A universal genotyping-microarray constructed by ligating a universal fluorescence-probe with SNP-encoded flaps cleaved from multiplex invasive reaction

Zhiyao Chen,^{a,b} Liyan Miao,^b Yunlong Liu,^a Tianhui Dong,^a Xueping Ma,^a Xiaoxiang Guan,^a Guohua Zhou,^{a,*} and Bingjie Zou^{a,*}

^aDepartment of Pharmacology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China;

^bDepartment of Clinical Pharmacology Research Lab, The First Affiliated Hospital of Soochow University, Suzhou 215006, China;

* Corresponding author.
Bingjie Zou, Guohua Zhou
No. 305, East Zhongshan Rd., Nanjing, 210002, PR China
Tel: (+86) 25-8086-0195; Fax: (+86) 25-8086-0196
E-mail address: ghzhou@nju.edu.cn (Guohua Zhou) ; zbj523@163.com (Bingjie Zou)

Contents of Electronic supplementary information (ESI)

	Experimental section
Table S1	The sequences of multiplex PCR primers and multiplex invasive reaction probes.

Table S2	The clinical significance of the 14 SNPs related to personalized medicine and the 14 SNPs in the <i>BRCA</i> gene.
Table S3	Sequences of UT, flaps, DPs and NH_2 modified oligonucleotides
Fig. S1	34 equal amounts of flaps detected by the proposed universal genotyping-microarray through multiplex ligation reaction.
Fig. S2	The specificity of the multiplex ligation reaction on the proposed universal genotyping-microarray.
Fig. S3	Signal intensities and signal-to-noise ratios (S:N) from the proposed universal genotyping-microarray at various amounts of flaps in the absence of DP (A), amounts of flaps in the presence of 10 ¹³ copies of DP (B), and invasive reaction products from different amounts of PCR amplicons (C).
Fig. S4	Detection of the various amounts of equally spiked PCR amplicons by the proposed universal genotyping-microarray coupled with multiplex invasive reaction.
Fig. S5	Detection of 14 SNPs related to personalized medicine in a total of 20 clinical samples by the proposed universal genotyping microarray.
Table S4	14 SNPs related to personalized medicine in a total of 20 clinical samples genotyped by the proposed universal genotyping microarray and Sanger sequencing.
Table S5	14 SNPs in a total of 20 clinical samples genotyped by the proposed universal genotyping microarray and Sanger sequencing.
Table S6	Comparison of the proposed universal genotyping microarray with nicking endonuclease-based method and conventional allele- specific chips in terms of cost, complexity, multiplex levels, sensitivity and specificity.

Experimental section

Reagents and materials

Aldehyde coated glass slides and spotting buffer were purchased from CapitalBio Corporation (Beijing, China). TIANamp Blood DNA Kit was purchased from Tiangen Biotech, Co, Ltd (Beijing, China). *rTaq* DNA polymerase was purchased from Takara Biomedical Technology (Dalian, China). QIAGEN Multiplex PCR Kit was purchased from QIAGEN (Düsseldorf, Germany). Ampligase DNA Ligase were purchased from Epicentre Biotechnologies (Chicago,USA). *Archaeoglobus fulgidus (Afu)* flap endonuclease was prepared in our laboratory ^{1, 2}.

Sample collection and DNA extraction

Twenty healthy volunteers were recruited from our lab. Written informed consent was obtained from each person. Genomic DNA was extracted from peripheral blood samples following anticoagulation with EDTA using TIANamp Blood DNA Kit according to the manufacturer's protocol.

Multiplex PCR

14-plex multiplex PCR were performed in 10-µl reaction mixtures containing 2×Multiplex PCR Master Mix, 0.2 µM each primer, 50 ng of genomic DNA, and H₂O was added up to 10 µl. Amplification was achieved using the T100TM Thermal Cycler (Bio-Rad Laboratories, Inc., California, USA) with the following conditions: 5 min at 95 °C, followed by 25 cycles of 30 s at 95 °C, 30 s at 55 °C, and 30 s at 60 °C, then a final extension at 72 °C for 7 min.

Multiplex invasive reaction

14-plex multiplex invasive reaction were carried out in 10 μ l reaction mixtures containing 10 mM MOPS (pH 7.5), 0.05% Tween 20, 0.05% Nonidet P 40, 12 ng/ μ l BSA, 3.5% PEG 8000, 7.5 mM Mg²⁺, 200 nM each upstream probe (UP), 20 nM each downstream probe (DP), 70 ng of *Afu* flap endonuclease, 1 μ l of multiplex PCR

products, and H_2O was added up to 10 µl. This mixture was incubated at 94 °C for 3 min and then incubated at 63 °C for 2 h.

SNP typing by the proposed universal genotyping-microarray

Design and synthesis of flaps, oligonucleotide, and invasive probes

The flaps on the DPs were allele-specific and used to encode allele species. After invasive reaction, the cleaved flaps were hybridized with oligonucleotides immobilized onto the microarray surface with a preset address. In this study, 34 flap sequences were selected in a way to minimize secondary structures, and their Tm values were strictly controlled in a range of 28-37 °C with 45-65% GC%. The Tm values of the flaps were calculated by OligoAnalyzer 3.1 (Integrated DNA Technologies, Inc., Iowa, USA) at the condition of 0.0002 µM flaps, 7.5 mM Na⁺, 7.5 mM Mg²⁺, 0 mM dNTPs. The oligonucleotides immobilized onto the microarray surface are designed to contain three parts, termed as "spacer" (10-mer poly T), "identifier" to capture flaps, and "reporter" to capture the universal tag (UT). All of the oligonucleotides were modified in 3' C6 terminus with an amino group, which was used to react with aldehyde coated on glass slides. Invader upstream probes (UP) and downstream probes (DP) for each SNP were designed by Universal Invader[™] Design Software Version 1.2.4 (Third Wave Technologies, Inc., Wisconsin, USA). Then the flaps on the DPs were replaced by the designed allele-specific flaps. All of the flaps, primers, oligonucleotide and probes were synthesized and purified by Invitrogen Co. (Shanghai, China), and the sequences were listed in Table S1 and Table S3.

Microarray construction

NH₂-modified oligonucleotides and spotting buffer were equally mixed to obtain 30 μ M spotting mixture. Then the mixture were spotted onto the 75-mm×25-mm aldehyde-coated glass slides using the PersonalArrayerTM 16 (CapitalBio Corporation, Beijing, China) following the manufacturer's protocol. The spotting process was performed at 25 °C and 60% humidity, and all oligonucleotides were spotted in

triplicate on the microarray. The arrays were kept at 25 °C in slide boxes before use. The arrays were incubated at 37 °C for 12 h in humid chambers to immobilize the oligonucleotides onto the slides. Then the uncoupled oligonucleotides were washed twice in 0.2% SDS for 5 min, followed by three additional washes in distilled water for 1 min. After drying, the slides were soaked in 250 ml of sodium borohydride solution (0.625 g of NaBH₄, 187.5ml of PBS and 62.5mL of ethanol) for 5 min. With two final washes in distilled water for 1.5 min, the slides were dried and labelled for using. All of the washing steps were carried out on the shaker at 80 rpm.

Hybridization, ligation and washing

The hybridization and ligation was simultaneously carried out in the same reaction solution. A final volume of 90 µl of reaction solution was prepared by adding 500 nM cy3 UT, 1×Ampligase buffer, $0.05\times$ Standard Saline Citrate (SSC), 5×Denhardt solution, 5 U/40 µl Ampligase DNA Ligase, 10 µl of invasive reaction solution, and H₂O was added up to 90 µl. The hybridization-ligation reaction solution was added to the array on the slides. Then the slides were placed into a humid hybridization chamber (CapitalBio Corporation, Beijing, China). The hybridization-ligation reaction was carried out in the dark at 42 °C for 2 h in a 9105 Refrigerated Circulator (PolyScience Inc, Niles, Illinois, USA). After removal of the chamber, the slides were washed twice with pre warmed (about 42 °C) washing buffer I (0.3×SSC, 0.1% SDS) for 3 min. Then the slides were further washed twice with pre-warmed (about 42 °C) washing buffer II (0.06×SSC) for 3 min. All of the washing steps were carried out on the shaker at 80 rpm.

Scanning and data-analysis

The dried slides were scanned with a LuxScan 10K Microarray Scanner (CapitalBio Corporation, Beijing, China). The fluorescent signals for Cy3 dye were detected at 532 nm, a photomultiplier tube (PMT) of 95%, a PMT Gain of 600, and a scan resolution of 10 μ m. LuxScan 3.0 software (CapitalBio Corporation, Beijing, China) was used to measure the signal intensity and local background from each spot

on the microarray. Each spot's signal was normalized by subtracting the local background from the observed signal. A spot was defined as a positive signal only if fluorescence intensity is larger than 1000. When a sample was detected in more than one spot, the average values of these replicated spots were used as the signal value. Each SNP has two alleles, and a ratio of signal intensity between two alleles can be readily obtained. When the ratio was >2.5 or <0.4, the SNP was a homozygote, and when the ratio was among 0.4-2.5, the SNP was a heterozygote.

SNP typing by Sanger sequencing

Samples were also genotyped by Sanger sequencing for the comparisons with the results of microarray. The PCR was performed in a volume of 50 µl, containing $1 \times$ PCR buffer, 0.2 mM each dNTP, 2.0 mM MgCl₂, 0.3 µM each of primers, 1.25 U of *rTaq* DNA polymerase, 50 ng of genomic DNA, and H₂O was added up to 50 µl. Amplification was performed on the T100TM Thermal Cycler with the following conditions: 5 min at 95 °C, followed by 35 cycles of 30 s at 95 °C, 30 s at 55 °C, and 30 s at 72 °C, then a final extension at 72 °C for 7 min. The PCR products were sequenced by Beijing Genomics Institute (ShenZhen, China). The sequencing data were analyzed by Chromas 2.6 (Technelysium Pty Ltd, South Brisbane, Australia).

Table S1. The sequences of multiplex PCR primers and multiplex invasive reaction probes.

NO.	Name	Sequence (5'-3')
14 SNPs re	lated to personalized med	licine
	CYP2C9 *2-F	ATGACGCTGCGGAATTTT
SNP1	CYP2C9 *2-R	CACCCACCCTTGGTTTTTCT
	CYP2C9 *2-UP	GGGAAGAGGAGCATTGAGGACA
	CYP2C9 *2-DP-W	GCAATTCCCTGCGTGTTCAAGAGGAAGC
	CYP2C9 *2-d-DP-M	GCGTCTGACAGATGTGTTCAAGAGGAAGC
	CYP2C9 *3-F	CGTGTGATTGGCAGAAACC
	CYP2C9 *3-R	GGGGACTTCGAAAACATGG
SNP2	CYP2C9 *3-UP	GTGCACGAGGTCCAGAGATACT
	CYP2C9 *3-DP-W	AGAGTCCACACATTGACCTTCTCCCCA
	CYP2C9 *3- DP-M	CTAACGGTCAACTTGACCTTCTCCCCA
	VKORC1-F	GGGAAGTCAAGCAAGAGAAGACCT
	VKORC1-R	GCCTCCCAAAATGCTAGGATTAT
SNP3	VKORC1-UP	CGTGAGCCACCGCACCA
	VKORC1-DP-W	ACCAGTTAGTGCGGCCAATGGTTGT
	VKORC1-DP-M	GATGAGACCGGATGGCCAATGGTTGTTT
	CYP2C19*2-F	CCAGAGCTTGGCATATTGTATCTA
	CYP2C19*2-R	CGCAAGCAGTCACATAACTAAGC
SNP4	CYP2C19*2-UP	CAAGGTTTTTAAGTAATTTGTTATGGGTTCCA
	CYP2C19*2-DP-W	ACCATGTAGGACGGGAAATAATCAATGATAGTG
	CYP2C19*2-DP-M	CACGGAGACCTGGGAAATAATCAATGATAGTG
	CYP2C19*3-F	TGCAATGTGATCTGCTCCATTAT
CNID5	CYP2C19*3-R	AGCAAAAAACTTGGCCTTACCTG
SNPS	CYP2C19*3-DP-W	GCTTTAGGAACGATCCAGGTAAGGCCA
	CYP2C19*3-DP-M	CGCAAGTCCTAATCCAGGTAAGGCCA
	CYP19A1790-F	TTTTTCCAGCAAGGATTTGA
	CYP19A1790-R	ATGGGAATTACAGTTAGTTCAGGT
SNP6	CYP19A1790-UP	GTTTCTCTTCTGTGGAAATCCTGCT
	CYP19A1790-DP-W	GTAACTTGCACGTCTTTTTTTCTGCTATCAGAA
	CYP19A1790-DP-M	GACAACTGAGCTATCTTTTTTTCTGCTATCAGAAC
	CYP19A1 1091-F	TTCTTTGTTCCTTTTATCTGTTTC
SNP7	CYP19A1 1091-R	AGGATAATGTTTGTCCCCTTT
	CYP19A1 1091-UP	GTGATGGAAAACTTCATTTATGAGAGCAA

	CYP19A1 1091-DP-W	CGTTCGTCACATGCGGTACCAGCC
	CYP19A1 1091-DP-M	AGTCCAACTGATCGCGGTACCAGC
	CYP19A1 115-F	CCCTCTGAGGTCAAGGAAC
	CYP19A1 115-R	CAAAATCCCAAGTAAATAATCTC
SNP8	CYP19A1 115-UP	GCTCCTCACTGGCCTTTTTCTCA
	CYP19A1 115-DP-W	CGATCTGGCTTTGGTGTGGAATTATGAGG
	CYP19A1 115-DP-M	GCACTTTGCACTGGTGTGGAATTATGAGG
	CDA*3-F	GGGGCAAACTTCTTACTCAA
	CDA*3-R	AACCTGGCTTTCCCACTCA
SNP9	CDA*3-UP	CTGAGACGGCCTTCTGGATAGA
	CDA*3-DP-W	AACGACTCTACCGGTCCGTTCAGC
	CDA*3-DP-M	GTGACCAGTAGTGGTCCGTTCAGCA
	CDA79-F	GGGGCAAACTTCTTACTCAA
	CDA79-R	AACCTGGCTTTCCCACTCA
SNP10	CDA79-UP	GCTCCCAGGAGGCCAAGT
	CDA79-DP-W	AAGCGCGGTAAGTCAGCCTACTGC
	CDA79-DP-M	CATAACGGCGTCAGTCAGCCTACTGC
	DPYD-F	ACGGCTGCATATTGGTGT
	DPYD-R	GCATCAGCAAAGCAACTGG
SNP11	DPYD-UP	ACTAAAGGCTGACTTTCCAGACAACT
	DPYD-DP-W	GTCACAGGCAGTAAGTGTGATTTAACATCTAAAAC
	DPYD-DP-M	CGACACATGACATAAGTGTGATTTAACATCTAAAACA
	ALDH2-F	CCTTTGGTGGCTACAAGATGTCG
	ALDH2-R	CCCCCAACAGACCCCAATC
SNP12	ALDH2-UP	GGGCTGCAGGCATACACTT
	ALDH2-DP-W	GCACACACGGAAGTGAAAACTGTGAGTG
	ALDH2-DP-M	TCAACAGACGGAAAGTGAAAACTGTGAGTG
	MTHFR677-F	GACTGTCATCCCTATTGGCAGGTT
	MTHFR677-R	CCCTCACCTGGATGGGAAAGA
SNP13	MTHFR677-UP	AAAGCTGCGTGATGATGAAATCGT
	MTHFR677-DP-W	CAGGTTGATAACGCTCCCGCAGACA
	MTHFR677-DP-M	ACAAGGCACGACTCCCGCAGACAC
	MDR1 2667-F	AATAGCAGGAGTTGTTGAAATGAA
	MDR12667-R	TCCAAGAACTGGCTTTGCTACT
SNP14	MDR1 2667-UP	GCACTGAAAGATAAGAAAGAACTAGAAGGTC
	MDR1 2667-DP-W	GATTAAGGTCCAGCTGGGAAGGTGAGT
	MDR1 2667-DP-M	CTTGACGAACGTCTGGGAAGGTGAGTC
14 SNPs in	the BRCA gene	
	BRCA1 188-F	GCTCTTCGCGTTGAAGAAGT
	BRCA1 188-R	TCCCAAATTAATACACTCTTGTGC

	BRCA1 188-R	TCCCAAATTAATACACTCTTGTGC
SNP1	BRCA1 188-UP	CAAAATGTCATTAATGCTATGCAGAAAATCTTAT
	BRCA1 188-DP-W	<i>GTAAAGCGCG</i> AGTGTCCCATCTGGTA
	BRCA1 188-DP-M	GTCACATTCCAGTGTCCCATCTGGTAAG

	BRCA1 IVS7-F	CATGGTGTCAAGTTTCTCTTCAGGA
	BRCA1 IVS7-R	GTATCCGCTGCTTTGTCCTCAGA
SNP2	BRCA1 IVS7-UP	CAGAACTGGCCAACAATTGCTTT
	BRCA1 IVS7-DP-W	GTAACTTGCACGACTGTTCTTTACCATACTGT
	BRCA1 IVS7-DP-M	ACAGCAGGCAGACCATACTGTTTAGCAGG
	BRCA1 589-F	CATGGTGTCAAGTTTCTCTTCAGGA
	BRCA1 589-R	GTATCCGCTGCTTTGTCCTCAGA
SNP3	BRCA1 589-UP	AAACCAGTCTCAGTGTCCAACTCC
	BRCA1 589-DP-W	CGATCTGGCTTCTAACCTTGGAACTGTG
	BRCA1 589-DP-M	GTGACCAGTAGTAACCTTGGAACTGTGAG
	BRCA2 6064-F	GGTTTTTGCTGACATTCAGAGTG
	BRCA2 6064-R	ACACTTGTCTTGCGTTTTGTAATG
SNP4	BRCA2 6064-UP	GAAGTTTCCAAACTAACATCACAAGGTT
	BRCA2 6064-DP-W	GCACACACGGTATATTTTAGAAACTTTCTCCAATC
	BRCA2 6064-DP-M	GACGATTAGTGAGATATTTTAGAAACTTTCTCCAATC
	BRCA1 1081-F	TGTAATAAAAGCAAACAGCCTGG
	BRCA1 1081-R	CAGGGGATCAGCATTCAGATC
SNP5	BRCA1 1081-DP-UP	TTAGCAAGGAGCCAACATAACAGAC
	BRCA1 1081-DP-W	CGTTCGTCACATGGGCTGGAAGTAAGG
	BRCA1 1081-DP-M	CACGGAGACCTGGCTGGAAGTAAGGA
	BRCA1 1100-F	TGTAATAAAAGCAAACAGCCTGG
	BRCA1 1100-R	CAGGGGATCAGCATTCAGATC
SNP6	BRCA1 1100-UP	CTGGGAGTCCGCCTATCATTAT
	BRCA1 1100-DP-W	<i>GCAATTCCCTGC</i> ATGTTTCCTTACTTCCAG
	BRCA1-1100-DP-M	AGAACGAGGCACGTTTCCTTACTTCCAGC
	BRCA1 3232-F	GGGAAATGAGAACATTCCAAGTA
	BRCA1 3232- R	TTTTGGCCCTCTGTTTCTACCTA
SNP7	BRCA1 3232-UP	CTTCATTAATATTGCTTGAGCTGGCTA
	BRCA1 3232-DP-W	GCGTCTGACAGATCTTTAAAAACATTTTCTCTAATGTTAT
	BRCA1 3232-DP-M	CTAACGGTCAACCTTTAAAAAACATTTTCTCTAATGTTA
	BRCA1 4446-F	ACAGCTACCCTTCCATCATAAGTGAC
	BRCA1 4446-R	AAGGGGAAGGAAAGAATTTTGCTTA
SNP8	BRCA1 4446-UP	TTCTGATGTGCTTTGTTCTGGATTTCT
	BRCA1 4446-DP-W	CAGGTTGATAACGCAGGTCCTCAAGG
	BRCA1 4446-DP-M	TCAACAGACGGACAGGTCCTCAAGGG
	BRCA2 5803-F	CTGCATTTAGGATAGCCAGTGGT
	BRCA2 5803-R	ACCTTATGTGAATGCGTGCTAC
SNP9	BRCA2 5803-UP	TGAAACTGTCTGTAAATATGTCTTTCACTTTTC
	BRCA2 5803-DP-W	GATGAGACCGGATTAATTGTTTCATGTGAAACAC
	BRCA2 5803-DP-M	CTTGACGAACGTTGTTTCATGTGAAACACAA
	BRCA1 5589-F	GACCCTGGAGTCGATTGATTAGAG
SND10	BRCA1 5589-R	GGGATCTGGGGTATCAGGTAGG
SINFIU	BRCA1 5589-UP	GCTTGTGTTCTCTGTCTCCAGCT
	BRCA1 5589-DP-W	AAGCGCGGTAATTGGGCAGATGTGT

	BRCA1 5589-DP-M	CGCAAGTCCTAGATGTGTGAGGCAC
	BRCA1 5640-F	GACCCTGGAGTCGATTGATTAGAG
	BRCA1 5640-R	GGGATCTGGGGTATCAGGTAGG
SNP11	BRCA1 5640-UP	TGGCACTGGTAGAGTGCTACAT
	BRCA1 5640-DP-W	CATAACGGCGTCTGTCCAACACCCAC
	BRCA1 5640-DP-M	AGTCCAACTGATCGTCCAACACCCAC
	BRCA2 1342-F	GCAAACGCTGATGAATGTGAA
	BRCA2 1342-R	GCCAAAGACGGTACAACTTCCT
SNP12	BRCA2 1342-UP	TGATACTGATCCATTAGATTCAAATGTAGCAT
	BRCA2 1342-DP-W	GACAACTGAGCTAATCAGAAGCCCTTTGAG
	BRCA21342-DP-M	AACGACTCTACCATCAGAAGCCCTTTGA
	BRCA2 3109-F	AACCCATTTTCAAGAACTCTACCA
	BRCA2 3109-R	GCCCATTTGTTCATGTAATCATT
SNP13	BRCA2 3109-UP	ATTTTAAATCTTGACCTAGAGTCATTTTTATATGCTT
	BRCA2 3109-DP-W	<i>GTCACAGGCAG</i> CTTTACACTATTTTTGTTCTC
	BRCA2 3109-DP-M	CGACACATGACACTTTACACTATTTTTGTTCTCC
	BRCA2 5911-F	CTGCATTTAGGATAGCCAGTGGT
	BRCA2 5911-R	ACCTTATGTGAATGCGTGCTAC
SNP14	BRCA2 5911-UP	AATATCCTCTGAATCATCCAATGCCTT
	BRCA2 5911-DP-W	ACCAGTTAGTGCGTAACAACCTGCCATA
	BRCA2 5911-DP-M	<i>GCTTTAGGAACG</i> GTAACAACCTGCCAT

Note: "F" means upstream primer used in PCR. "R" means downstream primer used in PCR. "DP" means downstream probe used in invasive reaction. "UP" means upstream probe used in invasive reaction. "W" means DP of allele 1 used in invasive reaction. "M" means DP of allele 2 used in invasive reaction. The sequences of flaps on the DPs were marked in italics.

			BRCA chip					
No.	Gene	Accession number	Allele type	Clinical significance	Gene	Accession number	Allele type	Clinical significance
SNP1	<i>CYP2C9</i> *2	NG_008385.1	C/T		BRCA1	NG_005905.2	188delAG	Harmful mutation
SNP2	CYP2C9*3	NG_008385.1	A/C	Genetic factors were used to predict warfarin dose.	BRCA1	NG_005905.2	IVS7-14del	Harmful mutation
SNP3	VKORC1	NG_011564.1	G/A		BRCA1	NG_005905.2	589delCT	Harmful mutation
SNP4	<i>CYP2C19</i> *2	NG_008384.1	G/A	Mutant patients should increase	BRCA2	NG_012772.3	6064 ins A	Harmful mutation
SNP5	<i>CYP2C19</i> *3	NG_008384.1	G/A	the dosage of clopidogrel.	BRCA1	NG_005905.2	1081delG	Harmful mutation
SNP6	<i>CYP19A1</i> 790	NG_007982.1	C/T	Mutant patients have decreased	BRCA1	NG_005905.2	1100 del AT	Harmful mutation
SNP7	CYP19A1 1091	NG_007982.1	T/C	aromatase activity; letrozole was	BRCA1	NG_005905.2	3232A〉 G	Unknown meaning
SNP8	CYP19A1 115	NG_007982.1	T/C	preferable for these patients.	BRCA1	NG_005905.2	4446C→T	Harmful mutation
SNP9	CDA*3208	NC_000001.10	G/A	Mutant patients have decreased metabolic detoxification activity;	BRCA2	NG_012772.3	5803 del ATTA	Harmful mutation
SNP10	CDA 79	NC_000001.10	A/C	side effects were increased when they use gemcitabine.	BRCA1	NG_005905.2	5589del 8	Harmful mutation
SNP11	DPYDIVS14+1	NG_008807.1	G/A	Mutant patients were poor metabolisms; they are not suited to use Fluorouracil.	BRCA1	NG_005905.2	5640delA	Harmful mutation
SNP12	ALDH2-504		G/A	Mutant patients should not drink.	BRCA2	NG_012772.3	1342C>A	Unknown meaning
SNP13	MTHFR677	NG_013351.1	C/T	Folic acid metabolism will be largely blocked in nutation patients.	BRCA2	NG_012772.3	3109C□T	Harmful mutation
SNP14	MDR1-2677	NG_011513.1	G/T/A	The mutations are associated with multidrug resistance.	BRCA2	NG_012772.3	5911G>C	Harmful mutation

Table S2. The clinical significance of the 14 SNPs related to personalized medicine and the 14 SNPs in the *BRCA* gene.

Name Sequence (5'-3') GC%	(°C)
UT-9 bp P-TATCCTTCC-cy3 44.4	31.0
UT-10 bp P-TATCCTTCCC-cy3 50.0	38.8
UT-11 bp P-TATCCTTCCCA-cy3 45.5	44.0
Oligo1-9bp UT GGAAGGATATACCGCGCTTGGGACATGATTTTTTTTTT	
Oligo1-10bp UT GGGAAGGATATACCGCGCTTGGGACATGATTTTTTTTTT	
Oligo1-11bp UT TGGGAAGGATATACCGCGCTTGGGACATGATTTTTTTTTT	
Flap1-7 bp CGCGGTA 71.4	7.9
DP1-7 bp CGCGGTAAGTCAGCCTACTGC	
Flap1-8 bp GCGCGGTA 75	20.6
DP1-8 bp GCGCGGTAAGTCAGCCTACTGC	
Flap1-10 bp AAGCGCGGTA 60%	30.6
DP1-10 bp AAGCGCGGTAAGTCAGCCTACTGC	
Flap1-12 bp CCAAGCGCGGTA 66.7	40.8
DP1-12 bp CCAAGCGCGGTAAGTCAGCCTACTGC	
Flap1-14 bp TCCCAAGCGCGGTA 64.3	48.2
DP1-14bp TCCCAAGCGCGGTAAGTCAGCCTACTGC	
Flap1-16 bp TGTCCCAAGCGCGGTA 62.5	53.1
DP1-16 bp TGTCCCAAGCGCGGTAAGTCAGCCTACTGC	
Flap1-20 bp ATCATGTCCCAAGCGCGGTA 55.0	57.9
DP1-20 bp ATCATGTCCCAAGCGCGGTAAGTCAGCCTACTGC	
UP1 GCTCCCAGGAGGCCAAGT	
Flap1 AAGCGCGGTA 60.0	30.6
Oligo1 GGGAAGGATA <u>TACCGCGCTTGGGA</u> TTTTTTTTTTTTTT-NH ₂	
Flap2 CATAACGGCGTC 58.3	35.7
Oligo2 GGGAAGGATAGACGCCGTTATGAGTTTTTTTTTTTTTTT	
Flap3 AGAACGAGGCAC 58.3	36.5
Oligo3 GGGAAGGATAGIGCCICGTICICGTITTTTTTTTTTTTTT	20.5
Flap4 GCGTCTGACAGAT 53.8	38.5
Oligo4 $GGGAAGGATAAICIGICCGACGCGIIIIIIIIIIIIIIII$	20.2
Flaps $GIAAAGUGUG 60.0$	28.2
$OligoS \qquad GGGAAGGAAGGCCIIACCIIIIIIIIII$	21.2
Piapo CTAACGGTCAAC 50.0	31.2
Oligoto OGGAAGGATAGTIGACCGTTAGTTATTITTTTTTTTTTTTT	24 (
Piap/ CUTICUTCACA1 50.0	34.0
Sigo =	22.2
Pidpo ADAGTICACACA 50.0 Olicos GGAAGGATATGTGTGGACTCTCTTTTTTTTT NH	33.2
$\mathbf{Flan0} \qquad \mathbf{GTCACATTCCAG} \qquad 50.0$	30.7
Oligeol $OCCAAACCATACTGGAATGTGACCCGTTTTTTTTTTTTTT$	30.7
Fight ACCACTACTCC 50.0	32.5
Digo10 GCGAACCACTAACTGGTCTGTTTTTTTTTTTTTTTTTTT	52.5
Flan11 GACGATTAGTGAG 462	32.6
Oligo11 GGGAAGGATACTCACTAATCGTCTGCTTTTTTTTTTTTT	52.0
Flan12 GATGAGACCGGAT 53.8	36.8
Oligo12 GGG44GG4T4ATCCGGTCTCATCGCTTTTTTTTT-NH.	50.8
Circle Construction $Circle Construction C$	29.5
Oligo13 GGG44GG474TAGGACTTGCGTCTCTTTTTTTTT-NH ₂	27.5
Fland CACGGAGACCT 636	31.9
Oligo14 GGG44GG4T4AGGTCTCCGTGCGAATTTTTTTTTT.NH ₂	51.7
Flan15 GACAACTGAGCTA 46.2	34.4
Oligo15 GGG44GG474TAGCTCAGTTGTCCGTTTTTTTTT-NH ₂	51.1
$Flam16 \qquad ACCATGTAGGAC \qquad 50.0$	30.7
Oligo16 GGG44GG474GTCCTACATGGTGCTTTTTTTTTT-NH ₂	50.7
Flap17 GTCACAGGCAG 63.6	31.6
Oligo17 GGGAAGGATACTGCCTGTGACTCGTTTTTTTTTTT-NH ₂	51.0
Flap18 GATTAAGGTCCAG 46.2	31.8
Oligo18 GGGAAGGATACTGGACCTTAATCGTGTTTTTTTTTTTT-NH ₂	21.0
Flap19 CAGGTTGATAACG 46.2	33.8

Table S3. Sequences of UT, flaps, DPs and NH_2 modified oligonucleotides.

Oligo19	GGGAAGGATACGTTATCAACCTGGGTTTTTTTTTTTTT-NH2		
Flap20	GCACACGG	70.0	30.8
Oligo20	GGGAAGGATACCGTGTGTGCAGAGTTTTTTTTTTTTT-NH2		
Flap21	ACAGCAGGCAG	63.6	34.1
Oligo21	GGGAAGGATACTGCCTGCTGTAGACTTTTTTTTTTTTT-NH2		
Flap22	CGACACATGACA	50.0	33.7
Oligo22	GGGAAGGATA <u>TGTCATGTGTCGCAC</u> TTTTTTTTTTTT-NH ₂		
Flap23	ACAAGGCACGA	54.5	33.1
Oligo23	GGGAAGGATA <u>TCGTGCCTTGTCAT</u> TTTTTTTTTTTT-NH2		
Flap24	GTAACTTGCACG	50.0	33.0
Oligo24	GGGAAGGATACGTGCAAGTTACCGTTTTTTTTTTTTTT-NH2		
Flap25	AGTCCAACTGATC	46.2	34.1
Oligo25	GGGAAGGATAGATCAGTTGGACTCGTTTTTTTTTTTT-NH2		
Flap26	GCAATTCCCTGC	58.3	35.8
Oligo26	GGGAAGGATAGCAGGGAATTGCCGTTTTTTTTTTTT-NH2		
Flap27	CTTGACGAACGT	50.0	34.5
Oligo27	GGGAAGGATAACGTTCGTCAAGAGTTTTTTTTTTTTTT-NH2		
Flap28	GCTTTAGGAACG	50.0	31.7
Oligo28	GGGAAGGATACGTTCCTAAAGCTGATTTTTTTTTTTTTT		
Flap29	CGATCTGGCTT	54.5	30.0
Oligo29	GGGAAGGATAAAGCCAGATCGACCTTTTTTTTTTTT-NH2		
Flap30	GCACTTTGCAC	54.5	31.4
Oligo30	GGGAAGGATAGTGCAAAGTGCCGTTTTTTTTTTTTT-NH2		
Flap31	TCAACAGACGGA	50.0	34.2
Oligo31	GGGAAGGATA <u>TCCGTCTGTTGAGTT</u> TTTTTTTTTTTT-NH ₂		
Flap32	AACGACTCTACC	50.0	31.3
Oligo32	GGGAAGGATAGGTAGAGTCGTTTTTTTTTTTTTTT-NH2		
Flap33	GTGACCAGTAGT	50.0	30.9
Oligo33	GGGAAGGATAACTACTGGTCACTTTTTTTTTTTTTT-NH2		
Flap34	TGCCTATGACAG	50.0	31.6
Oligo34	GGGAAGGATATGCCTATGACAGTTTTTTTTTTTTTT-NH2		

Note: The sequences of "reporter" on the oligonucleotides were marked in italics. The sequences of "identifier" on the oligonucleotides were underlined. The Tm values of UT were calculated by OligoAnalyzer 3.1 (Integrated DNA Technologies, Inc., Iowa, USA) at the condition of 0.5 μ M flaps, 7.5 mM Na⁺, 7.5 mM Mg²⁺, 0 mM dNTPs. The Tm values of flaps were calculated by OligoAnalyzer 3.1 (Integrated DNA Technologies, Inc., Iowa, Technologies, Inc., Iowa, USA) at the condition of 0.5 μ M flaps, 7.5 mM Na⁺, 7.5 mM Mg²⁺, 0 mM dNTPs. The Tm values of flaps were calculated by OligoAnalyzer 3.1 (Integrated DNA Technologies, Inc., Iowa, USA) at the condition of 0.0002 μ M flaps, 7.5 mM Na⁺, 7.5 mM Mg²⁺, 0 mM dNTPs.

Fig. S1 34 equal amounts of flaps detected by the proposed universal genotypingmicroarray through multiplex ligation reaction. (A) Schematic diagram of 34 flaps detected by the proposed universal genotyping-microarray through multiplex ligation reaction. (B) Fluorescence intensities of 34 flaps detected by the proposed universal genotyping-microarray through multiplex ligation reaction. Each sample was detected in triplicate.

Fig. S2 The specificity of the multiplex ligation reaction on the proposed universal genotyping-microarray. (A) One flap (Flap1) detected by the proposed universal genotyping-microarray.(B) One flap (Flap3) detected by the proposed universal genotyping-microarray.(C) Odd flaps detected by the proposed universal genotyping-microarray.(D) Even flaps detected by the proposed universal genotyping-microarray. Each sample was detected in triplicate.

Fig. S3 Signal intensities and signal-to-noise ratios (S:N) from the proposed universal genotyping-microarray at various amounts of flaps in the absence of DP (A), amounts of flaps in the presence of 10¹³ copies of DP (B), and invasive reaction products from different amounts of PCR amplicons (C). Each sample was detected in triplicate.

Fig. S4 Detection of the various amounts of equally spiked PCR amplicons by the proposed universal genotyping-microarray coupled with multiplex invasive reaction. The orders of the SNPs were marked in the layout of the array, and each sample was detected in three times.

Fig. S5. Detection of 14 SNPs related to personalized medicine in a total of 20 clinical

samples by the proposed universal genotyping-microarray. The orders of the SNPs were marked in the layout of the array, and each sample was detected in four times.

Samula	SNPs														
Number	Methods	SNP1 (C/T)	SNP2 (A/C)	SNP3 (G/A)	SNP4 (G/A)	SNP5 (G/A)	SNP6 (C/T)	SNP7 (T/C)	SNP8 (T/C)	SNP9 (G/A)	SNP10 (A/C)	SNP11 (G/A)	SNP12 (G/A)	SNP13 (C/T)	SNP14 (G/T/A)
1	Sanger	C/C	A/A	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/A
1	Chip	C/C	A/A	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/T
2	Sanger	C/C	A/C	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	G/T
2	Chip	C/C	A/C	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	G/T
2	Sanger	C/C	A/A	G/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	G/G
5	Chip	C/C	A/A	G/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	G/G
4	Sanger	C/C	A/A	A/A	G/G	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/A
4	Chip	C/C	A/A	A/A	G/G	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/G
5	Sanger	C/C	A/A	A/A	A/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/G	C/T	G/G
5	Chip	C/C	A/A	A/A	A/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/G	C/T	G/G
6	Sanger	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/G
0	Chip	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/G
7	Sanger	C/C	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/T
/	Chip	C/C	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/T
0	Sanger	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/A	G/G	A/A	C/C	A/T
0	Chip	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/A	G/G	A/A	C/C	T/T
0	Sanger	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/A	C/C	G/A
9	Chip	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/A	C/C	G/G
10	Sanger	C/C	A/A	A/A	A/A	G/G	C/C	T/T	T/T	G/G	A/C	G/G	G/G	C/T	G/T
10	Chip	C/C	A/A	A/A	A/A	G/G	C/C	T/T	T/T	G/G	A/C	G/G	G/G	C/T	G/T

Table S4. 14 SNPs related to personalized medicine in a total of 20 clinical samples genotyped by the proposed universal genotyping-microarray and Sanger sequencing.

Sample		SNPs													
Number	Methods	SNP1 (C/T)	SNP2 (A/C)	SNP3 (G/A)	SNP4 (G/A)	SNP5 (G/A)	SNP6 (C/T)	SNP7 (T/C)	SNP8 (T/C)	SNP9 (G/A)	SNP10 (A/C)	SNP11 (G/A)	SNP12 (G/A)	SNP13 (C/T)	SNP14 (G/T/A)
	Sanger	C/C	A/C	A/A	G/G	G/G	T/T	T/T	T/T	G/G	A/C	G/G	A/A	C/C	T/T
11	Chip	C/C	A/C	A/A	G/G	G/G	T/T	T/T	T/T	G/G	A/C	G/G	A/A	C/C	T/T
12	Sanger	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/T
12	Chip	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/T
12	Sanger	C/C	A/A	?	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/T
15	Chip	C/C	A/A	G/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	G/T
14	Sanger	C/C	A/A	?	G/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	C/T	T/A
14	Chip	C/C	A/A	A/A	G/A	G/G	C/T	T/T	T/T	G/G	A/C	G/G	G/A	C/T	T/T
15	Sanger	CC	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/A
15	Chip	C/C	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/T
16	Sanger	C/C	A/A	G/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	T/T
10	Chip	C/C	A/A	G/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/C	T/T
17	Sanger	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	C/C	G/G	A/A	C/C	G/G
17	Chip	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	C/C	?	A/A	C/C	G/G
10	Sanger	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	G/T
10	Chip	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/A	?	G/G	C/T	G/T
10	Sanger	C/C	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/A
19	Chip	C/C	A/C	A/A	G/A	G/G	C/C	T/T	T/T	G/G	A/A	G/G	G/G	C/T	T/T
20	Sanger	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/G
20	Chip	C/C	A/A	A/A	G/G	G/G	C/C	T/T	T/T	G/G	A/C	G/G	G/A	T/T	G/G

Note: Failed tests were marked by "?" in the Table, and inconsistent SNPs genotyped by the two methods were marked with red.

Table S5. 14 SNPs in a total of 20 clinical samples genotyped by the proposed universal genotyping microarray and Sanger sequencing.

	Total Number of SNPs	Number of successfully detected SNPs	Detection rate	Number of consistent SNPs genotyped by the two methods	Accuracy rate
The proposed universal genotyping microarray	280	278	99.3%	270	97.1%
Sanger sequencing	280	278	99.3%		100%

Table S6. Comparison of the proposed universal genotyping microarray with nicking endonuclease-based method and conventional allelespecific chips in terms of cost, complexity, multiplex levels, sensitivity and specificity.

		Cost		Complexity	Multipley		
Methods	Steps	Running Setting-up	Setting-up	of experiment	levels	Sensitivity	Specificity
			cost	setup			
Nicking endonuclease- based method ^{3, 4}	Circularization of the Padlock Probe Rolling Circle Amplification		***	**	*	*	***
							(Nicking
	Nicking Endonuclease-Assisted Nanoparticles Amplification						dependent)
Conventional allele-specific chips ⁵	PCR (including preparation)					***	
	PCR purification						*
	Microarray construction		*	*	***	depandent	hybridization-
	SNP typing by the conventional type of microarray)	dependent)
	(including hybridization, washing, and Scanning)						
Proposed universal genotyping microarray	Multiplex PCR					***	***
	Multiplex invasive reaction Microarray construction SNP typing by the proposed universal genotyping-		***	**	***	(PCR- depandent)	(Afu
							endonuclease
							cleavage-
	microarray(including ligation, washing, and Scanning)					,	dependent)

Note: The larger number of "*" indicates the superior performance of the method.

References

- 1. B. Zou, X. Cao, H. Wu, Q. Song, J. Wang, T. Kajiyama, H. Kambara and G. Zhou, Biosensors & bioelectronics, 2015, 66, 50-54.
- 2.
- B. Zou, Y. Ma, H. Wu and G. Zhou, *Angew Chem Int Ed Engl*, 2011, **50**, 7395-7398.
 W. Xu, X. Xue, T. Li, H. Zeng and X. Liu, *Angew Chem Int Ed Engl*, 2009, **48**, 6849-6852. 3.
- W. Xu, X. Xie, D. Li, Z. Yang, T. Li and X. Liu, Small, 2012, 8, 1846-1850. 4.
- 5. M. Ji, P. Hou, S. Li, N. He and Z. Lu, Mutat Res, 2004, 548, 97-105.