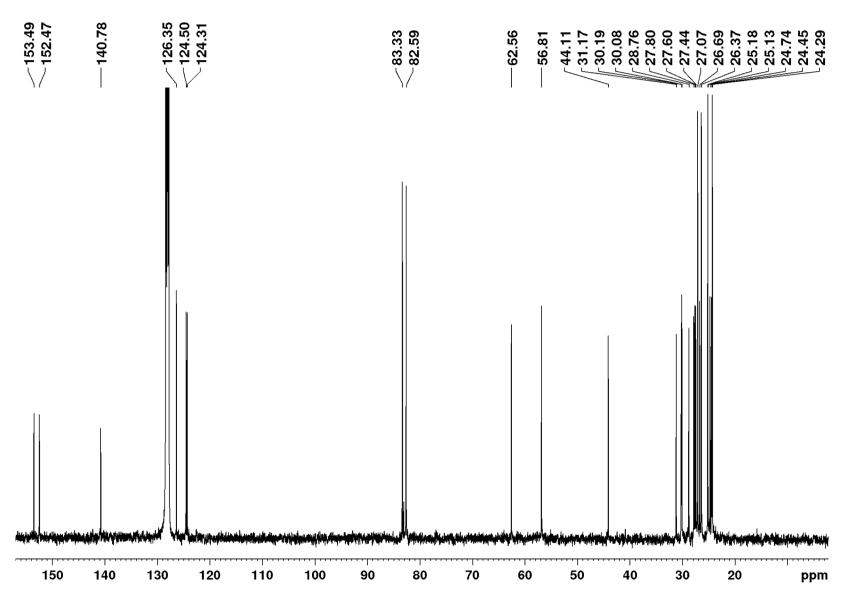
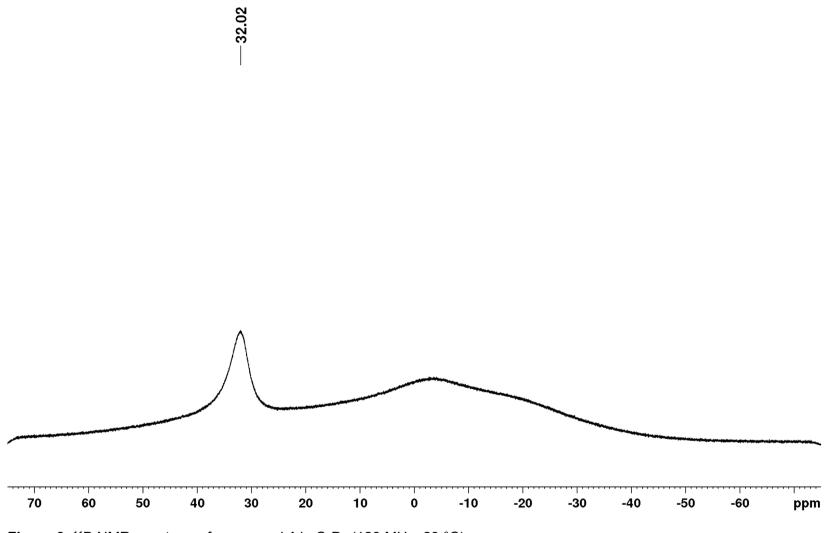
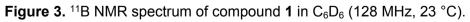




Figure 2. ¹³C{¹H} NMR spectrum of compound 1 in C₆D₆ (100 MHz, 23 °C).

Synthesis of cAAC^{Me}(Bcat)₂ 2

In a Schlenk-tube B_2cat_2 (166 mg, 700 µmol) and $cAAC^{Me}$ (200 mg, 700 µmol) were dissolved in 12 mL of toluene. After stirring the reaction mixture for 15 h at room temperature, the solvent was removed under reduced pressure. The residue was washed with 8 mL of *n*-hexane and dried *in vacuo*. Yield: 266 mg (508 µmol, 73%) of a white solid.

For X-Ray diffraction: A saturated solution of $cAAC^{Me}(Bcat)_2$ in *n*-hexane was cooled to -30 °C to obtain single-crystals suitable for X-ray diffraction.

Elemental analysis for [C₃₂H₃₉B₂NO₄] [523.28 g/mol] Calc. (obs.): C 73.45 (74.02), H 7.51 (7.50), N 2.68 (2.78).

¹**H-NMR** (400 MHz, 23 °C, C₆D₆): δ (ppm) = 0.85 (d, 6 H, ³J_{HH} = 7 Hz, CHC*H*₃), 1.29 (d, 6 H, ³J_{HH} = 7 Hz, CHC*H*₃), 1.47 (s, 6 H, NC_qC*H*₃), 1.64 (s, 6 H, C_qC_qC_qC*H*₃), 2.38 (s, 2 H, NC_qC*H*₂), 3.96 (qq, 2 H, ³J_{HH} = 7 Hz, CHCH₃), 6.64 – 6.69 (m, 4 H, _{aryl}^{cat}-C*H*), 6.81 – 6.86 (m, 4 H, _{aryl}^{cat}-C*H*), 7.18 – 7.20 (m, 2 H, *m*^{dipp}-C*H*), 7.26 – 7.30 (m, 1 H, *p*^{dipp}-C*H*). ¹¹**B-NMR** (128 MHz, 23 °C, C₆D₆): δ (ppm) = 34.2 (s). ¹³C{¹H}-NMR (100 MHz, 23 °C, C₆D₆): δ (ppm) = 24.5 (CHCH₃), 25.3 (CHCH₃), 28.0 (C_qC_qCH₃), 28.4 (CHCH₃), 30.7 (NC_qCH₃), 43.6 (C_qC_qCH₃), 56.5 (NC_qCH₂), 63.6 (NC_qCH₂), 112.8 (aryl^{cat}-CH), 123.0 (aryl^{cat}-CH), 124.7 (*m*^{dipp}-CH), 127.5 (*p*^{dipp}-CH), 139.4 (*i*^{dipp}-C_q), 148.1 (aryl^{cat}-C_q), 153.4 (*o*^{dipp}-C_q).

HRMS-ASAP (m/z): $[M + H]^+$ calc. for $C_{32}H_{39}B_2NO_4$, 524.3138 found 524.3132.

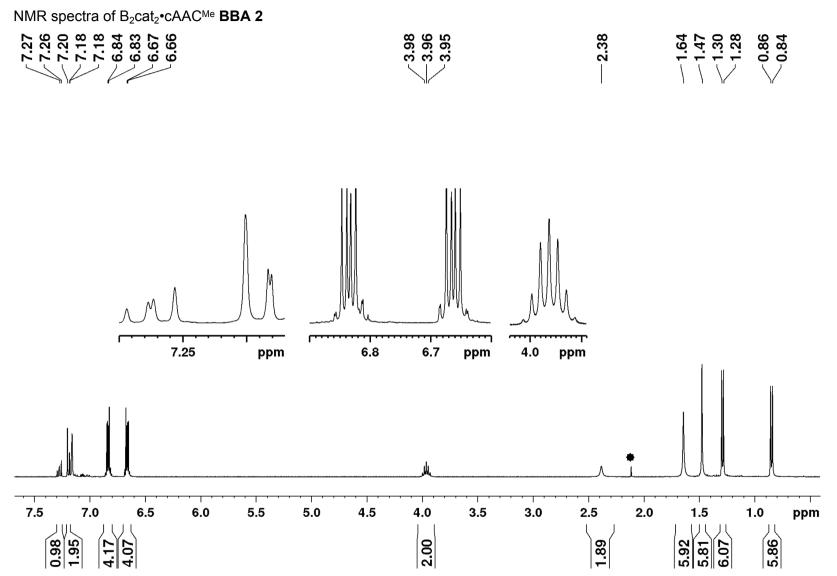
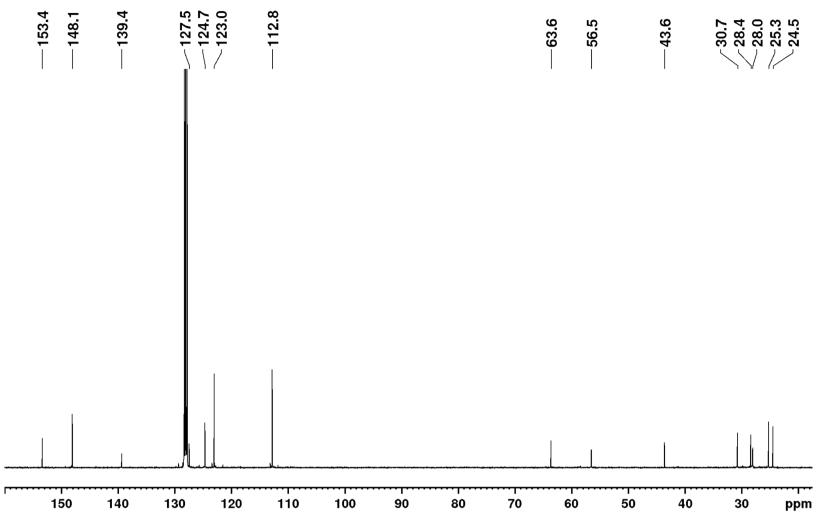
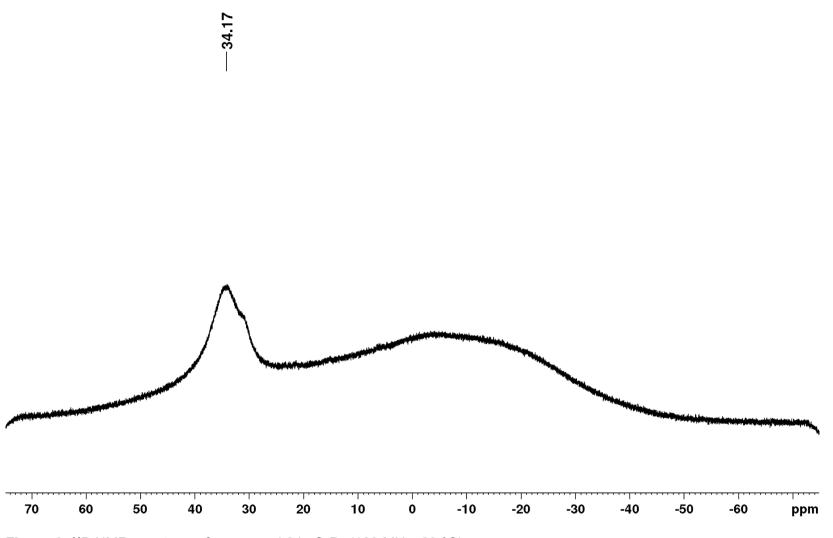




Figure 4. ¹H NMR spectrum of compound 2 in C₆D₆ (400 MHz, 23 °C). Asterisk = residual toluene.

Figure 5. ¹³C{¹H}] NMR spectrum of compound **2** in C_6D_6 (100 MHz, 23 °C).

Figure 6. ¹¹B NMR spectrum of compound **2** in C_6D_6 (128 MHz, 23 °C).

Synthesis of $cAAC^{Me}(Bneop)_2$ **3**

In a Schlenk-tube $B_2 neop_2$ (158 mg, 700 µmol) and cAAC^{Me} (200 mg, 700 µmol) were dissolved in 12 mL of toluene. After stirring the reaction mixture for 15 h at room temperature, the solvent was removed under reduced pressure. The residue was washed with 5 mL of *n*-hexane and dried *in vacuo*. Yield: 183 mg (357 µmol, 51%) of an off white solid.

For X-Ray diffraction: Single-crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of a saturated solution of $cAAC^{Me}(Bneop)_2$ in C_6D_6 .

Elemental analysis for [C₃₀H₅₁B₂NO₄] [511.35 g/mol] Calc. (obs.): C 70.46 (70.38), H 10.05 (10.04), N 2.74 (2.82).

¹**H-NMR** (400 MHz, 23 °C, C₆D₆): δ (ppm) = 0.69 (s, 12 H, OCH₂C_qCH₃), 1.29 (d, 6 H, ³J_{HH} = 7 Hz, CHCH₃), 1.39 (s, 6 H, NC_qCH₃), 1.46 (d, 6 H, ³J_{HH} = 7 Hz, CHCH₃), 1.75 (s, 6 H, C_qC_qCH₃), 2.29 (s, 2 H, NC_qCH₂), 3.31 (m, 8 H, OCH₂), 4.10 (qq, 2 H, ³J_{HH} = 7 Hz, CHCH₃), 7.28 (s, 3 H, _{aryl}CH). ¹¹**B-NMR** (128 MHz, 23 °C, C₆D₆): δ (ppm) = 29.2 (s). ¹³C{¹H}-NMR (100 MHz, 23 °C, C₆D₆): δ (ppm) = 23.0 (OCH₂C_qCH₃), 24.9 (CHCH₃), 26.4 (CHCH₃), 28.1 (CHCH₃), 29.1 (C_qC_qCH₃), 30.9 (NC_qCH₃), 31.1 (OCH₂C_qCH₃), 42.8 (C_qC_qCH₃), 57.5 (NC_qCH₂), 62.4 (NC_qCH₃), 71.3 (OCH₂), 124.0 (m^{dipp} -CH), 126.0 (p^{dipp} -CH), 142.3 (i^{dipp} -C_q), 153.1 (o^{dipp} -C_q). ¹³C{¹H}[¹¹B]-NMR (75 MHz, 23 °C, C₆D₆): δ (ppm) = 64.1 (BC_q).

HRMS-ASAP (m/z): $[M + H]^+$ calc. for $C_{30}H_{51}B_2NO_4$, 512.4077 found 512.4074.

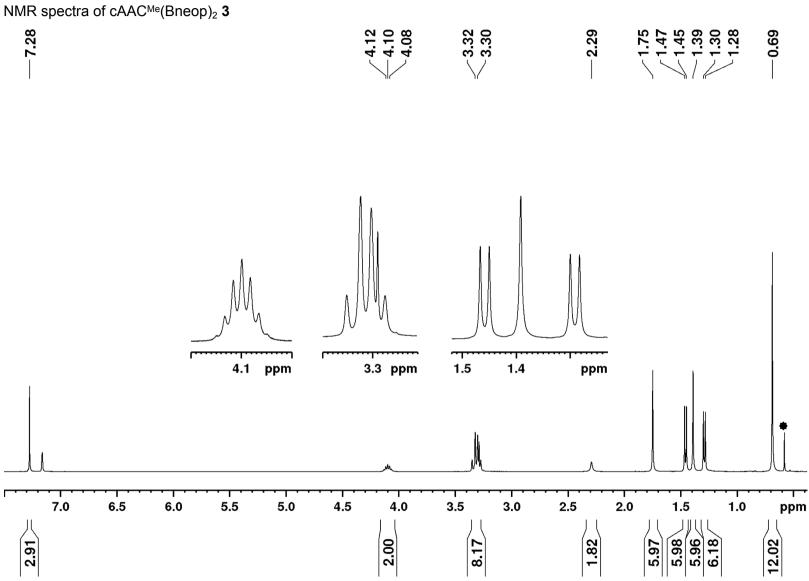
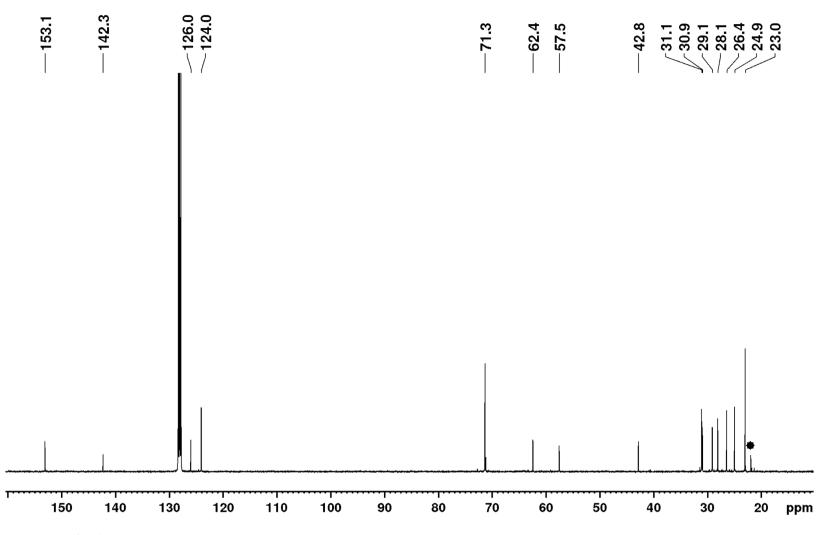
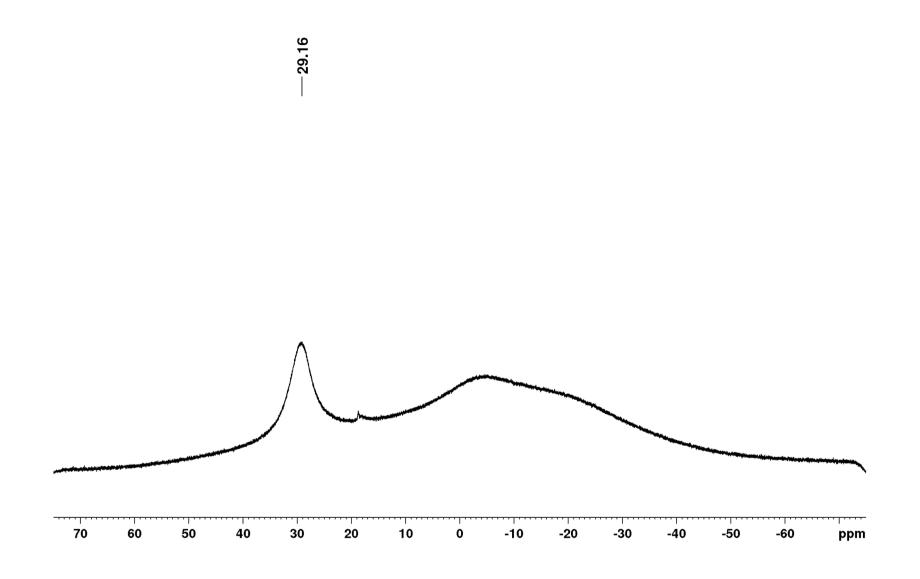




Figure 7. ¹H NMR spectrum of compound 3 in C_6D_6 (400 MHz, 23 °C). Asterisk = unknown impurity.

Figure 8. ¹³C{¹H} NMR spectrum of compound **3** in C₆D₆ (125 MHz, 23 °C). Asterisk =unknown impurity.

Figure9. ¹¹B NMR spectrum of compound **3** in C_6D_6 (128 MHz, 23 °C).

Synthesis of cAAC^{Me}(Beg)₂ 4

In a Schlenk-tube B_2eg_2 (99 mg, 700 µmol) and cAAC^{Me} (200 mg, 700 µmol) were dissolved in 12 mL of toluene. After stirring the reaction mixture for 15 h at room temperature, the solvent was removed under reduced pressure. The residue was washed with 5 mL of *n*hexane and dried *in vacuo*. Yield: 188 mg (441 µmol, 63%) of a white solid.

For X-Ray diffraction: Single-crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent of a saturated solution of $cAAC^{Me}(Beg)_2$ in C_6D_6 .

Elemental analysis for [C₂₄H₃₉B₂NO₄] [427.19 g/mol] Calc. (obs.): C 67.48 (67.00), H 9.20 (9.30), N 3.28 (3.00).

¹**H-NMR** (400 MHz, 23 °C, C₆D₆): δ (ppm) = 1.22 (d, 6 H, ³J_{HH} = 7 Hz, CHC*H*₃), 1.36 (s, 6 H, C_qC_qC*H*₃), 1.41 (d, 6 H, ³J_{HH} = 7 Hz, CHC*H*₃), 1.63 (br, 6 H, NC_qC*H*₃), 2.24 (br, 2H, NC_qC*H*₂), 3.56 (s, 8 H, OC*H*₂), 4.03 (qq, 2 H, ³J_{HH} = 7, C*H*CH₃), 7.24 (s, 3H, _{aryl}C*H*). ¹¹**B-NMR** (128 MHz, 23 °C, C₆D₆): δ (ppm) = 33.2 (s). ¹³C{¹H}-NMR (100 MHz, 23 °C, C₆D₆): δ (ppm) = 24.5 (CHCH₃), 26.0 (CHCH₃), 28.0 (CHCH₃), 28.0 (NC_qCH₃), 30.6 (C_qC_qCH₃), 42.6 (C_qC_qCH₃), 56.6 (NC_qCH₂), 62.9 (NC_qCH₃), 65.0 (OCH₂), 124.2 (*m*^{dipp}-CH), 126.8 (*p*^{dipp}-CH), 140.5 (*i*^{dipp}-C_q), 153.4 (*o*^{dipp}-C_q).

HRMS-ASAP (m/z): $[M + H]^+$ calc. for $C_{24}H_{39}B_2NO_4$, 428.3138 found 428.3135.

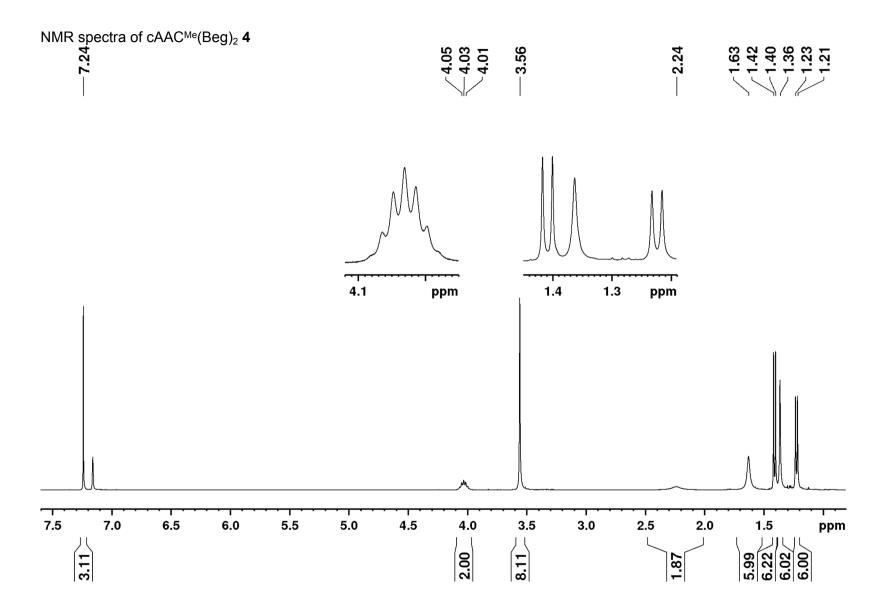
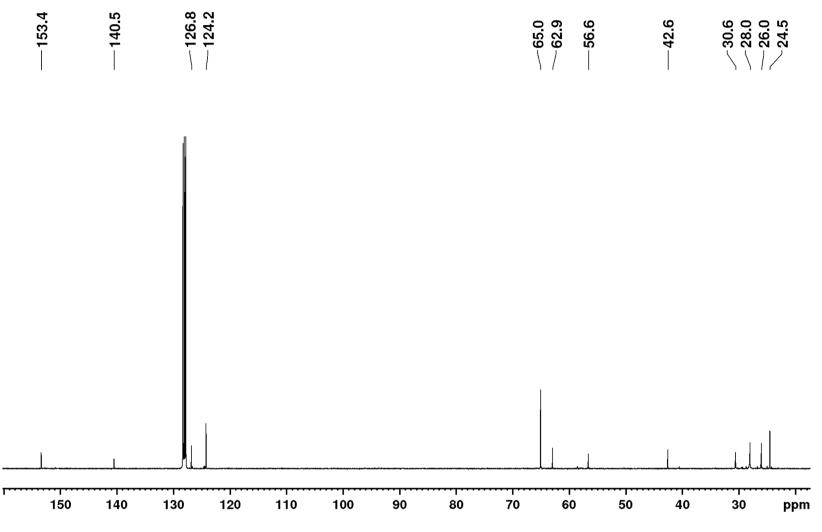



Figure 10. ¹H NMR spectrum of compound 4 in C₆D₆ (400 MHz, 23 °C).

Figure 11. ¹³C{¹H} NMR spectrum of compound **4** in C_6D_6 (100 MHz, 23 °C).

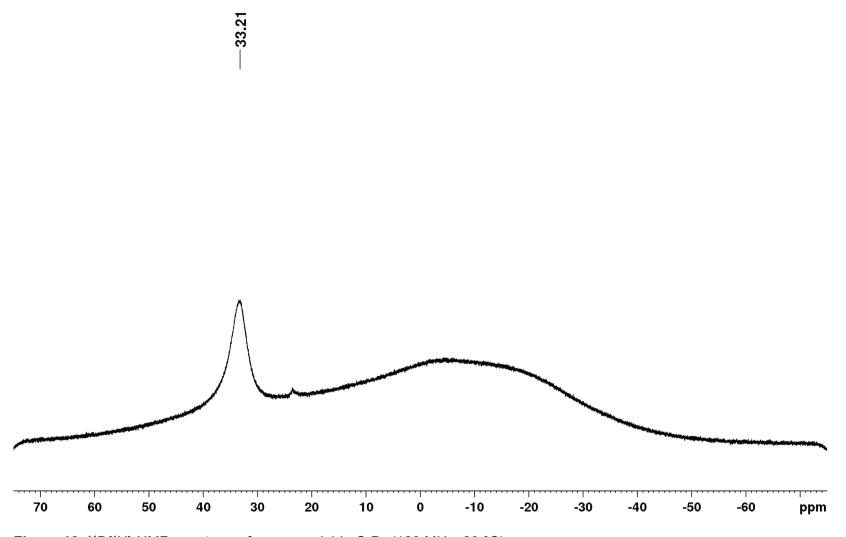


Figure 12. ¹¹B{¹H} NMR spectrum of compound 4 in C_6D_6 (128 MHz, 23 °C).

2. Crystallographic Details

Crystals were immersed in a film of perfluoropolyether oil on a glass fiber and transferred to a Bruker X8 Apex-2 diffractometer, with CCD area detector and mirror-monochromated Mo- K_{α} radiation, equipped with an Oxford Cryosystems low-temperature device. Data were collected at 100 K. The images were processed with the Bruker software packages and equivalent reflections were merged. Corrections for Lorentz-polarization effects and absorption were performed if necessary and the structures were solved by direct methods. Subsequent difference Fourier syntheses revealed the positions of all other non-hydrogen atoms, and hydrogen atoms were included in calculated positions and refined using a riding model. Extinction corrections were applied as required. Crystallographic calculations were performed using the SHELXTL software package.^[S6] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were assigned to idealized positions and were included in structure factors calculations. Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no.s CCDC 1567431- 1567434 (compounds **1** – **4**). Copies of the data can be obtained free of charge on application to the CSD.

Table S1. Crystal data and structure refinement for $cAAC^{Me}(Bpin)_2 \mathbf{1}$.

cAAC ^{Me} (Bpin) ₂ 1				
Identification code	CCDC 1567431			
Empirical formula	$C_{32}H_{55}B_2NO_4$			
Formula weight [g/mol]	539.39			
Temperature [K]	100			
Wavelength [Å]	0.71073			
Crystal system	Triclinic			
Space group	<i>P</i> -1			
Unit cell dimensions	a = 10.8403(14) Å			
	b = 10.8459(14) Å			
	c = 15.907(2) Å			
	α = 91.467 °			
	β = 103.418°			
	γ = 116.778 °			
Volume [A ³]	1605.7(4)			
Z	2			
Density (calculated) [g/cm ³]	1.259			
Absorption coefficient [mm ⁻¹]	0.070			
F(000)	592			
Θ range [°]	2.188 - 26.065			
No. of reflections collected	20966			
No. of unique reflections	6392 [R _{int} = 0.0568]			
Observed reflections [I>2 σ (I)]	4836			
Data / restraints / parameters	6392 / 0 / 368			
GooF	1.028			
Final R indices [I>2 σ(I)]	R ₁ = 0.0563, wR ₂ = 0.1469			
R indices (all data)	R ₁ = 0.0763, wR ₂ = 0.1630			
Largest diff. peak and hole [e A ³]	0.477 and -0.352			
Diffractometer	Bruker Smart Apex 2			

Table S2. Crystal data and structure refinement for $cAAC^{Me}(Bcat)_2$ **2**.

cAAC ^{Me} (Bcat) ₂ 2				
Identification code	CCDC 1567432			
Empirical formula	$C_{32}H_{39}B_2NO_4$			
Formula weight [g/mol]	523.26			
Temperature [K]	100			
Wavelength [Å]	0.71073			
Crystal system	Monoclinic			
Space group	<i>P</i> 2 ₁ /n			
Unit cell dimensions	a = 14.325(2) Å			
	b = 12.0505(18) Å			
	c = 17.419(3) Å			
	$\alpha = 90^{\circ}$			
	β = 113.316(4)°			
	$\gamma = 90^{\circ}$			
Volume [A ³]	2761.4(7)			
Z	4			
Density (calculated) [g/cm ³]	1.259			
Absorption coefficient [mm ⁻¹]	0.080			
F(000)	1120			
Θ range [°]	1.567 - 26.116			
No. of reflections collected	33371			
No. of unique reflections	5462 [R _{int} = 0.0486]			
Observed reflections [I>2 σ (I)]	4633			
Data / restraints / parameters	5462 / 0 / 360			
GooF	1.039			
Final R indices [I>2 σ(I)]	R ₁ = 0.0393, wR ₂ = 0.0959			
R indices (all data)	R ₁ = 0.0481, wR ₂ = 0.1020			
Largest diff. peak and hole [e A ³]	0.340 and -0.254			
Diffractometer	Bruker Smart Apex 2			

cAAC ^{Me} (Bneop) ₂ 3			
Identification code	CCDC 1567433		
Empirical formula	$C_{30}H_{51}B_2NO_4$		
Formula weight [g/mol]	511.34		
Temperature [K]	100		
Wavelength [Å]	0.71073		
Crystal system	Orthorhombic		
Space group	P na2 ₁		
Unit cell dimensions	a = 19.384(2) Å		
	b = 10.3921(13) Å		
	c = 15.1929(19) Å		
	$\alpha = 90^{\circ}$		
	β = 90 °		
	γ = 90 °		
Volume [A ³]	3060.5(6)		
Z	4		
Density (calculated) [g/cm ³]	1.110		
Absorption coefficient [mm ⁻¹]	0.071		
F(000)	1120		
Θ range [°]	2.101 - 26.423		
No. of reflections collected	39145		
No. of unique reflections	6267 [R _{int} = 0.0407]		
Observed reflections [I>2 σ (I)]	5907		
Data / restraints / parameters	6267 / 1 / 346		
GooF	1.022		
Final R indices [I>2 σ (I)]	R ₁ = 0.0345, wR ₂ = 0.0877		
R indices (all data)	R ₁ = 0.0377, wR ₂ = 0.0902		
Largest diff. peak and hole [e A ³]	0.226 and -0.156		
Diffractometer	Bruker Smart Apex 2		

Table S4. Crystal data and structure refinement	for $cAAC^{Me}(Beg)_2$ 4 .
---	-----------------------------------

cAAC ^{Me} (Beg) ₂ 4			
Identification code	CCDC 1567434		
Empirical formula	$C_{24}H_{39}B_2NO_4$		
Formula weight [g/mol]	427.18		
Temperature [K]	100		
Wavelength [Å]	0.71073		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 9.5144(9) Å		
	b = 15.1352(14) Å		
	c = 18.5970(17) Å		
	α = 113.046(2)°		
	$\beta = 95.252(2)^{\circ}$		
	γ = 95.926(2)°		
Volume [A ³]	2425.5(4)		
Z	4		
Density (calculated) [g/cm ³]	1.170		
Absorption coefficient [mm ⁻¹]	0.076		
F(000)	928		
Θ range [°]	2.175 – 25.965		
No. of reflections collected	21765		
No. of unique reflections	9509 [R _{int} = 0.0253]		
Observed reflections [I>2 σ (I)]	7022		
Data / restraints / parameters	9509 / 0 / 575		
GooF	1.011		
Final R indices [I>2 σ (I)]	$R_1 = 0.0428$, $wR_2 = 0.0945$		
R indices (all data)	$R_1 = 0.0685$, $wR_2 = 0.1066$		
Largest diff. peak and hole [e A ³]	0.291 and -0.265		
Diffractometer	Bruker Smart Apex 2		

3. References

[S1] J. Attner, U. Radius, Chem.Eur. J. 2001, 7, 783-790.

[S2] V. Lavallo, Y. Canac, C. Prasang, B. Donnadieu, G. Bertrand, *Angew. Chem. Int. Ed.* **2005**, *44*, 5705-5709.

[S3] (a) R. J. Brotherton, W. G. Woods, US3009941, **1961**; (b) C. N. Welch, S. G. Shore, *Inorg. Chem.* **1968**, 7, 225-230.

[S4] (a) M. Eck, S. Würtemberger-Pietsch, A. Eichhorn, J. H. J. Berthel, R. Bertermann, U. S. D. Paul, H. Schneider, A. Friedrich, C. Kleeberg, U. Radius, T. B. Marder, *Dalton Transactions* **2017**, *46*, 3661-3680.

[S5] (a) H. Braunschweig, F. Guethlein, *Angew. Chem. Int. Ed.* 2011, *50*, 12613-12616;
(b) H. Braunschweig, F. Guethlein, EP2554547A1, 2013.

[S6] G. Sheldrick, Acta Crystallogr. 2015, A71, 3-8.