Organocatalyst-assisted Ar-¹⁸F bond formation: A universal procedure for direct aromatic radiofluorination

Jimmy Erik Jakobsson, Gaute Grønnevik and Patrick Johannes Riss*a,b

Contents

1. Materials, Methods and Experiments	2
2. Initial radiochemistry – literature procedure:	2
3. Quality control, determination of radiochemical yield and identity of labelled products:	3
3.1 RadioHPLC analysis:	4
3.2 RadioTLC analysis:	4
3.3 Chemical purity:	4
3.4 Molar radioactivity:	4
Table S2: TLC retention factors and HPLC retention time for key radiolabelled compounds	5
4. Synthesis of starting materials, reference compounds and labelled products	9
4.1 Typical procedure A (ylide synthesis).	9
4.2 Typical procedure B (ylide synthesis)	9
4.3 Removal of iodine	9
4.4 Radiolabelling	10
5. Analytical data and procedures	10
Kinetic NMR and radiotracer experiments	28
6. Carrier added experiments	30
7. NMR experiments – fluorination under stoichiometric conditions	31
8. Origin of reduced side products: Alkene migration experiment	31
9. HPLC chromatograms for selected experiments	32
11. Radio TLC data	164
11.1 Ligand screening:	164
Radio TLC kinetics	175
11.3 RadioTLC carrier added experiments	200
HPLC chromatogram for reference compounds	214
13. References	226

1. Materials, Methods and Experiments

Reactants, reagents and solvents used herein were procured from Sigma-Aldrich (Sigma-Aldrich AS, Norway) in analytical quality unless specified otherwise. Solid phase extraction (SPE) cartridges were purchased from VWR (VWR International, Darmstadt, Germany). Nuclear magnetic resonance spectra were recorded on a Bruker AVII 400 NMR instrument (Bruker ASX Nordic AB). Chemical shifts (δ) for proton (400 MHz) and ¹³C (100 MHz) resonances are reported in parts per million (ppm), relative to the solvent signal (CDCl₃ δ = 7.226 ppm), downfield from the expected tetramethylsilane signal (TMS, $\delta = 0$ ppm). Mass spectrometry was conducted on a Q-Tof-2 mass analyser (Micromass, Q-Tof-2[™]) using electron spray ionization in positive mode (+ESI). For quality control and analysis of the radiochemical yield, a Phenomenex Luna PFP(2) column (5 μ m, 100 Å, 250 mm × 4.6 mm) or a Supelco HS F5 of equal dimensions were used as a stationary phase with an isocratic mixture of MeCN-water as a mobile phase at a flow rate of 1.5 ml/min. RadioTLC was conducted on Silica gel 60 F₂₅₄ coated aluminum TLC plates (Supelco, USA). RadioTLC plates were analysed using a raytest miniGita radioTLC scanner (Raytest GmBH, Straubenhardt, Germany). All other radioactivity measurements during labelling experiments and radiotracer productions were performed using a Wallac Wizard well counter (PerkinElmer, Oslo, Norway).

2. Initial radiochemistry – literature procedure:

We chose a reproduction of literature results for radiofluorination of known iodane precursors as a starting point for our investigation. Besides published procedures, we explored a number of standardised labelling protocols of common use in the PET chemistry community. Table S1 illustrates the outcome of baseline experiments.

Entry	Conditions	Product	RCY / % ^a		
(substrate)		_	Lit.	Lab.	
1 (1)	DMF, crypt-222, K ₂ CO ₃	4-[¹⁸ F]fluorophen-1-yl	25±5ª	45+11	
	130 °C, 20 min	benzyl ether		13-11	
	DMF. crvnt-222, K2CO3				
2 (2)	,, _F ,,	4-[18F]fluoroanisol	15 ±5ª	11±1	
	130 °C, 20 min				
3(1)	DMF/DMSO, crypt-222, K ₂ CO ₃	4-[¹⁸ F]fluorophen-1-yl		33 5(1)	
5 (1)	130 °C, 20 min	benzyl ether		33.5(1)	
4 (1)	DMF, crypt-222, KH ₂ PO ₄	4-[¹⁸ F]fluorophen-1-yl		9.6 (1)	

 Table S1: Yields for baseline experiments in comparison to literature and screening results.

	130 °C, 20 min	benzyl ether		
5 (1)	DMF, crypt-222, KH ₂ PO ₄ / K ₂ CO ₃ 1:1	4-[¹⁸ F]fluorophen-1-yl		25.2 (1)
5(1)	130 °C, 20 min	benzyl ether		33.2 (1)
6(1)	DMF, crypt-222, KH ₂ PO ₄ / K ₂ CO ₃ 9:1	4-[¹⁸ F]fluorophen-1-yl		35.7 (1)
0(1)	130 °C, 20 min	benzyl ether		33.7 (1)
7 (1)	DMF, crypt-222, K ₂ CO ₃	N-(4-[18F]fluoro phen-1-	n	
	130 °C, 20 min	yl-N-methylformamide	.a.	91±3
8(1)	MeCN, crypt-222, K ₂ CO ₃	4-[¹⁸ F]fluorophen-1-yl		
0(1)	130 °C, 20 min	benzyl ether	31 ^b	
9(2)	MeCN, crypt-222, K ₂ CO ₃	4-[18F]fluoroaniso]	16b	
9 (2)	130 °C, 20 min	4-[~1] jiuoi 0aiiisoi	100	

A = Rotstein et. al. Triethylammonium bicarbonate, DMF

B = Cardinale crypt-222/K₂CO₃, MeCN or DMF

As expected and consistent with literature reports, electron rich, i.e. strongly deactivated S_NAr substrates were labelled, albeit to a low extend (table 1, entry 1-2) insufficient for routine application. Moreover, yields for substrate **1** are very variable when replicated. For us this observation was very meaningful since aromatic substitutions under no-carrier-added (n.c.a) conditions are normally quite robust. Despite good efforts including model reactions using activated nitro-precursors for benchmarking of RCY, basic tweaking of the described conditions did not lead to an improvement. We, hence, hypothesised that the yield was affected by a poorly controlled yet unknown reaction condition.

In initial experiments with the aim to analyse fluorination reactions based on iodanes, we observed PhIO as a side product when excess base was present in the reaction mixture, therefore we experimented with milder bases to see if this might help stabilising the outcome, however, no useful improvement was observed (table 1, entry 3-6). Variation of the solvent (entry 3) was equally fruitless. Entries 8 and 9 show published results from an earlier study in MeCN. When attempting a reproduction we struggled with partial evaporation of the solvent and discarded the tests. Nonetheless, we were able to match literature yields within the first few attempts by simply following the published procedures. Such basic reproducibility gave us confidence in the following optimisation study.

3. Quality control, determination of radiochemical yield and identity of labelled products:

Quality control of final radiotracers and labelled model compounds was conducted using a radioHPLC system. Radiochemical yields were primarily determined using radioTLC and radioHPLC unless volatile products were present. In these cases, yields were determined by radioHPLC alone.

Identity of labelled products was determined by coinjection of a non-radioactive reference compound. The delay between the serially connected UV and radioactivity detectors was measured so that identity of products could be confirmed by co-elution of sample and reference, respectively.

3.1 RadioHPLC analysis:

An aliquot of the reaction mixture (20 μ l) was withdrawn and diluted with HPLC mobile phase (200 μ l) and 5-20 μ l of the diluted sample were injected manually into the HPLC system. The mobile phase used for all HPLC experiments was MeCN-H₂O, 1:1 at a flowrate of 1.5 ml/min. A Phenomenex Luna PFP(2) pentafluorophenyl modified silica gel column, particle size 5 μ m, pore size 100 Å of the dimensions 250 mm x 4.6 mm was used as stationary phase.

3.2 RadioTLC analysis:

An aliquot of the reaction mixture (10 μ l) was withdrawn and diluted with CH₂Cl₂ (30 μ l). TLC samples were spotted 10 mm from the bottom end of 67 mm long TLC plates and briefly dried at RT. Plates were were developed in saturated glass chambers using the mobile phases shown in Table S2 until solvent reached the top end. The TLC plates were analysed using a raytest miniGITA radioHPLC detector in scanning mode over the distance of 0-70 mm from the bottom end of the plate for 1 minute.

3.3 Chemical purity:

Chemical purity was determined after substraction of background. The percentage of pure product was obtained from the peak area of the HPLC UV signal in the product region in chromatograms followed by division of the area obtained for the integral of the entire HPLC-UV-trace. The obtained fraction was multiplied by 100%:

$$Purity = \frac{Signal\ area\ (Product)}{Signal\ area\ (Total\ chromatogram)} \times 100\%$$

3.4 Molar radioactivity:

A dose calibrator and UV-HPLC were used for determination of the molar radioactivity A_M . The activity of the product A_V (in 1 mL) was measured using a calibrated ionisation chamber. Linearity of the UV response in the relevant concentration range (0.1-10 nmol/mL) was confirmed by injection of serial dilutions of the reference compound. Peak areas Area(Reference) obtained were plotted against reference concentration c(Reference) of each individual sample to allow for linear regression analysis. To determine concentration of the product, the peak area of the product was divided by the peak area of a known reference within the linear range and multiplied by the reference concentration:

$$c(Product) = \frac{Area (Product)}{Area (Reference)} \times c(Reference); \quad A_M = \frac{A_V (Product)}{c(Product)}; \ [A_M] = \frac{Bq}{mol}$$

Entry	Product	TLC retention factor	HPLC retention time
1	F	NA	07:12
2	F	NA	07:31
3	, O F	0.50ª	19:56
	OBn		
4	F F OBn	0.50 ^b	21:12
5	F OTs	NA	18:55
6	F	NA	11:58
7	F N ₃	0.52ª	09:35
8	F OH	NA	03:43

Table S2: TLC retention factors and HPLC retention time for key radiolabelled compounds.

9	F	NA	14:40
10	F	NA	14:09
11	F N O	0.74 ^c	02:55
12	F Ph	0.38 ^b	20:25
13	F CI	NA	
14	F N O	0.45 ^d	05.11 ^e
15	F N H	0.58 ^f	07:14
16	F N Boc	0.65 ^f	NA

23	F	<mark>0.</mark> 60 ^c	03.23
	N O H		

1: RadioTLC conditions: a = EtOAc-hexane, 3:40; b) = Hexane; c) = MeOH-CH₂Cl₂, 1:24 d) = MeOH-CH₂Cl₂, 1:49 e) = MeCN-MOPS (0.05M, pH 7.4), 4:6; f) = EtOAc-hexane, 1:1; g) = EtOAc-hexane: 1:4; h) = H₂O-MeCN, 9:11; i) = MeOH-CHCl₃, 1:9 (0.7% NH₄OH)

2: RadioHPLC conditions: Flow rate: 1.5 ml/min; Column: Luna PFP(2); Mobile phase: MeCN-H₂O: 1:1

4. Synthesis of starting materials, reference compounds and labelled products

4.1 Typical procedure A (ylide synthesis)^{*i*}.

Reaction mixtures were kept in the dark at all times. In a glass vial 3-chloroperbenzoic acid (77%, 1.4 mmol, 310 mg) was dissolved in DCM (5 ml) and left for 5 minutes (excess water adhered to glass walls of vial). To iodoarene (1 mmol) in a capped argon flushed vial was added the 3-chloroperbenzoic acid solution, care was taken to avoid transferring water droplets. The reaction mixture was heated to 39 degrees for 80 minutes. Major to full consumption of starting material was indicated via TLC analysis (8% MeOH in DCM), (under UV light was all intermediate compounds visible in red that upon iodine staining vielded cream white coloured crescents. The reaction mixture was cooled to 10-15 °C. In one portion was added KOH (10 mmol, 560 mg) and 2,2-dimethyl-1,3-dioxane-4,6-dione (1.3 mmol, 187 mg). The reaction mixture was kept for 10- 60 minutes until complete conversion of intermediate was observed via TLC analysis (8% MeOH in DCM) (new in UV light visible bands that upon iodine staining stain in cream white, typically R_f is similar to intermediate). The reaction mixture was diluted with DCM (10 ml), filtered through a filter paper, washed with DCM (10 ml) and dried over sodium sulfate. The drying agent was filtered off and solvent removed under reduced pressure at 20-22 °C. The crude solids were dissolved in a minimal amount of DCM and filtered through a filter paper. The compounds were purified via precipitation from addition of hexanes (20 ml). The flasks were left at -20 for 1 hour. The pure ylides were obtained via decanting the solvents and solids washed with hexanes.

4.2 Typical procedure B (ylide synthesis)

To λ^3 -iodane diacetate (1 mmol) in DCM (5 ml) at 10-15 °C was added in one portion KOH (10 mmol, 560 mg) and 2,2-dimethyl-1,3-dioxane-4,6-dione (1.3 mmol, 187 mg) and the reaction mixture kept for 10 min – 60 minutes until complete conversion of intermediate was observed via TLC analysis (8% MeOH in DCM) (new in UV light visible bands that upon iodine staining stain in cream white, typically Rf is very similar to intermediate). The reaction mixture was diluted with DCM (10 ml), filtered through cotton and glass wool, washed with DCM (10 ml) and dried over sodium sulfate. The drying agent was filtered off and the solvent removed in an aluminium foil wrapped round bottom flask under reduced pressure at 22 °C. The crude solids were purified via precipitation from dissolving in DCM (10 ml) and adding hexanes (20 ml). The flasks were left at -20 for 1 hour. The pure ylides were obtained via decanting the solvents and washed with hexanes.

4.3 Removal of iodine

We observed a brownish discolouration of the reaction mixture in several experiments. A mildly redish colour evident in labeling precursors coincided with lower labeling yield. We surmised iodine formation as the origin of the colour and decided to investigate reduction

of the iodine by a sulfite wash. Indeed, labeling yields improved drastically when adding an aqueous workup with dilute sulfite solution.

4.4 Radiolabelling

Aqueous target mixtures containing ${}^{18}\text{F}$ (50-300 MBq) was loaded onto a QMA cartridge and subsequently eluted with K222 (40 mg, 106 µmol) and K₂CO₃ (7.36 mg, 44.4 µmol) in 30/70 water/acetonitrile (1 ml) into a V-vial. The vial was heated at 85°C under a stream of nitrogen. After evaporation of bulk solvents, AcN (1 ml) was added. The process was repeated 2 consecutive times. The vials content was equally distributed into 4 V-vials from DMF (1000 µl).

To each V-vial was added iodonium ylide (10 μ mol) and additive from DMF (0.75 ml). The capped V-vial was either bubbled with nitrogen for 1 minute or directly heated in a heating block at 130 °C for 20 minutes. The reaction mixture was allowed to cool to room temperature and a sample was taken for TLC and/or HPLC analysis.

5. Analytical data and procedures

Synthesised according to typical procedure A. 4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)-N,N-dimethylbenzamide. Reaction performed on 0.5 mmol scale yielding target compound in 14% yield (60 mg, 0.14 mmol) as white solids.¹H NMR (400 MHz, DMSO- d_6) δ 7.86 – 7.80 (m, 1H), 7.51 – 7.44 (m, 1H), 2.98 (s, 2H), 2.86 (s, 2H), 1.58 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.7, 162.9, 138.7, 132.3, 129.3, 116.7, 102.8, 57.8, 38.9, 34.7, 25.6. HR-ESIMS: m/z 439.9966 [M+Na]⁺ (C₁₅H₁₆INNaO₅⁺, calculated 439.9965)

Synthesised according to typical procedure A. 5-([1,1'-biphenyl]-4-yl-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 1 mmol scale yielding target compound in 49% yield (206 mg, 0.49 mmol) as beige solids. Analytical data was in accordance to that previously reportedⁱⁱ. ¹H NMR (400 MHz, DMSO d_6) δ 7.89 – 7.83 (m, 2H), 7.78 – 7.72 (m, 2H), 7.71 – 7.65 (m, 2H), 7.49 (dd, *J* = 8.3, 6.7 Hz, 2H), 7.45 – 7.38 (m, 1H), 1.58 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.9, 142.5, 138.5, 133.1, 129.1, 129.1, 128.3, 126.9, 115.0, 102.7, 57.9, 25.6. HR-ESIMS: *m/z* 444.9907 [M+Na]⁺ (C₁₈H₁₅INaO₄⁺, calculated 444.9907)

Synthesised according to typical procedure A. 5-((4-(benzyloxy)phenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 1 mmol scale yielding target compound in 43% yield (196 mg, 0.43 mmol) as white solids. Analytical data was in accordance to that previously reported.ⁱⁱⁱ ¹H NMR (400 MHz, DMSO d_6) δ 7.76 – 7.65 (m, 2H), 7.50 – 7.27 (m, 5H), 7.14 – 7.05 (m, 2H), 5.14 (s, 2H), 1.54 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 160.1, 136.3, 134.6, 128.5, 128.0, 127.8, 117.4, 106.0, 102.6, 69.5, 58.5, 25.6. HR-ESIMS: *m/z* 475.0012 [M+Na]⁺ (C₁₉H₁₇INaO₅⁺, calculated 475.0012)

Synthesised according to typical procedure A. 5-((4-methoxyphenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 1 mmol scale yielding target compound in 54% yield (203 mg, 0.54 mmol) as white solids. Analytical data was in accordance to that previously reported^{iv}. ¹H NMR (400 MHz, DMSO d_6) δ 7.74 – 7.68 (m, 2H), 7.04 – 6.98 (m, 2H), 3.78 (s, 3H), 1.54 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 161.1, 134.7, 116.6, 105.8, 102.6, 58.5, 55.5, 25.6. HR-ESIMS: *m/z* 398.9700 [M+Na]⁺ (C₁₃H₁₃INaO₅⁺, calculated 398.9700)

Synthesised according to typical procedure A. 5-((4-(benzyloxy)-2-fluorophenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 1 mmol scale yielding target compound in 41% yield (192 mg, 0.41 mmol) as beige solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.81 (dd, *J* = 8.8, 7.0 Hz, 1H), 7.59 – 7.30 (m, 5H), 7.15 (dd, *J* = 10.4, 2.7 Hz, 1H), 6.94 (dd, *J* = 8.9, 2.7 Hz, 1H), 5.17 (s, 2H), 1.50 (s, 6H). ¹⁹F NMR (377 MHz, DMSO) δ -96.5. ¹³C NMR (101 MHz, DMSO) δ 162.6, 162.4 (d, ³*J*_{CF} = 11 Hz), 160.5 (d, ¹*J*_{CF} = 248 Hz), 136.9 (d, ⁴*J*_{CF} = 4 Hz), 135.9, 128.5, 128.2, 127.9, 113.8 (d, ³*J*_{CF} = 3 Hz), 103.0 (d, 2*J*_{CF} = 26 Hz),102.5, 93.8 (d, 2*J*_{CF} = 26 Hz), 70.1, 59.3, 25.5. HR-ESIMS: *m/z* 492.9919 [M+Na]⁺ (C₁₉H₁₆FINaO₅⁺, calculated 492.9919)

Synthesised according to typical procedure B. 2,2-dimethyl-5-(phenyl-l3iodaneylidene)-1,3-dioxane-4,6-dione. Reaction performed on 1 mmol scale yielding target compound in 60% yield (206 mg, 0.6 mmol) as white solids. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.83 – 7.75 (m, 2H), 7.60 – 7.51 (m, 1H), 7.46 (dd, *J* = 8.4, 7.0 Hz, 2H), 1.56 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 132.5, 131.0, 130.6, 116.3, 102.7, 57.8, 25.6. Analytical data was in accordance to that previously reported^v. HR-ESIMS: *m/z* 368.9595 [M+Na]⁺ (C₁₂H₁₁INaO₄⁺, calculated 368.9594)

Synthesised according to typical procedure A. 4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)benzonitrile. Reaction performed on 1 mmol scale yielding target compound in 21% yield (77 mg, 0.21 mmol) as white solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.91 – 7.82 (m, 4H), 1.51 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.9, 134.3, 132.9, 121.3, 117.7, 113.4, 103.0, 58.2, 25.6. **HR-ESIMS:** m/z 393.9546 [M+Na]⁺ (C₁₃H₁₀INNaO₄⁺, calculated 393.9547)

Synthesised according to typical procedure A. N-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)-N-methylformamide. Reaction performed on 1 mmol scale yielding target compound in 22% yield (89 mg, 0.22 mmol) as beige-grey solids. Recoding NMR spectra yielded a mixture of rotary isomers in 1:8. ¹H NMR (400 MHz, DMSO-*d*₆) δ (8.65, 8.40) (s, 1H), (7.65 – 7.61, 7.85 – 7.75 (m, 2H)), 7.66 – 7.38 (m, 2H), (3.32, 3.21 (s, 3H)), 1.56 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.9, 162.1, 144.1, 133.8, 122.9, 111.4, 102.7, 58.3, 30.5, 25.6. HR-ESIMS: *m/z* 425.9810 [M+Na]⁺ (C₁₄H₁₄INNaO₅⁺, calculated 425.9809)

Synthesised according to typical procedure A 5-((4-chlorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 2 mmol scale yielding target compound in 25% yield (194 mg, 0.50 mmol) as white solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.82 – 7.76 (m, 2H), 7.58 – 7.52 (m, 2H), 1.57 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 135.8, 134.2, 130.9, 114.2, 102.8, 58.3, 25.6. HR-ESIMS: m/z 402.9205[M+Na]⁺ (C₁₂H₁₀ClINaO₄⁺, calculated 402.9204)

Synthesised according to typical procedure A 5-((3,5-dimethylphenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 2 mmol scale yielding target compound in 41% yield (310 mg, 0.83 mmol) as white solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.44 – 7.39 (m, 2H), 7.19 (dt, *J* = 1.7, 0.9 Hz, 1H), 2.29 (s, 6H), 1.56 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 140.4, 132.2, 129.9, 116.3, 102.6, 57.7, 25.6, 20.7. HR-ESIMS: *m/z* 396.9907[M+Na]⁺ (C₁₄H₁₅INaO₄⁺, calculated 396.9907)

Synthesised according to typical procedure A 5-((2,6-dimethylphenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 1.4 mmol scale yielding target compound in 34% yield (180 mg, 0.48 mmol) as white solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.35 (dd, *J* = 8.0, 6.8 Hz, 1H), 7.24 (d, *J* = 7.4 Hz, 2H), 2.68 (s, 6H), 1.46 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.6, 141.5, 131.4, 127.9, 126.6, 102.4, 56.7, 26.5, 25.5. HR-ESIMS: *m/z* 396.9908[M+Na]⁺ (C₁₄H₁₅INaO₄⁺, calculated 396.9907)

Synthesised according to typical procedure A. 5-((2-methoxyphenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione. Reaction performed on 2 mmol scale yielding target compound in 50% yield (379 mg, 1.01 mmol) as white solids. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (ddd, *J* = 8.4, 7.4, 1.5 Hz, 1H), 7.35 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.09 (ddd, *J* = 8.4, 7.4, 1.3 Hz, 1H), 6.97 (dd, *J* = 8.2, 1.2 Hz, 1H), 3.97 (s, 3H), 1.79 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.75, 155.29, 132.85, 128.82, 124.62, 112.48, 104.82, 101.81, 57.12, 47.56, 26.16. HR-ESIMS: *m/z* 398.9700 [M+Na]⁺ (C₁₃H₁₃INaO₅⁺, calculated 398.9700)

N-(3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)acetamide. Synthesised via **(3-acetamidophenyl)-l3-iodanediyl diacetate** and ylide formation step was performed in accordance to ^{ii.} The target compound was obtained as white solids in 5% **(23 mg 0.06 mmol).** ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.24 (s, 1H), 8.11 (t, *J* = 1.9 Hz, 1H), 7.71 – 7.64 (m, 1H), 7.47 – 7.42 (m, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 2.05 (s, 3H), 1.56 (s, 6H). ¹³C NMR (151 MHz, DMSO) δ 168.7, 162.8, 140.9, 131.0, 127.0, 122.4, 120.8, 116.3, 102.7, 57.9, 25.6, 24.0. HR-ESIMS: *m/z* 425.9810 [M+Na]⁺ (C₁₄H₁₄INNaO₅⁺, calculated 425.9809)

Synthesised according to typical procedure A tert-butyl 5-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)-1H-indole-1-carboxylate. Reaction performed on 2 mmol scale yielding target compound in 18% yield (170 mg, 0.35 mmol) as white solids. ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 – 8.04 (m, 1H), 7.84 – 7.69 (m, 1H), 1.63 (s, 4H), 1.54 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 148.6, 135.2, 131.9, 128.2, 128.0, 126.3, 117.0, 109.7, 107.1, 102.6, 84.7, 58.6, 27.6, 25.6. HR-ESIMS: m/z 508.0228[M+Na]⁺ (C₁₉H₁₀INNaO₆⁺, calculated 508.0228)

Synthesised according to typical procedure A 5-((4-(azidomethyl)phenyl)-l3iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione Reaction performed on 2 mmol scale yielding target compound in 34% yield (270 mg, 0.67 mmol) as pale yellow solids. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 – 7.78 (m, 2H), 7.48 – 7.40 (m, 2H), 4.52 (s, 2H), 1.56 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 138.6, 132.9, 130.7, 115.7, 102.7, 58.1, 52.7, 25.6. HR-ESIMS: m/z 423.9765[M+Na]⁺ (C₁₃H₁₂IN₃NaO₄⁺, calculated 423.9765)

5-((4-iodophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione dione Reaction performed on 4 mmol scale yielding target compound in 28% yield (523 mg, 1.1 mmol) as white solids. Analytical data was in accordance to that previously reported. ¹H NMR (400 MHz, DMSO- d_6) δ 7.86 – 7.79 (m, 2H), 7.58 – 7.50 (m, 2H), 1.56 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 139.6, 134.3, 115.8, 102.8, 98.1, 58.1, 25.6. HR-ESIMS: m/z 494.8561 [M+Na]⁺ (C₁₂H₁₀I₂NaO₄⁺, calculated 494.8561)

4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl 4methylbenzenesulfonate. Sodium hydroxide (264 mg, 6.6 mmol) was dissolved in acetic acid (5 ml) and acetic anhydride (1 ml). sodium periodate (674 mg, 3.2 mmol) and 4iodophenyl 4-methylbenzenesulfonate (1120 mg, 3 mmol) was added. The reaction mixture was heated to 115 degrees for 3 hours. The reaction mixture was diluted with water and extracted with DCM. The combined organic phases were washed with sodium hydrogen carbonate and dried over sodium sulfate. Diethyl ether (50 ml) was added and the mixture sonicated. The solids were filtered off and rinsed with diethyl ether (15 ml * 2). The obtained white solids were used in the next step without further purification.

To above was 0.5 mmol used for ylide formation via general procedure B on 0.5 mmol scale yielding target compound in 45% (116 mg, 0.23 mmol) as white solids. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.82 – 7.71 (m, 4H), 7.48 (d, *J* = 8.1 Hz, 2H), 7.18 – 7.10 (m, 2H), 2.42 (s, 3H), 1.55 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 150.4, 146.1, 134.3, 131.0, 130.4, 128.2, 124.7, 114.1, 102.8, 58.3, 25.5, 21.2. HR-ESIMS: *m/z* 538.9632 [M+Na]⁺ (C₁₉H₁₇INaO₇S⁺, calculated 538.9632)

1-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)benzyl)-1Hbenzo[d]imidazol-3-ium. Synthesised according to typical procedure B at 0.46 mmol scale yielding the target compound as beige solids in 16% yield over 2 steps (35 mg, 0.73 mmol) as beige solids. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.41 (s, 1H), 7.78 – 7.71 (m, 2H), 7.70 – 7.63 (m, 1H), 7.47 – 7,43 (m, 1H), 7.36 – 7.28 (m, 2H), 7.21 – 7,17 (m, 2H), 5.56 (s, 2H), 1.54 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 162.8, 144.2, 143.4, 139.8, 137.4, 132.9, 129.7, 122.5, 121.7, 119.5, 115.2, 110.6, 102.7, 57.9, 47.0, 25.6. HR-ESIMS: *m/z* 477.0306 [M+H]⁺ (C₂₀H₁₈IN₂O₄⁺, calculated 477.0306)

tert-butyl (3-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenoxy) -**3-phenylpropyl)methylcarbamate.** Reaction performed on 1.48 mmol scale yielding target compound in 45% yield (408 mg, 0.67 mmol) as brown solids.¹H NMR (400 MHz, DMSO-*d*₆) δ 7.64 – 7.56 (m, 2H), 7.40 – 7.30 (m, 4H), 7.28 – 7.22 (m, 1H), 6.99 – 6.90 (m, 2H), 5.34 (dt, *J* = 5.0, 2.6 Hz, 1H), 3.25 (broad s, 1H), 2.76 (s, 3H), 2.09 (dq, *J* = 13.9, 7.2 Hz, 1H), 1.98 (s, 1H), 1.52 (s, 6H), 1.38 – 1.17 (m, 9H). ¹³C NMR (101 MHz, DMSO) δ 162.7, 159.3, 154.7, 140.5, 134.5, 128.6, 127.7, 126.0, 118.2, 105.8, 102.5, 78.4, 58.4, 54.9, 44.9, 38.9, 36.0, 33.7, 27.9, 25.5. HR-ESIMS: *m/z* 632.1115 [M+Na]⁺ (C₂₇H₃₁IN₂NaO₇⁺, calculated 632.1116).

8-methyl-8-azabicyclo[3.2.1]octan-3-yl ylidene)-l3-iodaneyl)benzoate. To iodobenzoate (165 mg, 0.44 mmol) in CHCl₃ (1.5 ml) was added TFA (4 ml) and oxone monopersulphate (220 mg, 0.70 mmol) and left at room temperature for 3 hours. The solvent was removed over a stream of nitrogen and the residues dissolved in EtOH (5 ml) and pH adjusted to ~10 via addition of 10% w/v Na₂CO₃. 2,2-dimethyl-1,3-dioxane-4,6dione (95mg, 0.66 mmol) was added from 10% w/v Na₂CO₃ (2 ml) and the reaction was left at room temperature for 50 minutes. The reaction mixture was poured into DCM (25 ml) and extracted with 2x25 ml DCM. The combined organic phases were washed with 0.5M Na₂S₂O₃ and dried over sodium sulphate. The solvents were removed under reduced pressure and the crude dissolved in DCM and hexanes was added to induce precipitation. The cloudy suspension was subjected to freezer and the target compound (95 mg, 0.19 mmol) was afforded as white solids in 42% via filtration and washed with hexanes. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.99 – 7.94 (m, 4H), 5.12 (t, *J* = 5.2 Hz, 1H), 3.08 (broad s, 2H), 2.20 (s, 3H), 2.15 – 2.05 (m, 2H), 2.05 – 1.88 (m, 4H), 1.71 (d, *J* = 14.8 Hz, 2H), 1.58 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ 164.1, 162.8, 132.8, 132.2, 131.1, 121.3, 102.8, 68.6, 59.0, 58.0, 39.7, 35.7, 25.6, 25.6. HR-ESIMS: *m/z* 514.0721 [M+H]+ (C₂₁H₂₅INO₆+, calculated 514.0721).

(4-((1H-benzo[d]imidazol-1-yl)methyl)phenyl)-l3-iodanediyl diacetate was (synthesised in accordance to^{vi} affording the target compound in 77% (210 mg, 0.46 mmol) as white solids used for the next step without further purification. Analytical data was in accordance to that previously reported^{vii}

tert-butyl (4-(benzyloxy)-2-fluorophenyl)carbamate. To 4-amino-3-fluorophenol (5.59g, 44 mmol) in THF (40 ml) on ice was added di-*tert*-butyl dicarbonate (48.4 mmol, 10.6g) from THF (20 ml). The reaction mixture was stirred overnight. The solvents were removed under reduced pressure. The crude was dissolved in DCM and washed with water and aqueous sat. NaHCO₃. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure. The black crude was used in the next step without further purification.

To the crude in DMF (30 ml) was added K₂CO₃ (9.12 g, 66 mmol) and benzyl bromide (5.23 ml, 50.8 mmol) and left over night. The crude was dissolved in DCM and washed with water. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure. The black crude was recrystallized from EtOH yielding the target compound (6.99 g, 22.0 mmol) as brown solids in 50% over 2 steps. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 (s, 1H), 7.45 – 7.30 (m, 5H), 6.77 – 6.69 (m, 2H), 6.46 (s, 1H), 5.02 (s, 2H), 1.52 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -129.2. ¹³C NMR (101 MHz, CDCl₃) δ 155.0 (d, ³*J*_{CF} = 11 Hz), 153.2 (d, ¹*J*_{CF} = 244 Hz), 152.9, 128.8, 128.2, 127.6, 121.8 (broad), 120.2 (d, ²*J*_{CF} = 11 Hz), 110.6 (d, ⁴*J*_{CF} = 3 Hz), 102.9 (d, ²*J*_{CF} = 23 Hz), 80.9, 70.7, 28.5. HR-ESIMS: *m/z* 340.1319 [M+Na]⁺ (C₁₈H₂₀FNNaO₃⁺, calculated 340.1319)

4-(benzyloxy)-2-fluoroaniline. To tert-butyl (4-(benzyloxy)-2-fluorophenyl)carbamate (6.41 g, 20.2 mmol) in DCM (45 ml) on ice was added dropwise trifluoroacetic acid (10 ml, 0.13 mol) and left for 4 hours. The crude was diluted with DCM and washed with aqueous sat. K₂CO₃. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure yielding the target compound (4.3 g, 19.8 mmol) in 98% as dark brown solids. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.29 (m, 5H), 6.78 – 6.66 (m, 2H), 6.61 (dd, *J* = 8.7, 2.9 Hz, 1H), 4.98 (d, *J* = 3.4 Hz, 2H), 3.41 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 152.07 (d, ¹*J*_{CF} = 239 Hz), 152.05 (d, ³*J*_{CF} = 9 Hz), 137.1, 128.7, 128.2 (d, ²*J*_{CF} = 13 Hz), 128.1, 127.6, 117.7 (d, ³*J*_{CF} = 5 Hz), 111.1 (d, ⁴*J*_{CF} = 3 Hz), 104.0 (d, ²*J*_{CF} = 22 Hz), 71.0 ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -131.81 (dd, *J* = 12.4, 10.1 Hz). HR-ESIMS: *m/z* 218.0976 [M+H]⁺ (C₁₃H₁₃FNO⁺, calculated 218.0976)

4-(benzyloxy)-2-fluoro-1-iodobenzene To 4-(benzyloxy)-2-fluoroaniline (2.41 g, 11.1 mmol) in AcN (45 ml) on ice was added dropwise a solution of KI (4.6 g, 27.7 mmol) and NaNO₂ (1.53 g, 22.2 mmol) in water (8 ml). After effervescence had ceased the reaction mixture was allowed to reach room temperature and stirred for 1 hour. The reaction mixture was diluted with DCM and washed with water, 1M sodium thiosulfate and saturated NaHCO₃. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure. The crude was purified via flash column chromatography (0-20% DCM in hexanes) yielding the target compound (1.45 g, 4.43 mmol) in 40% as pale yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (dd, *J* = 8.7, 7.4 Hz, 1H), 7.45 – 7.33 (m, 4H), 6.74 (dd, *J* = 9.8, 2.8 Hz, 1H), 6.60 (ddd, *J* = 8.8, 2.8, 0.8 Hz, 1H), 5.04 (s, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -92.05 (dd, *J* = 9.8, 7.3 Hz) ¹³C NMR (101 MHz, CDCl₃) δ 162.4 (d, ¹*J*_{CF} = 245 Hz), 160.6 (d, ³*J*_{CF} = 10 Hz), 139.2 (d, ³*J*_{CF} = 3 Hz), 136.1, 128.9, 128.4, 127.6, 113.2 (d, ⁴*J*_{CF} = 3 Hz), 103.4 (d, ²*J*_{CF} = 27 Hz), 70.61, 69.9 (d, ²*J*_{CF} = 26 Hz) ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -131.81 (dd, *J* = 12.4, 10.1 Hz). HR-ESIMS: *m/z* 350.9653 [M+Na]⁺ (C₁₃H₁₀FINaO⁺, calculated 350.9653)

4-iodo-N-methylbenzamide. To 4-iodobenzoyl chloride (1 g, 3.75 mmol) in Et_2O was added methylamine hydrochloride (506 mg, 7.5 mmol) and triethylamine (1050 µl, 7.5 mmol). The reaction was left over night. The reaction mixture was diluted with Et_2O and washed with water. The organic phase was dried over sodium sulfate and solvents removed under reduced pressure. The crude was recrystallized from EtOAc yielding the target compound (793 mg, 3.04 mmol) in 81% as white solids. Analytical data was in accordance to that previously reported.^{viii}

4-iodo-N,N-dimethylbenzamide. To 4-iodo-N-methylbenzamide (783 mg, 3mmol) in THF (10 ml) on ice was added 60% NaH in mineral oil (180 mg, 7.5 mmol) and left to stir for 30 minutes. Methyliodide (280 μ l, 4.5 mmol) was added and the reaction mixture was allowed to reach room temperature and kept for 3 hours. The reaction mixture was evaporated to

dryness under reduced pressure. The crude was dissolved in Et_2O and washed with water and aqueous sat. NaHCO₃. The organic phase was dried over sodium sulfate and solvent removed under reduced pressure. The crude was purified via flash column chromatography (4% MeOH in DCM) affording the target compound (604 mg, 2.20 mmol) in 73% as white solids. Analytical data was in accordance to that previously reported.^{ix}

N-(4-iodophenyl)-N-methylformamide. Formic acid (1.30 ml, 34.3 mmol) was added to acetic anhydride (2.66 ml, 27.4 mmol) and heated at 65 °C for 30 minutes. The formed acetic formic anhydride solution was added drop wise to 4-iodoaniline (3 g, 13.7 mmol) in THF (5 ml) on ice. The reaction mixture was kept for 15 minutes and subsequently evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and washed with aqueous sat. NaHCO₃. The organic phase was evaporated to dryness under reduced pressure and the obtained beige solids (3.26 g) were used without further purification in the next step.

The crude was dissolved in THF (50 ml) and on ice was 60% NaH in mineral oil (822 mg, 20.6 mmol) added. The reaction was left to stir for 30 minutes prior to drop wise addition of MeI (1.28 ml, 20.6 mmol). The reaction mixture was allowed to reach room temperature and kept for 6 hours. The reaction mixture was evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and washed with water and brine. The organic phase was dried over sodium sulfate and evaporates to dryness under reduced pressure. The crude was purified via recrystallization from hexanes/chloroform affording the target compound (1.53g, 5.86 mmol) as purple-beige needles in 45% over two steps. Recording NMR spectra yielded a mixture of rotary isomers in 1:12. ¹H NMR (400 MHz, Chloroform-*d*) δ ((8.47, 8.37) (s, 1H)), (7.77 – 7.69 (m, 2H)), (7.27 – 7.23, 6.98 – 6.90 (m, 2H), (3.35, 3.30 (s, 3H)). ¹³C NMR (101 MHz, CDCl₃) δ (162.1, 161.8), 142.0, (138.7, 138.0), (125.0, 123.9), 90.5, (36.4, 31.8). HR-ESIMS: *m/z* 283.9542 [M+Na]⁺ (C₈H₈INNaO⁺, calculated 283.9543)

1-(4-iodobenzyl)-1H-benzo[d]imidazole. To benzimidazole (708 mg, 6.0 mmol) in THF (30 ml) was added 60% NaH in mineral oil (360 mg, 9 mmol) and 4-iodobenzylbromide (1.78 g, 6.0 mmol). The reaction mixture was heated to 60 °C overnight. The reaction mixture was evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and extracted with water and brine. The organic phase was dried over sodium sulfate and evaporated to dryness under reduced pressure. The crude was purified via recrystallization from EtOH affording the target compound (1.71 g, 5.1 mmol) as white fluffy solids in 85%. Analytical data was in accordance to that previously reported ^{x1}H NMR (400 MHz, Chloroform-*d*) δ 7.95 (s, 1H), 7.89 – 7.82 (m, 1H), 7.72 – 7.62 (m, 2H), 7.35 – 7.21 (m, 3H), 6.97 – 6.88 (m, 2H), 5.31 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 143.2, 138.3, 135.3, 133.9, 128.9, 123.4, 122.5, 120.7, 110.0, 93.9, 48.4. HR-ESIMS: *m/z* 335.0039 [M+H]+ (C₁₅H₁₁IN₂+, calculated 335.0040)

N-(4-fluorophenyl)-N-methylformamide. Formic acid (94 μ l, 2.5 mmol) was added to acetic anhydride (189 μ l, 2.0 mmol) and heated at 65 °C for 30 minutes. The formed acetic formic anhydride solution was added drop wise to4-fluoro-N-methylaniline (128 μ l, 1.06 mmol) in THF (1 ml) on ice. The reaction mixture was kept for 15 minutes and subsequently evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and washed with NaHCO₃. The organic phase was evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and washed with NaHCO₃. The organic phase was evaporated to dryness under reduced pressure. The crude was dissolved in BCM jielding the target compound (63 mg, 0.41 mmol) as yellow oil that solidified in 39%. Analytical data was in accordance to that previously reported.^{xi}

1-(4-fluorobenzyl)-1H-benzo[d]imidazole. To benzimidazole (354 mg, 3.0 mmol) in THF (15 ml) was added 60% NaH in mineral oil (180 mg, 4.5 mmol) and 4-fluorobenzylbromide (374 μ l, 3.0 mmol). The reaction mixture was heated to 60 °C overnight. The reaction mixture was evaporated to dryness under reduced pressure. The crude was dissolved in EtOAc and extracted with water and brine. The crude was purified via flash column

chromatography (4% MeOH in DCM) affording the target compound (544 mg, 2.4 mmol) as yellow oil in 80%. Analytical data was in accordance to that previously reported ^{xii}

1-(azidomethyl)-4-iodobenzene. To 1-(bromomethyl)-4-iodobenzene (5 mmol, 1.49 g) in DMF (7 ml) was added sodium azide (15 mmol, 975 mg) and left to stir over night. The reaction mixture was diluted with EtOAc and washed with water. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure. The crude was purified via flash column chromatography (10% EtOAc in hexanes) affording the target compound as white solids in 97% (1.25 g, 4.8 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 2H), 7.11 – 7.04 (m, 2H), 4.32 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 161.6, 131.4, 131.3, 130.2, 130.1, 116.0, 115.8, 54.2. GC-MS *m/z* 258.9 [M] (C₇H₆IN₃, calculated 259.0).

1-(azidomethyl)-4-iodobenzene. To 1-(bromomethyl)-4-fluorobenzene (0.2 mmol, 38 mg) in DMF (1 ml) was added sodium azide (0.6 mmol, 65 mg) and left to stir over night. The reaction mixture was diluted with EtOAc and washed with water. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure. The crude was purified via flash column chromatography (10% EtOAc in hexanes) affording the target compound in 93% as colourless oil (28 mg, 0.19 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 2H), 7.11 – 7.04 (m, 2H), 4.32 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 161.5 (d, ¹*J*_{CF} = 162 Hz), 131.3 (⁴*J*_{CF} = 3 Hz), 130.2 (³*J*_{CF} = 8 Hz), 116.0 (⁴*J*_{CF} = 22 Hz), 54.21. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.6. GC-MS *m/z* 151.0 [M] (C₇H₆FN₃, calculated 151.1).

tert-butyl 5-iodo-1H-indole-1-carboxylate

To 5-iodo-1H-indole (972 mg, 4.0 mmol) in DCM (30 ml) was added Di-*tert*-butyl dicarbonate (1.05 g, 4.8 mmol) and N,N-dimethylpyridin-4-amine (98 mg, 0.8 mmol). The reaction mixture was left over night. The solvents were removed under reduced pressure

and the crude purified via flash column chromatography (5% EtOAc in hexanes) yielding the target compound as white solids in 75% (1140 mg, 3.3 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.88 (m, 2H), 7.57 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.55 (d, *J* = 3.7 Hz, 1H), 6.49 (dd, *J* = 3.8, 0.8 Hz, 1H), 1.67 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.6, 134.6, 133.0, 132.8, 129.9, 126.8, 117.2, 106.4, 86.8, 84.3, 28.3. HR-ESIMS: *m/z* 365.9961 [M+Na]⁺ (C₁₃H₁₄INNaO₂⁺, calculated 365.9961)

tert-butyl 5-fluoro-*1H***-indole-1-carboxylate.** To 5-fluoro-*1H*-indole (68 mg, 0.5 mmol) in THF (5 ml) was added Di-*tert*-butyl dicarbonate (131 mg, 0.6 mmol) and DMAP (6 mg, 0.05 mmol). The reaction kept overnight. The solvent was removed under reduced pressure and the crude purified via flash column chromatography (5% EtOAc in hexanes) affording the target compound as white solids (96 mg, 0.41 mmol) in 82%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 (s, 1H), 7.62 (d, *J* = 3.7 Hz, 1H), 7.21 (dd, *J* = 8.8, 2.6 Hz, 1H), 7.03 (td, *J* = 9.1, 2.6 Hz, 1H), 6.52 (dd, *J* = 3.7, 0.7 Hz, 1H), 1.67 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.3 (¹*J*_{CF} = 239 Hz), 149.7, 131.7, 131.5 (³*J*_{CF} = 10 Hz), 127.6, 116.2 (³*J*_{CF} = 9 Hz), 112.1 (²*J*_{CF} = 25 Hz), 107.1 (⁴*J*_{CF} = 4 Hz), 106.5 (²*J*_{CF} = 24 Hz), 84.0, 28.3. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.3. HR-ESIMS: *m/z* 258.0900 [M+Na]⁺ (C₁₃H₁₄FNNaO₂⁺, calculated 258.0901).

4-fluorophenyl 4-methylbenzenesulfonate. To 4-fluorophenol (2.24 g, 20mmol) in THF (50 ml) was added 4-methylbenzenesulfonyl chloride (4.19 g, 22 mmol) and potassium hydroxide (225 mg, 2.24 mmol). The reaction was heated at 60 degrees overnight. The reaction mixture was diluted with ethyl acetate and washed with water. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure. The crude was purified via recrystallization from EtOH (15 ml) at -20 °C afforded the target compound as white needles in 45% (2.42 g, 9.1 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.65 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.00 – 6.91 (m, 4H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 159.9, 145.7, 145.6, 145.5, 132.2, 129.9, 128.7, 124.2, 124.1, 116.6, 116.3, 21.9. 161.1 (¹*J*_{CF} = 247 Hz), 145.7, 145.5 (⁴*J*_{CF} = 3 Hz), 132.2, 130.0, 128.7, 124.2 (³*J*_{CF} = 9 Hz), 116.5 (²*J*_{CF} = 24 Hz), 21.9. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -114.6 HR-ESIMS: *m/z* 289.0306 [M+Na]⁺ (C₁₃H₁₁FNaO₃S⁺, calculated 289.0305).

4-(benzyloxy)-1,2-difluorobenzene. To 3,4-difluorophenol (650 mg, 5 mmol) in THF (5 ml) was added potassium carbonate (690 mg, 5 mmol) and benzyl bromide (0.60 ml, 5.25 mmol). The reaction was left at 60 degrees for 5 days. Additional benzyl bromide (0.60 ml, 5.25 mmol) was added and the reaction left for 5 more days. The reaction mixture was diluted with diethyl ether and washed repeatedly with water. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure. The crude was purified via flash column chromatography (0-15% EtOAc in hexanes) affording the target compound as white solids in 51% (570 mg, 2.6 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.31 (m, 5H), 7.06 (dt, *J* = 10.1, 9.1 Hz, 1H), 6.79 (ddd, *J* = 12.0, 6.5, 3.0 Hz, 1H), 6.67 (dtd, *J* = 9.1, 3.2, 1.8 Hz, 1H), 5.02 (s, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ –135.5 (d, *J* = -22 Hz), -148.1 (d, *J* = -22 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 155.2 (^{3,4}*J*_{CF} = 9, 2 Hz), 150.6 (^{1,2}*J*_{CF} = 248, 14 Hz), 145.3 (^{1,2}*J*_{CF} = 241, 13 Hz), 136.4, 128.8, 128.4, 127.6, 117.3 (^{2,3}*J*_{CF} = 19, 2 Hz), 110.3 (^{3,4}*J*_{CF} = 6, 4 Hz), 104.7 (³*J*_{CF} = 20 Hz), 71.0.

tert-butyl (3-hydroxy-3-phenylpropyl)(methyl)carbamate. To 3-(methylamino)-1-phenylpropan-1-ol (1.65 g, 10 mmol) in DCM (25 ml) on ice was added di-tert-butyl dicarbonate (2.18 g, 10 mmol) and stirred for 2 hours at room temperature. The solvents were removed under reduced pressure and the crude dissolved in diethyl ether (200 ml) and washed with 0.5 M aqueous HCl (50 ml) and brine. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure affording the desired product as colourless oil in 93% (2.48 g, 9.3 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 – 7.30 (m, 4H), 7.25 (t, *J* = 7.2 Hz, 1H), 4.60 (s, 1H), 3.92 (s, 1H), 3.04 (s, 1H), 2.87 (s, 3H), 1.95 (dddd, *J* = 13.8, 9.9, 6.1, 3.5 Hz, 1H), 1.77 (s, 1H), 1.47 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.3, 144.3, 128.5, 127.3, 125.8, 80.2, 70.1, 45.4, 37.4, 34.4, 28.6. HR-ESIMS: *m/z* 288.1570 [M+Na]⁺ (C₁₅H₂₃NNaO₃⁺, calculated 288.1570).

tert-butyl (3-(4-iodophenoxy)-3-phenylpropyl)(methyl)carbamate. To triphenylphosphane (1640 mg, 6.3 mmol) in THF (20 ml) on ice was dropwise added diisopropyl azodicarboxylate (1100 μ l, 5.6 mmol). After 20 minutes was added 4-iodophenol (1265 mg, 5.75 mmol) from THF (10 ml) and tert-butyl (3-hydroxy-3-phenylpropyl)(methyl)carbamate (1110 mg, 4.2 mmol) from THF (15 ml). The reaction was allowed to reach room temperature and left over night. Solvents were removed under reduced pressure and the crude purified using flash column chromatography (15% EtOAc in hexanes) affording the product as colourless oil in 75% (1250 mg, 4.7 mmol). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.47 (m, 2H), 7.43 – 7.30 (m, 5H), 6.75 – 6.61 (m, 2H), 5.14 (dd, *J* = 8.5, 4.2 Hz, 1H), 3.63 – 3.30 (m, 2H), 2.92 (s, 3H), 2.21 (br. s, 1H), 2.13 (dtd, *J* = 13.8, 7.7, 4.1 Hz, 1H), 1.47 (s, 9H(¹J_{CF} = 247 Hz), 158.0, 155.9, 141.2, 138.2, 128.9, 127.9, 125.8, 118.4, 83.0, 79.6, 77.7, 45.9, 37.3, 34.7, 28.5. HR-ESIMS: *m/z* 490.0850 [M+Na]⁺ (C₂₁H₂₆INNaO₃⁺, calculated 490.0850).

(3-(4-fluorophenoxy)-3-phenylpropyl)(methyl)carbamate. tert-butyl То triphenylphosphane (354 mg, 1.35 mmol) in THF (5 ml) on ice was dropwise added diisopropyl azodicarboxylate (237 µl, 1.21 mmol). After 40 minutes was added 4fluorophenol (150 mg, 1.34 mmol) from THF (2 ml) and tert-butyl (3-hydroxy-3phenylpropyl)(methyl)carbamate (240 mg, 0.90 mmol) from THF (5 ml). The reaction was allowed to reach room temperature and left over night. Solvents were removed under reduced pressure and the crude purified using flash column chromatography (15% EtOAc in hexanes) affording the product as pale pink oil in 50% (163 mg, 0.45 mmol). ¹H NMR (400 MHz, Chloroform-d) δ 7.36 - 7.29 (m, 4H), 7.28 - 7.22 (m, 1H), 6.88 - 6.81 (m, 2H), 6.78 - 6.71 (m, 2H), 5.03 (dd, J = 8.7, 4.1 Hz, 1H), 3.52 - 3.24 (m, 2H), 2.84 (s, 3H), 2.13 (s, 1H), 2.05 (dtd, J = 13.9, 7.7, 4.1 Hz, 1H), 1.39 (s, 9H). ¹⁹F NMR (377 MHz, CDCl₃) δ -123.9. ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (¹*J_{CF}* = 238 Hz), 155.9, 154.2, 141.6, 128.9, 127.9, 125.9, 117.0, 115.8 (²J_{CF} = 23 Hz), 79.5, 78.2, 46.0, 37.3, 34.7, 28.5. HR-ESIMS: m/z 382.1789 [M+Na]⁺ (C₂₁H₂₆FNNaO₃⁺, calculated 382.1789).

3-(4-fluorophenoxy)-N-methyl-3-phenylpropan-1-amine. To tert-butyl (3-(4-fluorophenoxy)-3-phenylpropyl)(methyl)carbamate (145 mg, 0.40 mmol) in DCM (5 ml) was added TFA (1 ml) and left at room temperature for 6 hours. The reaction mixture was diluted with DCM and washed with 14% ammonia and brine. The organic phase was dried over sodium sulphate and evaporated to dryness under reduced pressure. The crude was purified via flash column chromatography (8-20% MeOH in DCM) affording the target compound as pale yellow oil (41 mg, 0.16 mmol) in 40%. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.11 (m, 5H), 6.95 – 6.59 (m, 4H), 5.16 (dd, *J* = 8.3, 4.7 Hz, 1H), 2.76 (t, *J* = 7.4 Hz, 2H), 2.44 (s, 3H), 2.18 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.00 (ddt, *J* = 14.2, 7.2, 3.6 Hz, 1H), 1.94 (broad s, 1H). ¹⁹F NMR (377 MHz, CDCl₃) δ -123.8. ¹³C NMR (101 MHz, CDCl₃) δ 157.3 (¹*J*_{CF} = 239 Hz), 154.3 (⁴*J*_{CF} = 2 Hz), 141.7, 128.8, 127.8, 126.1, 117.2 (³*J*_{CF} = 8 Hz), 115.8 (²*J*_{CF} = 23 Hz), 79.4, 48.5, 38.7, 36.5.

8-methyl-8-azabicyclo[3.2.1]octan-3-yl 4-iodobenzoate. To Tropine (564 mg, 4.4 mmol) in THF (40 ml) was added triethylamine (556 μl, 4.0 mmol), DMAP (24 mg, 0.2 mmol) and 4-iodobenzoyl chloride (1066 mg, 4 mmol) and left over night at room temperature. The crude was diluted with DCM, washed with sat. NaHCO₃ and brine. The solvents were removed under reduced pressure and the crude purified via flash column chromatography (8-25% MeOH in DCM) affording the target compound (290 mg, 0.78 mmol) as white solids in 20%. ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.96 – 7.83 (m, 2H), 7.79 – 7.72 (m, 2H), 5.20 (t, *J* = 5.3 Hz, 1H), 3.29 – 3.24 (m, 2H), 2.37 (s, 3H), 2.25 (dt, *J* = 15.5, 4.6 Hz, 2H), 2.21 – 2.07 (m, 4H), 1.95 – 1.83 (m, 2H). ¹³C NMR (101 MHz, MeOD) δ 166.7, 148.6, 139.2, 131.8, 131.4, 101.6, 69.1, 61.3, 40.3, 36.9, 26.4. HR-ESIMS: *m/z* 372.0455 [M+H]⁺ (C₁₅H₁₉INO₂⁺, calculated 372.0455).

8-methyl-8-azabicyclo[3.2.1]octan-3-yl 4-fluorobenzoate. To Tropine (282 mg, 2.0 mmol) in PhMe (2 ml) at reflux was added 4-iodobenzoyl chloride (260 μ l, 2.2 mmol) and kept for 5.5 hours. The crude was diluted with DCM, washed with sat. NaHCO₃ and brine. The solvents were removed under reduced pressure and the crude purified via flash column chromatography (0-25% MeOH in DCM) affording the target compound (212 mg, 0.81 mmol) as white solids in 40%. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.05 – 7.96 (m, 2H), 7.18 – 7.09 (m, 2H), 5.33 (t, *J* = 5.2 Hz, 1H), 3.51 (s, 2H), 2.71 (s, 2H), 2.57 (s, 3H), 2.25 (s, 4H), 2.00 (d, *J* = 15.5 Hz, 2H). ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -105.12 (s).

¹³C NMR (101 MHz, CDCl₃) δ 166.0 (¹*J*_{*CF*} = 255 Hz), 164.7, 132.0 (3*J*_{*CF*} = 9 Hz,), 126.6 (⁴*J*_{*CF*} = 3 Hz), 115.9 (¹*J*_{*CF*} = 22 Hz), 66.9, 61.0, 39.6, 35.5, 25.4.HR-ESIMS: *m*/*z* 264.1394 [M+H]⁺ (C₁₅H₁₉FNO₂⁺, calculated 264.1394).

Kinetic NMR and radiotracer experiments

An NMR analysis of the reaction complemented HPLC and radioHPLC analysis. The product profile was recorded over minutes in presence and absence of catalyst to structurally identify each side product.

9.54 mg, 20 µmol

A V-bottomed vial was charged with K-222 (20 mg, 53 μ mol) and K₂CO₃ x 1.5 H₂O (3.68 mg, 22.2 μ mol) in 30/70 water/acetonitrile (1 ml). The vial was heated at 85°C under a stream of nitrogen. After evaporation of bulk solvents, AcN (1 ml) was added. The process was repeated 2 consecutive times. After the capped vial had cooled to room temperature, 5-((4-(benzyloxy)-2-fluorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (9.54)

mg, 20 μ mol), 4-trifluoromethylbiphenyl (~2 mg, 9 μ mol) and PPh₃ (0 or 20 μ mol) was added from DMF (2 ml). The vial placed on a heating block at 130 °C. Samples of 250 μ l were taken at the following time points 0, 2, 3, 4, 6, 10 and 20 minutes and transferred to an NMR tube on ice in the dark. The samples were diluted with 350 μ l of DMSO-d6 and analysed via ¹H and ¹⁹F NMR.

OBn

-112.3 ppm

6. Carrier added experiments

A concentration dependent experiment was conducted to determine the molar conversion of precursor as a function of amount of substance of fluoride ion.

4.52 mg, 10 µmol

A V vial was charged with crypt-222 (40 mg, 106 μ mol) and K₂CO₃ (7.36 mg, 44.4 μ mol) in 30/70 water/acetonitrile (1 ml) containing ¹⁸F-activity. The vial was heated at 85°C under a stream of nitrogen. After evaporation of bulk solvents 4 μ M – 40 mM KF:K222: K₂CO₃, 1:4:1 (100 μ l (1000 μ l for 40 μ mol addition)) in 30/70 water/acetonitrile (1 ml) and AcN (1 ml) was added. The drying process was repeated 2 consecutive times. The dried contents of the vial was dissolved in DMF (2000 μ l) and distributed equally into 4 vials. 5-((4-(benzyloxy)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (4.52 mg, 10 μ mol) and PPh₃ (0 or 2.62 mg, 10 μ mol) was added from stock in DMF (500 μ l). The vials were capped and heated in a heating block at 130 °C for 20 minutes. The reaction mixture was analysed via radioTLC.

[F ⁻] ^ª	RCY ^b / %			
mol/L	control	control	Average	Standard deviation
1,3E-05	44	50	47	3
1,86E-05	38	43	41	3
2,4E-05	52	43	47	4
0,000112	33	35	34	1
0,001	17	19	18	1
0,01	4	9	6	2
0,1	0	0	0	0
1	0	0	0	0
[F ⁻] ^a	RCY ^b / %			
mol/L	+PPh3	+PPh3	Average	Standard deviation
1,3E-05	63	61	62	1
1,86E-05	60	36	48	12

Table S3: Yield of the aryl fluoride formation over 20 minutes in absence and presence of PPh₃.

2,4E-05	52	58	55	3
0,000112	58	63	60	2
0,001	64	64	64	0
0,01	43	47	45	2
0,1	20	19	20	1
1	5	5	5	0

a) ¹⁸F chemical activity/concentration; b) Radiochemical yield in %

7. NMR experiments – fluorination under stoichiometric conditions

In order to investigate the educt and product distribution over time, serial NMR experiments were conducted. These experiments would not only allow for an analysis of the effect of triphenyl phosphine and degassing, respectively, but also decouple our previous experiences from no-carrier-added radiochemistry conditions.

To CsF (3.0 – 17 mg, 20 - 110 μ mol) was added **5-((4-(benzyloxy)-2-fluorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione** (4.70 mg, 10 μ mol) and 4-trifluoromethylbiphenyl (~0.5 mg, 2.5 μ mol) from DMF (0.5 ml) and PPh3 (0 – 2.62 mg, 10 μ mol). The reaction mixture was heated for 20-30 minutes at 130-150 °C. A portion of the reaction mixture (300 μ l) was transferred to an NMR tube and 300 μ l of DMSO-d6 was added. The reactions were analysed via ¹⁹F-NMR analysis.

8. Origin of reduced side products: Alkene migration experiment

Deiodinated arenes were observed as major side products both by HPLC and NMR, respectively. These may indicate the presence of radicals in the reaction mixture. To test if this major non-radioactive side product was indeed formed via hydrogen abstraction by a putative arene-radical intermediate, we decided to employ a radical indicator. In brief, 4-allyl anisol was used to reveal unpaired electrons via radical induced migration of the double bond.

To **5-((4-(benzyloxy)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione** (9mg, 20 μ mol) in DMF (1 ml) was added 1-allyl-4-methoxybenzene (20 μ mol, 3 mg) and heated at 130 degrees for 20 mintues. A small sample was withdrawn for crude NMR and the remains were diluted with ether (10 ml) and poured into water (10 ml). The phases were separated. The organic phase was dried over sodium sulphate and the bulk solvent removed under reduced pressure. The crude was analysed via NMR.

Despite several attempts, no double-bond migration was apparent under our reaction conditions.

9. HPLC chromatograms for selected experiments

Standard procedure:

Standard	procedu	ire +	100 m	ol%	PPh₃	+ 1	min	N_2
1,00-mAU	*1000						UV_A (254	nm)
0,50-			٨					
0,00	05'0	0 10	00 15	00	20'00	25'	00	min
400 CPS	Keg #1	reg 12						ChA
مى <u>سىما</u> 0 00 "00	05'0	0 10	100 15	00	20'00	25'	00 .	min
Integ	ration Ch	Α						
Subs	tance		R/T	Тур	e	Area	%Aı	rea
			s			Counts		%
Reg #	#1		01'43	DD(М	6352,549	57,	,17
Reg #	#2		07'23	DD(M	4759,193	42,	,83
Sum	in ROI				1	1111,742	100,	, <mark>00</mark> ,
Area	(total)				1	1532,535		
BKG	1					2,4579		
Entry 1 2 3 4	RCC Conditions 8,70 5,80 19,30 6,70	Average RCC 42,80 38,20 16,40 19,20	Standard devia 19,20 14,50	ition	Repetitions 9,60 13,10			
Entry 1 2 3	Conditions control +PPh3 +N ₂	RCC 10 29 17	Standard devia 5 12 2	ition	Repetitions 4 4 2			
4	+PPh3, +N2	11	2		2			

Standard procedure + 100 mol% PPh₃

Integration ChA

Substance	R/T	Туре	Area	%Area
	8		Counta	%
Reg #1	01'22	DD(M	380,594	5,37
Reg #2	03'05	DD(M	6701,007	94,63
Sum in ROI			7081,602	100,00
Area (total)			7213,715	
BKG1			2,0872	
Remainder			132,11	1,83

Standard

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,148	28,80	DD	211,2857	30,97
Reg #2	0,733	64,21	DD	471,0000	69,03
Sum in ROI				682,2857	
Total area				733,5714	
Area RF				733,0000	
BKG1				1,71641	
Remainder RF				50,71	6,92
Remainder (Tot)				51,29	6,99

Integration TLC

	Integ	ration	TLC
--	-------	--------	-----

Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,181	2,69	DD	31,355	2,96
Reg #2	0,843	88,25	DD	1028,548	97,04
Sum in ROI				1059,903	
Total area				1165,516	
Area RF				1169,452	
BKG1				3,1975	
Remainder RF				109,55	9,37
Remainder (Tot)				105,61	9,06

RCC

				+PPh3,
Entry	control	+PPh3	+N2	+N2
1	37,40	93,30	83,10	96,40
2	59,30	94,10	83,10	97,00
---	-------	-------	-------	-------
3	71,30	92,50		
4	72,40	96,90		
5	89,20	92,40		
	69,00			

		Average	Standard	
Entry	Conditions	RCC	deviation	Repetitions
1	control	66	16	6
2	+PPh3	94	2	5
3	+N2 +PPh3,	83	0	2
4	+N2	97	0	2

Standard procedure + 100 mol% PPh₃

Integration ChA

Substance	R/T	Туре	Area	%Area
	S		Counts	%
Reg #1	01'32	DD(M	39,212	1,72
Reg #2	19'48	DD(M	2235,758	98,28
Sum in ROI			2274,970	100,00
Area (total)			1894,833	
BKG1			2,2436	
Remainder			-380,14	-20,06

Standard procedure:

Integration TLC

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,162	40,86	DD	713,6000	46,48
Reg #2	0,471	47,05	DD	821,8000	53,52
Sum in ROI			1	1535,4000	
Total area				1746,6000	
Area RF				1746,0000	
BKG1				1,80223	
Remainder RF				210,60	12,06
Remainder (Tot)				211,20	12,09

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Integration TLC							
Substance	R/F	%Total	Туре	Area	%Area		
		8		Counts	÷		
Reg #1	0,181	9,35	DD	54,5000	11,11		
Reg #2	0,481	74,86	DD	436,2500	88,89		
Sum in ROI				490,7500			
Total area				582,7500			
Area RF				583,5000			
BKG1				0,75093			
Remainder RF				92,75	15,90		

+PPh3, +N2

88,90 86,90

RCC

Entry	control	+PPh3	+N2
1	53,50	90,30	95,40
2	59,20	81,50	93,60
3	54,60	94,00	
4		92,60	

Entry	Conditions	Average R(C	Standard deviation	Repetitions
1	control	56	2		3
2	+PPh3	90	5		4
3	+N2 +PPh3,	95	1		2
4	+N2	88	1		2

0

¹⁹F

Standard procedure:

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	02'00	DD(M	1663504	74,63
Reg #2	19'28	DD(M	565502	25,37
Sum in ROI			2229005	100,00
Area (total)			2413841	
Ext. BKG			0,00 CPS	

Standard procedure:

Remainder RF

Remainder (Tot)

1226,83

1229,92

14,97

15,00

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Sum in ROI Total area

Area RF

BKG1

1342,1111

1280,1111 1277,6667

10,34616

RCC				
Entry	control	+PPh3	+N2	+PPh3, +N2
1	19	61	73,10	74,50
2	39	61	76,60	74,70
3	47	60		
4	50	65		
5	42	66		
6	43	71		
7	58	70		
8	52	69		
9	26	61		
10	44			
11	47			
12	58			
13	61			
14	50			
15	44			
16	47			
17	58			

RCC

F	C	Average		D
Entry	Conditions	KUU	Standard deviation	Repetitions
1	control	46	11	17
2	+PPh3	65	4	9
3	+N2 +PPh3,	75	2	2
4	+N2	75	0	2

Ö

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	05'11	DD(M	124764,4	100,00
Sum in ROI			124764,4	100,00
Area (total)			127532,4	
Ext. BKG			0,00 CPS	

Standard

Substance	R/F	<pre>%Total</pre>	Туре	Area	%Area
		8		Counts	8
Reg #1	0,129	8,99	DD	1123,692	10,48
Reg #2	0,576	76,77	DD	9596,154	89,52
Sum in BOI				10719.846	
Total area				12499,385	
Area RF				12495,769	
BKG1				22,8745	
Remainder RF				1775,92	14,21
Remainder (Tot)				1779,54	14,24

Integration TLC

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'18	DD(M	5040,091	70,40
Reg #2	06'12	DD(M	2119,065	29,60
Sum in ROI			7159,156	100,00
Area (total)			7011,274	
BKG1			2,9379	
Remainder			-147,88	-2,11

Standard procedure + 100 mol% PPh₃

Integration ChA

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'21	DD(M	2226,621	19,15
Reg #2	06'02	DD(M	9400,178	80,85
Sum in ROI			11626,799	100,00
Area (total)			12251,725	
BKG1			2,5424	
Remainder			624,93	5,10

RCC

Entry	control	+PPh3	+N2	+PPh3, +N2
1	29,60	49,10	84,90	76,00
2	20,50	52,10	80,90	85,30

Entry Conditions Average RCCStandard deviationRepetitions

1	control	25	5	2
2	+PPh3	51	2	2
3	+PPh3, +	N281	5	2
4	+N ₂	83	2	2

Standard procedure + 100 mol% PPh_3 + 1 min N_2

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	02'18	DD(M	30136,33	97,48
Reg #2	07'19	BB(M	778,74	2,52
Sum in ROI			30915,08	100,00
Area (total)			36803,55	
Ext. BKG			0,00 CPS	

Standard procedure

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,143	73,75	DD	2577,833	90,72
Reg #2	0,643	3,15	DD	109,944	3,87
Reg #3	0,724	4,40	DD	153,889	5,42
Sum in ROI				2841,667	
Total area				3495,389	
Area RF				3494,333	
BKG1				3,1706	
Remainder RF				652,67	18,68
Remainder (Tot)				653,72	18,70

Integration TLC

Integ	ration	TLC
THOOD	LACTOR	1 100

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,157	52,44	DD	917,0909	57,49
Reg #2	0,690	38,77	DD	678,0000	42,51
Sum in ROI				1595,0909	
Total area				1749,0000	
Area RF				1748,5455	
BKG1				4,36905	
Remainder RF				153,45	8,78
Remainder (Tot)				153,91	8,80
Remainder (Tot)				153,91	8,80

-Boc	+Boc	RCC	ratio boc	+boc/-
1,9	3,2	5,1	1,7	
3,9	5,4	9,3	1,4	
	-Boc 1,9 3,9	-Boc+Boc1,93,23,95,4	-Boc+BocRCC1,93,25,13,95,49,3	-Boc+BocRCCboc1,93,25,11,73,95,49,31,4

+PPh3	10,8	11,5	22,3	1,1
+PPh3	12,9	13,1	26	1,0
+N2	20,4	13,8	34,2	0,7
+N2	23,1	17,8	40,9	0,8
+N2	18	19,3	37,3	1,1
+N2	18,1	16	34,1	0,9
+PPh3, +N2 +PPh3, +N2 +PPh3, +N2	16,6 14,3 20,4	22,3 18,1 21,6	38,9 32,4 42	1,3 1,3 1,1

	RCC					
Entry	control	+PPh3	+N2	+PPh3, +N2Repetitions		
1	control	7	2	2		
2	+PPh3	24	2	2		
3	+N2	37	3	4		
4	+PPh3, +1	N238	4	3		

 N_3 ¹⁸F

Standard	procedu	ire	+	1	L OO	n	nol%		PPh ₃
1,00-mAU	*1000						7U	/_A (254	nm)
0,50-									
0,00	02'00 04'00 06'	00 08 00	10'00	12'00	14'00	16'00	18'00	20'00	min
CPS			Reg #3						ChA
500-	g #1								
0	Reg V	n constants and a state to a state of the st		ale ale a ale de ac	- 1.0.07 - 2 2 2 2 2 2 2 2		Proc. 16		
00"00	02'00 04'00 06'	00 08'00	10'00	12'00	14'00	16'00	18'00	20'00	min

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'23	DD(M	532,24	3,72
Reg #2	05'01	DD(M	1480,87	10,35
Reg #3	09'47	DD(M	12291,48	85,93
Sum in ROI			14304,59	100,00
Area (total)			15012,73	
BKG1			2,295	
Remainder			708,14	4,72

Standard procedure

Integration TLC					
Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,143	44,35	DD	1302,182	51,80
Reg #2	0,571	41,27	DD	1211,818	48,20
Sum in ROI				2514,000	
Total area				2936,000	
Area RF				2936,455	
BKG1				4,6421	
Remainder RF				422,45	14,39
Remainder (Tot)				422,00	14,37

ation TT C π. **-** - -

Integra	ation	TLC

Substance	R/F	<pre>%Total</pre>	Туре	Area	&Area
		8		Counts	8
Reg #1	0,133	4,97	DD	176,000	6,52
Reg #2	0,633	71,25	DD	2525,000	93,48
Sum in ROI				2701,000	
Total area			1	3544,000	
Area RF				3546,000	

RCC

Entry	control	+N2
1	18,20	89,80
2	48,20	93,50
R	CC	
		Chandand

		Standard	
Entry	Conditions Average	deviation	Repetitions

1	control	33	15	
2	+N2	92	2	

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'57	DD(M	2184,057	15,67
Reg #2	07'19	DD(M	3049,020	21,88
Reg #3	12'03	DD(M	8704,926	62,45
Sum in ROI			13938,004	100,00
Area (total)			14892,751	
BKG1			1,7544	
Remainder			954,75	6,41

Standard procedure + 100 mol% PPh_3 + 1 min N_2

Substance	R/T	Туре	Area %A	
	s		Counts	%
Reg #1	12'06	DD(M	7318,541	100,00
Sum in ROI			7318,541	100,00
Area (total)			9409,552	
Ext. BKG			0,00 CPS	

	4-Fluoro-1- iodobenzene	Fluorobenzene	RCC	ratio
control	62,50	21,88	84,38	0,74
control	62,40	23,10	85,50	0,73
+PPh3 +PPh3	84,40 81,60	5,70 4,60	90,10 86,20	0,94 0,95
+N2	98,70	1,30	100,00	0,99
+N2	89,70	1,00	90,70	0,99
+PPh3,				
+N2	100,00	0,00	100,00	1,00
+PPh3, +N2	100,00	0,00	100,00	1,00

	RCC				
Entry	control	+PPh3	+N2	+PPh3, ·	+N2Repetitions
1	control	85	1	1:3	2
2	+PPh3	88	2	1:19	2
3	+N2	95	5	1:99	2
4	+PPh3, +]	N2100	0	0:1	2

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	02'03	DD(M	16672,68	79,86
Reg #2	21'29	DD(M	600,68	2,88
Reg #3	25'00	DD(M	3603,19	17,26
Sum in ROI			20876,56	100,00
Area (total)			20537,83	
BKG1			3,035	
Remainder			-338,73	-1,65

Standard procedure + 100 mol% PPh₃ + 1 min N₂

2	traces 2		25,10	52,80	72,40		
3	trac	ces	9,60	50,60	64,20		
4	trac	ces	21,10				
	RCC						
	Condition		Standa	ard	Product:Byproduc	Repetition	
Entry	S	Average RCC	deviat	tion	t	S	
1	control	traces	NA		NA	4	
2	+PPh3	17	7		1:6	4	
3	+N2 +PPh3,	58	9		1:11	3	
4	+N2	62	10		1:11	3	

Standard procedure:

Integration ChA							
Substance	R/T	R/T Type		%Area			
	s		Counts	%			
Reg #1	01'22	DD(M	4701,648	87,97			
Reg #2	07'37	DD(M	643,155	12,03			
Sum in ROI			5344,803	100,00			
Area (total)			5490,187				
BKG1			2,0599				

Standard procedure + 100 mol% PPh₃ + 1 min N_2

Integ	gration Ch	Α						
Sub	ubstance		R	/Т	Ту	ре	Area	%Area
				s			Counts	%
Reg	#1		03'	04	DD	M)(1367,476	34,00
Reg	#2		07'4	42	DD(M		2655,095	66,00
Sum	Sum in ROI						4022,571	100,00
Area	Area (total)						4197,349	
BKG	61						2,8661	
RCC							•	
Entry	con	control		+	N2	+P	Ph3, +N2	
1	12		43,6	69	9,2	55		
2	9,7		40,4	69	9,3	60	,9	
3				61	1,4			
_		Average	Standard			_		
Entry	Conditions	RCC	deviation	1		Rep	oetitions	
1	control	11	1			2		
2	+PPh3	42	2			2		
3	+N2	67	4			3		
4	+PPh3, +N2	258	3			2		

		· · · ·		-			5			_
1,	00- _{mAU}	*1000						τ	UV_A (254	nm)
0,	50-	~								
υ,	00"00	02'00	04'00 0	6'00	08'00	10'00	12'00	14'00	1 1 1 1	min
4	00 CPS	eg #1				Reg #2				ChA
	0	and the last sector of the last sector	Andrea Marcana and a substance of the second	inter Tradition to Liber Minut			aluðu mark mör man		Ali makan un adaharan	Manufactures
_	00"00	02'00	04'00 0	6'00	08'00	10'00	12'00	14'00		min
	Integ	gration C	hA							
	Subs	stance			R/T	Туре		Area	%Ar	ea
					s		C	ounts		%
	Reg	#1		01'31		DD(M	142,599		2,	79
	Reg	#2		10'05		DD(M	496	68,513	97,	21
	Sum	in ROI					511	1,112	100,	00
	Area	(total)					521	1,178		
	BKG	1					2	2,2944		
R	ĊĊ									
Eı	ntry	co	ntrol	+PP	'h3 +l	N2 +F	PPh3, +N2			
1		35	,20	54,6	50 96	,30 97	,20			
2		13	,60	56,8	80 95	,80 94	,80			
Eı	ntry	Condition	Average Is RCC	Stan devi	dard ation	Rep	petitions			
1 2		+PPh2	24 56	11 1		2 2				
2		τΝ ₂	96	0		2				
3 4		+PPh3, +N	N296	1		2				

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Standard procedure:

Sum in ROI

Area (total)

BKG1

100,00

5462,681

5504,290

2,1896

3	lanuar	u proce	uure	т	100	I	110170		F F 113	Ŧ	T	111111	112
1	,00-mAU	*1000										UV_A (25	4 nm)
0	, 00												
	00"00	02'00	04'00	1	06'00	0	8'00	<u>'</u> 1	10'00	12 0	00	14'00	min
1	CPS	#####################################	lana sala a sana bada	Audit	muliking shakulumu	فلسلا	ektra nya ditukurada	Anovátyvat	northeod in a shirt	10. ou Michael and read		Reg #2	ChA
	00"00	02'00	04'00	I	06'00	0	8'00	1	LO'00	12'	00	14'00	min
	Integ	ration Ch	Α										
	Subs	stance			R	Т	Туре	e		A	rea	%A	rea
						s				Cou	nts		%
	Reg	#1			01'3	5	DD(I	М		20,	430	0	,78
	Reg	#2			14'1	8	DD(I	М		2603,	363	99	,22
	Sum	in ROI								2623,	793	100	,00,
	Area	(total)								2701,	962		
	BKG	1								1,8	989		
]	RCC							+F	PPh3,			1	•
1	intry	COI	strol		+PPh3	+7	-NZ 7 9	+N					
	2	91,	3 1		99,6	, 9	7,8 8,2	99	.,5),5				
		RCC											
E	ntrv	Conditions	Average	•	Standard	de	eviatio	onRe	epetiti	ons			
1	,	control	90		1			2	-				
2		+PPh3	97		2			2					
3		+N ₂	88		10			2					
4		+PPh3, +N2	291		9			2					

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Sta	indar	a proc	eaure +	100	n	101%	PPn ₃	+	T	min	IN ₂
1, 0,	00-mAU 50-	*1000								UV_A (254	nm)
0.	0.0			~							
	00"00	02'00	04'00 06	00'80 08'0	0	10'00	12'00	14'00		16'00	min
30 20	00 CPS	I							Reg #2		ChA
10	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -		-	Mullionani Managari					$\left \right $		
, 	00"00	02'00	04'00 06	00 08'0	0	10'00	12'00	14'00		16'00	min
	Integ	ration C	hA								
	Subs	stance		R	/T	Туре		Ar	ea	%Ai	rea
					s			Coun	ts		%
	Reg	#1		01'	56	DD(M		295,6	04	5	,24
	Reg	#2		14'	56	DD(M		5342,04	43	94	,76
	Sum	in ROI						5637,64	47	100,	,00
	Area	(total)						6231,4	53		
	BKG	1						1,77	78		
RC En	C trv	co	ontrol	+PPh3	 +N	12 +	PPh3. +1	N2			
1	5	23	3,4	89	74,	1 94	4,8				
2		31	,1	87,8	63,	5 93	3,4				
3					81,	3					
		RCC									
En	try	Condition	ns Average	Standard	d de	viationF	Repetitio	ons			
1		control	27	4		2					
2		+PPh3	88	1		2					
3		$+N_2$	73	7		3					
4		+PPh3, +l	NZ94	1		2					

Standard nrocoduro 100 mol% **DDh** ⊥ 1 min N. т

Standard procedure:

3	lanuar	i procedure	Ŧ	100 1	101%0	FFII3 +	· 1	111111	IN 2
1	,00 mAU	*1000					יט	V_A (254 n	m)
0	,50-	Α							
0	, 00							, , , , , , , , , , , , , , , , , , ,	_
	00"00 300 Cpg	05'00	10'0	00 15	'00	20'00	25'00) m	in ba
:	200-	# Бөх							,1121
:	100 - 0	Reg #1		anna an					
_	00"00	05'00	10'0	0 15	•00 [°]	20'00	25'00) m	in
	Integ	ration ChA							
	Subs	tance		R/T	Туре		Area	%Are	a
				s		C	ounts	9	6
	Reg	#1		01'47	DD(M	ę	94,445	2,6	3
	Reg	#2		07'24	DD(M	349	96,088	97,3	7
	Sum	in ROI				359	90,533	100,0	0
	Area	(total)				340	04,535		
	BKG	1				2	2,4660		
R	CC					•	•		
E	ntry	control		+PPh3 +	N2 +P	Ph3, +N2			
1		45,50		92,00 95	,40 91	,00			
2		50,40		97,40 95 80.00	,00 92	,20			
л Л		<i>4</i> 7 80		09,00 93 1.0					
Т		47,00		JJ, T U					
		RCC							
E	ntry	Conditions Averag	ge RCC	CStandard d	eviation	Repetitions			
1		$\begin{array}{c} \text{control} & 50 \\ \text{LDDb2} & 02 \end{array}$		4 2	4	e L			
2				0	4	r)			
3 4		+1N2 95 +PPh3. +N292		1	7	2			
-				_	-	-			

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Standard procedure:

St	tandaro	d procedure	+	100 ı	nol%	PPh ₃	+ 1	min	N_2
1,	, 00 ⁻ mAU	*1000						UV_A (254	nm)
0,	, 50-								
0,	, oo								-
4	00"00	05'00	10'00	15	5'00	20'00	25'	00	min
2	200-	Reg #1 Reg #							CIIA
	00"00	05'00		1!	5'00	20'00	25	00	min
Γ	Integ	ration ChA							
	Subs	tance		R/T	Туре		Area	%Ar	ea
				S			Counts		%
	Reg #	¥1		02'34	DD(M		930,623	16,8	38
	Reg #	#2		05'33	DD(M	4	581,938	83,1	12
	Sum	in ROI				5	512,561	100,0	00
	Area	(total)				5	672,381		
	BKG ⁴	1					2,6351		
R	CC								
E	ntry	control	4	-PPh3 +	N2 +	PPh3, +N	2		
1		89,70	6	5,10 93	3,80 82	1,60			
2		91,60	8	86,60 85	5,70 52	1,60			
3		93,10	5	5,50 79.20					
4		92,50	/	0,20					
		Average	e St	andard					
E	ntry	Conditions RCC	d	eviation	Re	petitions			
1 2		control 92	1		4				
2		+rriio /y	9 ⊿		4 2				
3 4		$+1N_2$ 90 +PPh3. +N267	4 1'	5	2 2				
-			1	-	-				

Standard	procedure	+	100	mol%	PPh ₃	+	1	min	
----------	-----------	---	-----	------	------------------	---	---	-----	--

Standard procedure:

Integration ChA

Substance	R/T	Туре	Area	%Area
	S		Counts	%
Reg #1	03'04	DD(M	718,18	5,48
Reg #2	07'07	DD(M	12389,02	94,52
Sum in ROI			13107,20	100,00
Area (total)			13869,06	
BKG1			2,226	
Remainder			761,85	5,49

Standard procedure + 100 mol% PPh₃ + 1 min N₂

Integration ChA

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'24	DD(M	123,42	0,83
Reg #2	07'05	DD(M	14758,08	99,17
Sum in ROI			14881,50	100,00
Area (total)			15385,11	
BKG1			4,336	
Remainder			503,60	3,27

RCC

Entry	control	+PPh3	+N2	+PPh3, +N2
1	94.50	99.40	95.10	99.30
2	95.70	99.00	99.40	99.20

	RCC				
Entry	Conditions	Average	RCC Standard	deviation Repetitio	ns
1	control	95	1	2	
2	+PPh3	99	0	2	
3	+N2	97	2	2	
4	+PPh3, +N2	99	0	2	

Standard procedure + 100 mol% PPh₃ + 1 min N_2

Integration ChA

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'22	DD(M	588,10	1,29
Reg #2	03'04	DD(M	17204,68	37,72
Reg #3	03'32	DD(M	10417,21	22,84
Reg #4	07'11	DD(M	17398,23	38,15
Sum in ROI			45608,21	100,00
Area (total)			53987,9 <mark>4</mark>	
BKG1			1,970	
Remainder			8379,73	15,52

Standard procedure

Substance	R/F	<pre>%Total</pre>	Type	Area	8Area
		8		Counts	8
Reg #1	0,157	87,98	DD	43995,54	98,22
Reg #2	0,748	1,59	DD	795,46	1,78
Sum in ROI				44791,00	
Total area				50007,38	
Area RF				49988,77	
BKG1				64,927	
Remainder RF				5197,77	10,40
Remainder (Tot)				5216,38	10,43

Integration TLC

Integration TLC							
Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>		
		8		Counts	8		
Reg #1	0,157	62,56	DD	4958,700	79,44		
Reg #2	0,729	16,19	DD	1283,100	20,56		
Sum in ROI				6241,800			
Total area				7925,900			
Area RF				7927,000			
BKG1				11,7145			
Remainder RF				1685,20	21,26		
Remainder (Tot)				1684,10	21,25		

DCC	
KUU	

Entry	control	+PPh3	+N2	+PPh3, +N2
1	2	7	21	17

Standard procedure:

Standard procedure + 100 mol% PPh₃ + 1 min N₂

1	1,00 mAU *1000			1	UV_A (254 nm)
C	0,50-				
C	00"00 05'00 10	00 15	00'	20'00 25'	 00 min
	150-CPS	eg #2	I		ChA
	100-	Ř		с #	
	50 - 2			Reg	
	O Law Mallahala and and and and and and and and and an	And the second	within the state of the state o		Sile Julie
	00"00 05'00 10	00 15	00	20'00 25'	00 min
	Integration ChA				
	Substance	R/T	Туре	Area	%Area
		s		Counts	%
	Reg #1	01'21	DD(M	1111,807	25,62
	Reg #2	11'22	DD(M	2583,639	59,54
	Reg #3	19'08	DD(M	643,964	14,84
	Sum in ROI			4339,410	100,00
	Area (total)			4455,930	
	BKG1			1,9861	
F	RCC				•
			+]	PPh3.	

				• • • • • • •
Entry	control	+PPh3	+N2	+N2
1	78,70	74,60	84,10	91,90
2	80,20	78,30	66,30	84,70
3	72,40	64,50		
4	70,70	54,60		
5	66,80	59,20		

RCC

		Average		Standard		Product:Byproduc	Repetition
Entry	Conditions	RCC		deviation		t	S
1	control	74	5		2:7		5
2	+PPh3	66	9		2:7		5

Specific activity

271 MBq was produced with a specific activity of 274 GBq/ μ mol.

Standard procedure + 1 min N₂

Integration ChA

Substance	R/T	Туре	Area	%Area
	S		Counts	%
Reg #1	02'51	DD(M	22193,96	46,57
Reg #2	13'43	DD(M	720,52	1,51
Reg #3	18'45	DD(M	24738,44	51,91
Sum in ROI			47652,92	100,00
Area (total)			50943,12	
BKG1			2,439	
Remainder			3290,21	6,46

RCC

4

Entry	control	+PPh3	+N2	+PPh3, +N2
1	10,40	19,30	46,70	58,70
2	26,40	33,90	46,70	42,70
3	19,50	15,20	59,50	56,00

RCC

+PPh3, +N252

Entry	Condition	ns Averag	e RCCStandard	deviationRepetitions
1	control	19	7	3
2	+PPh3	23	8	3
3	+N ₂	51	6	3

Entry	Decay corr. Yield	n.d.c. Yield	MBq of product	RCP
1	0,30	0,21	131	<95%
2	0,62	0,43	271	<95%
3	0,36	0,25	106	<95%

7

3

	Average	n.d.c. Standard	
Entry	yield %	deviation	
1	0,29	0,10	

Standard

procedure:

Integration TLC

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,152	43,67	DD	3514,000	57,29
Reg #2	0,500	32,56	DD	2619,762	42,71
Sum in ROI				6133,762	
Total area			1	8046,381	
Area RF				8046,000	
BKG1				4,1480	
Remainder RF				1912,24	23,77
Remainder (Tot)				1912,62	23,77

Standard procedure + 100 mol% PPh₃ + 1 min N_2

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,157	35,52	DD	2787,826	41,32
Reg #2	0,590	50,45	DD	3959,565	58,68
Sum in ROI				6747,391	
Total area				7848,522	
Area RF				7845,783	
BKG1				26,2499	
Remainder RF				1098,39	14,00
Remainder (Tot)				1101,13	14,03

Standard procedure + 100 mol% PPh₃ + 1 min N₂, C18 purified.

Integration The							
Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>		
		8		Counts	8		
Reg #1	0,176	2,00	DD	418,23	2,39		
Reg #2	0,457	81,72	DD	17061,45	97,61		
Sum in ROI				17479,68			
Total area				20876,87			
Area RF				20871,39			
BKG1				22,479			
Remainder RF				3391,71	16,25		
Remainder (Tot)				3397,19	16,27		

Integration TLC

10 minutes at 100 °C in 6M HCl (THF:H₂O, 1:1)

Integration ChA

Substance	R/T	Туре	Area	%Area
	s		Counts	%
Reg #1	01'42	DD(M	140,465	3,88
Reg #2	03'23	DD(M	3475,812	96,12
Sum in ROI			3616,277	100,00
Area (total)			3359,639	
BKG1			2,0809	
Remainder			-256,64	-7,64

Standard procedure: (TLC plate was developed to 45 mm)

Integration TLC

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,138	18,85	DD	1872,897	22,95
Reg #2	0,271	63,29	DD	6287,741	77,05
Sum in ROI				8160,638	
Total area				9934,569	
Area RF				9932,414	
BKG1				6,4735	
Remainder RF				1771,78	17,84
Remainder (Tot)				1773,93	17,86

RCC

Entry	control	+PPh3	+N2	+PPh3, +N2
1	87,00	88,40	96,70	95,70
2	77,10	87,50	95,20	91,30

RCC

Entry	Conditio	ns Averag	ge RCCStandard	deviationRepetitions
1	control	82	5	2
2	+PPh3	88	0	2
3	+N ₂	96	1	2
4	+PPh3, +	N294	2	2

Standard procedure + 100 mol% PPh₃ + 1 min N_2

Substance	R/F	<pre>%Total</pre>	Туре	Area	%Area
		8		Counts	8
Reg #1	0,171	3,63	DD	521,78	4,32
Reg #2	0,433	80,25	DD	11548,06	95,68
Sum in ROI				12069,84	
Total area				14389,39	
Area RF				14386,69	
BKG1				17,126	
Remainder RF				2316,85	16,10
Remainder (Tot)				2319,55	16,12

10. 1H, 13C and 19F NMR

4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)-N,N-dimethylbenzamide

4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)-N,N-dimethylbenzamide

5-([1,1'-biphenyl]-4-yl-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-([1,1'-biphenyl]-4-yl-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(benzyloxy)phenyl)-I3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(benzyloxy)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-methoxyphenyl)-I3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-methoxyphenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(benzyloxy)-2-fluorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(benzyloxy)-2-fluorophenyl)-I3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(benzyloxy)-2-fluorophenyl)-I3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

2,2-dimethyl-5-(phenyl-l3-iodaneylidene)-1,3-dioxane-4,6-dione

4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)benzonitrile

N-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)-N-methylformamide

N-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)-N-methylformamide

N-(3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)acetamide

N-

(3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenyl)acetamide

5-((4-chlorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-chlorophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((3,5-dimethylphenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((3,5-dimethylphenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((2,6-dimethylphenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((2,6-dimethylphenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

tert-butyl 5-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)-1H-indole-1-carboxylate

5-((4-(azidomethyl)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-(azidomethyl)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-iodophenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione

5-((4-((1H-benzo[d]imidazol-1-yl)methyl)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6dione

5-((4-((1H-benzo[d]imidazol-1-yl)methyl)phenyl)-l3-iodaneylidene)-2,2-dimethyl-1,3-dioxane-4,6dione

tert-butyl (3-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenoxy)-3-phenylpropyl)(methyl)carbamate

tert-butyl (3-(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-l3-iodaneyl)phenoxy)-3-phenylpropyl)(methyl)carbamate

4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)-I3-

4-(benzyloxy)-2-fluoroaniline

4-(benzyloxy)-2-fluoroaniline

N-(4-iodophenyl)-N-methylformamide

3-(4-fluorophenoxy)-N-methyl-3-phenylpropan-1-amine

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

NMR degradation standard conditions

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

NMR	degradation	standard	conditions
			I
A. M. A.			- 7
MMMm and	٠٠		
MMMmmmmmmm			- 4
_WMm_n_n		////	
_MMm_m_mm			
Multiman	~~~~		- 1
MWhMMM			

· · ·		1 1					1 1			- I - I						1 1				1 1			1 1		1 1	- I - I		_
'.6	7.5	7.4	7.3	7.2	7.1	7.0	6.9	6.8	6.7	6.6	6.5	6.4	6.3	6.2 f1 (pp	6.1 m)	6.0	5.9	5.8	5.7	5.6	5.5	5.4	5.3	5.2	5.1	5.0	4.9	4.8

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

After 0, 2, 3, 4, 6, 10, 20 minutes starting from bottom.

11. Radio TLC data

11.1 Ligand screening: Entry 1:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	€
Reg #1	0,093	48,13	DD	546,3200	57,84
Reg #2	0,423	35,08	DD	398,2400	42,16
Sum in ROI				944,5600	
Total area				1135,1600	
Area RF				1135,0000	
BKG1				0,48060	

Entry 2:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક્ર		Counts	f
Reg #1	0,090	56,74	DD	1918,313	69,75
Reg #2	0,603	24,60	DD	831,813	30,25
Sum in ROI				2750,125	
Total area				3381,063	
Area RF				3383,250	
BKG1				2,4405	

Entry 3:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક્ર		Counts	8
Reg #1	0,083	68,17	DD	1856,545	76,38
Reg #2	0,593	21,09	DD	574,273	23,62
Sum in ROI				2430,818	
Total area				2723,273	
Area RF				2721,909	
BKG1				4,0960	

Entry 4:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,195	35,94	DD	3097,548	40,43
Reg #2	0,586	52,95	DD	4563,742	59,57
Sum in ROI				7661,290	
Total area				8619,355	
Area RF				8612,935	
BKG1				22,2857	

R/F	%Total	Туре	Area	%Area
	8		Counts	8
0,152	34,33	DD	1199,324	38,17
0,576	55,61	DD	1943,027	61,83
			3142,351	
			3493,892	
			3491,054	
			8,5241	
	R/F 0,152 0,576	R/F %Total % 0,152 34,33 0,576 55,61	R/F %Total Type 0,152 34,33 DD 0,576 55,61 DD	R/F %Total Type Area 0,152 34,33 DD 1199,324 0,576 55,61 DD 1943,027 3142,351 3493,892 3491,054 4 4 8,5241

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,162	37,18	DD	736,8857	43,38
Reg #2	0,495	48,52	DD	961,8286	56,62
Sum in ROI				1698,7143	
Total area				1982,1714	
Area RF				1981,0000	
BKG1				3,51865	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક		Counts	÷,
Reg #1	0,181	28,34	DD	1469,778	31,46
Reg #2	0,281	23,21	DD	1203,593	25,76
Reg #3	0,576	38,54	DD	1998,556	42,78
Sum in ROI				4671,926	
Total area				5186,074	
Area RF				5182,778	
BKG1				9,9012	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,167	36,73	DD	1950,143	41,53
Reg #2	0,562	51,73	DD	2746,000	58,47
Sum in ROI				4696,143	
Total area				5308,714	
Area RF				5307,000	
BKG1				8,1530	

Entry 9:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,162	35,17	DD	2889,727	35,47
Reg #2	0,638	63,98	DD	5256,455	64,53
Sum in ROI				8146,182	
Total area				8216,000	
Area RF				8210,455	
BKG1				43,6905	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,171	46,73	DD	2035,220	52,35
Reg #2	0,510	42,54	DD	1852,756	47,65
Sum in ROI				3887,976	
Total area				4355,341	
Area RF				4352,927	
BKG1				7,2529	

Entry 11:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,152	78,51	DD	7943,098	93,27
Reg #2	0,562	5,67	DD	573,537	6,73
Sum in ROI				8516,634	
Total area				10117,561	
Area RF				10114,951	
BKG1				7,8390	

Radio TLC kinetics Standard procedure + 100 mol% PPh₃ + 1 min N₂ starting point:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક્ર		Counts	€
Reg #1	0,167	86,47	DD	1106,000	100,00
Sum in ROI				1106,000	
Total area				1279,000	
Area RF				1279,000	

Integration TLC						
Substance	R/F	%Total	Туре	Area	%Area	
		8		Counts	8	
Reg #1	0,190	84,35	DD	1412,000	100,00	
Sum in ROI				1412,000		
Total area				1674,000		
Area RF				1675,000		

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક		Counts	8
Reg #1	0,200	87,05	DD	558,0000	100,00
Sum in ROI				558,0000	
Total area				641,0000	
Area RF				641,0000	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક્ર		Counts	8
Reg #1	0,167	84,48	DD	2352,000	100,00
Sum in ROI				2352,000	
Total area				2784,000	
Area RF				2784,000	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,181	75,82	DD	1424,000	90,31
Reg #2	0,671	8,13	DD	152,750	9,69
Sum in ROI				1576,750	
Total area				1878,250	
Area RF				1877 , 500	
BKG1				2,2528	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,195	69,29	DD	1095,063	82,10
Reg #2	0,667	15,11	DD	238,750	17,90
Sum in ROI				1333,813	
Total area				1580,313	
Area RF				1579,625	
BKG1				2,0651	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,190	57,56	DD	744,5000	70,94
Reg #2	0,686	23,58	DD	305,0000	29,06
Sum in ROI				1049,5000	
Total area				1293,5000	
Area RF				1293,0000	
BKG1				1,50186	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,157	47,70	DD	520,1739	52,33
Reg #2	0,690	43,45	DD	473,8261	47,67
Sum in ROI				994,0000	
Total area				1090,4348	
Area RF				1090,6522	
BKG1				2,35074	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,181	30,56	DD	666,348	37,86
Reg #2	0,538	50,15	DD	1093,522	62,14
Sum in ROI				1759,870	
Total area				2180,348	
Area RF				2181,522	
BKG1				2,4813	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,186	27,34	DD	668,091	31,56
Reg #2	0,548	59,29	DD	1449,000	68,44
Sum in ROI				2117,091	
Total area				2444,000	
Area RF				2444,273	
BKG1				5,1883	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,181	27,51	DD	568,000	29,71
Reg #2	0,576	65,08	DD	1344,000	70,29
Sum in ROI				1912,000	
Total area				2065,000	
Area RF				2063,000	
BKG1				6,0074	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,152	20,52	DD	354,125	24,54
Reg #2	0,529	63,10	DD	1089,063	75,46
Sum in ROI				1443,188	
Total area				1726,063	
Area RF				1725,125	
BKG1				2,8160	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,162	88,10	DD	5552,250	99,85
Reg #2	0,548	0,13	DD	8,500	0,15
Sum in ROI				5560,750	
Total area				6302,250	
Area RF				6302,500	
BKG1				5,2565	

Standard procedure 1 min:

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક		Counts	8
Reg #1	0,157	88,92	DD	7538,889	99,77
Reg #2	0,557	0,21	DD	17,444	0,23
Sum in ROI				7556,333	
Total area				8478,389	
Area RF				8475,333	
BKG1				9,1780	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,148	82,32	DD	3910,222	99,77
Reg #2	0,614	0,19	DD	9,000	0,23
Sum in ROI				3919,222	
Total area				4749,889	
Area RF				4750,333	
BKG1				1,6687	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	÷
Reg #1	0,152	82,26	DD	3860,615	95,85
Reg #2	0,543	3,56	DD	167,077	4,15
Sum in ROI				4027,692	
Total area				4693,231	
Area RF				4692,462	
BKG1				2,3106	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,157	75,26	DD	6049,917	88,19
Reg #2	0,605	10,08	DD	810,472	11,81
Sum in ROI				6860,389	
Total area				8038,472	
Area RF				8036,833	
BKG1				7,9265	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,157	69,68	DD	3188,800	78,80
Reg #2	0,700	18,74	DD	857,800	21,20
Sum in ROI				4046,600	
Total area				4576,400	
Area RF				4575,000	
BKG1				10,2127	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,176	60,58	DD	2985,259	69,28
Reg #2	0,681	26,85	DD	1323,444	30,72
Sum in ROI				4308,704	
Total area				4928,148	
Area RF				4929,556	
BKG1				7,7874	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,143	47,25	DD	3621,783	54,20
Reg #2	0,610	39,93	DD	3061,087	45,80
Sum in ROI				6682,870	
Total area				7665,870	
Area RF				7665,304	
BKG1				10,7089	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક		Counts	8
Reg #1	0,157	43,83	DD	2987,750	49,76
Reg #2	0,576	44,24	DD	3016,250	50,24
Sum in ROI				6004,000	
Total area				6817,250	
Area RF				6814,500	
BKG1				11,2640	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	÷
Reg #1	0,152	40,56	DD	2325,324	46,26
Reg #2	0,567	47,11	DD	2701,108	53,74
Sum in ROI				5026,432	
Total area				5733,135	
Area RF				5731,432	
BKG1				11,1219	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	&
Reg #1	0,157	38,98	DD	2047,471	43,61
Reg #2	0,648	50,40	DD	2647,324	56,39
Sum in ROI				4694,794	
Total area				5252,324	
Area RF				5249,588	
BKG1				11,2198	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,162	38,74	DD	2642,143	43,49
Reg #2	0,595	50,33	DD	3433,214	56,51
Sum in ROI				6075,357	
Total area				6820,929	
Area RF				6819,000	
BKG1				11,8003	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	÷
Reg #1	0,162	34,74	DD	2003,000	39,21
Reg #2	0,576	53,85	DD	3105,143	60,79
Sum in ROI				5108,143	
Total area				5765,771	
Area RF				5764,000	
BKG1				8,3246	

11.3 RadioTLC carrier added experiments

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	&
Reg #1	0,143	36,48	DD	1047,000	39,95
Reg #2	0,686	54,84	DD	1574,000	60,05
Sum in ROI				2621,000	
Total area				2870,000	
Area RF				2869,000	
BKG1				9,0112	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,133	46,91	DD	1250,385	48,28
Reg #2	0,643	50,26	DD	1339,538	51,72
Sum in ROI				2589,923	
Total area				2665,462	
Area RF				2661,923	
BKG1				13,6323	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,152	39,20	DD	1151,200	41,96
Reg #2	0,667	54,21	DD	1592,200	58,04
Sum in ROI				2743,400	
Total area				2936,900	
Area RF				2933,000	
BKG1				11,7145	

Standard conditions +0.001 equivalents (KF:K222:K₂CO₃; 1:4:1); 100mol% PPh₃

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		ક		Counts	€
Reg #1	0,152	37,27	DD	1851,000	35,84
Reg #2	0,643	66,72	DD	3314,000	64,16
Sum in ROI				5165,000	
Total area				4967,000	
Area RF				4956,000	
BKG1				33,0410	

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	÷
Reg #1	0,152	56,07	DD	1391,417	56,96
Reg #2	0,614	42,38	DD	1051,583	43,04
Sum in ROI				2443,000	
Total area				2481,583	
Area RF				2478,500	
BKG1				15,2689	

Standard conditions +0.1 equivalents (KF:K222:K₂CO₃; 1:4:1); 100mol% PPh₃

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	&
Reg #1	0,252	80,42	DD	5536,273	79,64
Reg #2	0,686	20,56	DD	1415,273	20,36
Sum in ROI				6951,545	
Total area				6884,000	
Area RF				6876 , 636	
BKG1				28,1258	

Standard conditions +1 equivalents (KF:K222:K₂CO₃; 1:4:1); 100mol% PPh₃

Integration TLC					
Substance	R/F	%Total	Туре	Area	%Area
		8		Counts	8
Reg #1	0,143	81,27	DD	5259,400	94,73
Reg #2	0,624	4,52	DD	292,800	5,27
Sum in ROI				5552,200	
Total area				6471,800	
Area RF				6470,000	
BKG1				5,4067	

Integration TLC

R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
	8		Counts	8
0,138	57,00	DD	856,7000	62,35
0,700	34,42	DD	517,3000	37,65
			1374,0000	
			1502,9000	
			1501,0000	
			5,70708	
			127,00	8,46
			128,90	8,58
	R/F 0,138 0,700	R/F %Total 0,138 57,00 0,700 34,42	R/F %Total Type 0,138 57,00 DD 0,700 34,42 DD	R/F %Total Type Area 0,138 57,00 DD 856,7000 0,700 34,42 DD 517,3000 1374,0000 1502,9000 1501,0000 5,70708 127,00 128,90

Integration	TLC
-------------	-----

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,157	45,52	DD	1478,750	48,36
Reg #2	0,629	48,61	DD	1579,125	51,64
Sum in ROI				3057,875	
Total area				3248,875	
Area RF				3244,750	
BKG1				15,3941	
Remainder RF				186,88	5,76
Remainder (Tot)				191,00	5,88

Integ	ration	TLC
_		

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,152	61,45	DD	1877,923	67,45
Reg #2	0,667	29,65	DD	906,308	32,55
Sum in ROI				2784,231	
Total area				3056,231	
Area RF				3054,462	
BKG1				11,3217	
Remainder RF				270,23	8,85
Remainder (Tot)				272,00	8,90

-375,43 -11,02

Remainder (Tot)

Substance	R/F	<pre>%Total</pre>	Туре	Area	<pre>%Area</pre>
		8		Counts	8
Reg #1	0,138	98,51	DD	5128,533	100,36
Reg #2	0,686	-0,35	DD	-18,467	-0,36
Sum in ROI				5110,067	
Total area				5206,133	
Area RF				5201,000	
BKG1				15,4191	
Remainder RF				90,93	1,75
Remainder (Tot)				96,07	1,85

HPLC chromatogram for reference compounds Reference HPLC chromatograms

Integration UV_A (254 nm)

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	20'25	DD(M	12255,08	100,00
Sum in ROI			12255,08	100,00

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	07'12	BB(M	1829,377	100,00
Sum in ROI			1829,377	100,00

Integration UV_A (254 nm)

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	19'56	BB(M	8329,832	100,00
Sum in ROI			8329,832	100,00

Substance	R/T	Туре	Area	%Area	
	s		mAU*s	%	
Reg #1	18'55	BB(M	8182,549	100,00	
Sum in ROI			8182,549	100,00	

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	11'58	BB(M	6147,176	100,00
Sum in ROI			6147,176	100,00

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	03'43	BB(M	4814,085	100,00
Sum in ROI			4814,085	100,00

Substance	R/T	Туре	Area	%Area	
	s		mAU*s	%	
Reg #1	14'09	BB(M	4780,209	100,00	
Sum in ROI			4780,209	100,00	

			7	/
	s		mAU*s	%
Reg #1	02'56	BB(M	5947,059	100,00
Sum in ROI			5947,059	100,00

Substance	R/T	Туре	Area	%Area	
	s		mAU*s	%	
Reg #1	05'31	DD(M	11663,92	100,00	
Sum in ROI			11663,92	100,00	

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	17'31	BB(M	4651,600	100,00
Sum in ROI			4651,600	100,00

	F							
1,00 mAU *1000	$\overline{ \left(\begin{array}{c} \\ \end{array} \right)}$					UV_A	(254	nm)
0,50-	Reg #1							
0,00	02'00 03'00	04'00	05'00	06'00	07'00	08'00		min

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	02'58	DD(M	14415,37	100,00
Sum in ROI			14415,37	100,00

Substance	R/T	Туре	Area	%Area
	s		mAU*s	%
Reg #1	06'55	BB(M	4643,595	100,00
Sum in ROI			4643,595	100,00

13. References

ⁱ Cardinale J, Ermert J, Humpert S, Coenen HH. RSC Adv. 2014;4:17293–17299.

ⁱⁱ Rotstein BH, Stephenson NA, Vasdev N, Liang SH. *Nat Commun*. 2014;**5**:4365–4371

ⁱⁱⁱ Cardinale J, Ermert J, *Tet. Lett.* 2013; **16**; 2067-2069

^{iv} Cardinale J, Ermert J, Humpert S, Coenen HH. *RSC Adv*. 2014;**4**:17293–17299.

^v J. Org. Chem., 2009, 74 (1), pp 470-473

^{vi} Rotstein B. H.; Wang. L.; Liu RY.; Patteson J.; Kwan EK.; Vasdev N.; Liang SH.; *Chem. Sci.* 2016; 7(**7**):4407-4417

^{vii} Rotstein B. H.; Wang. L.; Liu RY.; Patteson J.; Kwan EK.; Vasdev N.; Liang SH.; *Chem. Sci.* 2016; 7(**7**):4407-4417

viii Gallasch, DP, Woodhouse S L, Rendina LMJ; Organomet. Chem. 2004, 689, 1288

^{ix} Kumar PS; Kumar GS; Kumar AR; Reddy NV; Reddy RK. *Eur. J. Org. Chem.* 2013; 1218-1222

^x Rotstein B. H.; Wang. L.; Liu RY.; Patteson J.; Kwan EK.; Vasdev N.; Liang SH.; Chem. Sci. 2016; 7(**7**):4407-4417

^{xi} Dong B.; Wang L.; Zhao S.; Ge R.; Song X.; Wang Y.; Gao Y.; Chem. Comm. 2016; (44):7082-7085

^{xii} Sudakow. A.; Jones. P. G.; Lindel T.; *Eur. J. Org. Chem.* 2012: 681-684