Supporting Information

Facile Three-Step Synthesis and Photophysical Properties of [8]-, [9]-, and [12]Cyclo-1,4-naphthalene Nanorings via Platinum-Mediated Reductive Elimination

Hongxing Jia, Yuyue Gao, Qiang Huang, Shengsheng Cui, Pingwu Du*

Hefei National Laboratory of Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, iChEM (the Collaborative Innovation Center of Chemistry for Energy Materials), Department of Materials Science and Engineering, University of Science and Technology of China (USTC), 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China.

*To whom correspondence should be addressed
E-mail: dupingwu@ustc.edu.cn
Tel/Fax: 86-551-63606207
General. All the air-sensitive reactions were carried out in a dry vessel under argon atmosphere. NMR spectra were collected on a Bruker BioSpin (\(^1\)H 400 MHz, \(^{13}\)C 100 MHz) spectrometer for CDCl\(_3\) solution of a sample. Chemical shift values were expressed in parts per million (ppm) relative to CDCl\(_3\) (\(\delta\) 7.26 ppm for \(^1\)H NMR). Flash chromatography was performed on silica gel (200~300 mesh) and preparative thin-layer chromatography (PTLC) were performed using silica gel GF254 precoated plates. High-resolution MALDI-TOF mass spectra were measured on a Bruker Daltonics Inc. LTQ Orbitrap XL hybrid Fourier Transform high-resolution Mass Spectrometer. UV-vis spectra were collected on a UNIC-3802 spectrophotometer in standard glass cuvettes.

Materials. All reagents such as 1-bromonaphthalene (C\(_{10}\)H\(_7\)Br, 96%), 2-methyl-1-(phenylmethyl)-1H-imidazole (C\(_{10}\)H\(_9\)BO\(_2\), 98%), triphenylphosphine (PPh\(_3\), 99%), [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) (Pd(dppf)Cl\(_2\), 99%), potassium carbonate (K\(_2\)CO\(_3\), 99%), bis(pinacolato)diboron (C\(_{12}\)H\(_{24}\)B\(_2\)O\(_4\), 98%), tetrakis(triphenylphosphine)palladium(0) (Pd(PPh\(_3\))\(_4\), 99%), sodium thiosulfate (Na\(_2\)S\(_2\)O\(_3\), 99%), potassium acetate (C\(_2\)H\(_3\)KO\(_2\), 92%), cesium fluoride (CsF, 99%), and bromine (Br\(_2\), 99.5%) were obtained from Alfa Aesar or Sigma Aldrich and used without further purification. All organic solvents (THF, Toluene, CHCl\(_3\), MeOH, EtOH, Et\(_2\)O and 1,4-dioxane) were purchased from China Medicine Shanghai Chemical Reagent Co. and distilled under nitrogen prior to use. Dichloro(1,5-cyclooctadiene)platinum (Pt(COD)Cl\(_2\)) and 1,4-dibromonaphthalene (C\(_{10}\)H\(_6\)Br\(_2\)) were synthesized as reported. \(^{S1,2}\)
Synthesis of 1,1′-binaphthyl and 4,4′-dibromo-1,1′-binaphthyl. 1,1′-binaphthyl and 4,4′-dibromo-1,1′-binaphthyl were prepared according to the published procedures.S3

Synthesis of 4,4′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′-binaphthalene (2). To a mixture of 1 (500 mg, 1.2 mmol), bis(pinacolato)diboron (925 mg, 3.6 mmol), Pd(dppf)Cl\textsubscript{2} (50 mg, 0.07 mmol) and anhydrous potassium acetate (600 mg, 6.1 mmol) in a round-bottom flask (50 ml) was added anhydrous 1, 4-dioxane (20 ml). The solution was bubbled with argon for 0.5 h before heated to 100 °C for 36 h. Upon cooling to room temperature, the solvent was removed under vacuum and the resulting product was extracted with CH\textsubscript{2}Cl\textsubscript{2}. The organics was washed thoroughly with water, dried over anhydrous MgSO\textsubscript{4}, and then evaporated to dryness. The residue was purified by chromatography on a silica gel column with CH\textsubscript{2}Cl\textsubscript{2}/petroleum ether (1:5) as eluent. Yield 0.58 g (94%). 1H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta\) (ppm) 8.86 (d, \(J = 8\) Hz, 2H), 8.18 (d, \(J = 8\) Hz, 2H), 7.51 (t, 2H), 7.47 (d, \(J = 8\) Hz, 2H), 7.36 (d, \(J = 8\) Hz, 2H), 7.24 (d, \(J = 8\) Hz, 2H), 1.47 (s, 24H); 13C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta\) 142.25, 137.12, 135.22, 132.64, 128.72, 127.03, 126.93, 126.40, 125.74, 83.95, 25.13 ppm; MS (ESI) \(m/z\) calcd. for C\textsubscript{32}H\textsubscript{36}B\textsubscript{2}O\textsubscript{4} [M+H]+: 507.2878, found: 507.2504.
Synthesis of [8]CN. 2 (100 mg, 0.20 mmol), CsF (120 mg, 0.86 mmol), and Pt(COD)Cl₂ (74 mg, 0.20 mmol) were dispersed in anhydrous THF (30 mL). Then, the mixture was heated and stirred for 24 h under an argon atmosphere. Thereafter, 20 mL of MeOH was added and a precipitate formed. Filtration was carried out and the resulting solid was dried in vacuum oven. This anhydrous solid material was transferred to a 50-mL oven dried Schlenk flask containing a magnetic stirring bar and triphenylphosphine (520 mg, 1.98 mmol), to which toluene (20 mL) was added. The mixture was bubbled with argon for 0.5 h before heated to reflux for another 36 h. Upon cooling to room temperature, the solvent was evaporated and the resulting product was redissolved in CH₂Cl₂ and passed through a short silica gel column, then further purified by preparative thin-layer chromatography using hexane/CH₂Cl₂ as the eluent (v/v, 4:1), giving [8]CN (1.3 mg) in 2.6% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 6.92 (s, 16H), 7.52-7.60 (m, 16H), 8.47-8.55 (m, 16H) (Figure S11); HRMS (MALDI-TOF) m/z calcd. for C₈₀H₄₈[M]⁺: 1008.3756, found: 1008.3793 (Figure S7).

Synthesis of 1,1’:4’,1″-ternaphthalene and 4,4″-dibromo-1,1’:4’,1″-ternaphthalene. The general procedure above was used to synthesis 1,1’:4’,1″-ternaphthalene and 4,4″-dibromo-1,1’:4’,1″-ternaphthalene.²³
Synthesis of 4,4′′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′:4′,1′′-ternaphthalene (5). To a mixture of 4 (830 mg, 1.5 mmol), bis(pinacolato)diboron (940 mg, 3.7 mmol), Pd(dppf)Cl$_2$ (60 mg, 0.08 mmol) and anhydrous potassium acetate (900 mg, 9.2 mmol) in a round-bottom flask (50 ml) was added dried DMF (15 ml). The solution was bubbled with argon for 0.5 h before heated to 120 °C for 36 h. Upon cooling to room temperature, the solvent was removed under vacuum and the resulting product was extracted with CH$_2$Cl$_2$. The organics was washed thoroughly with water, dried over anhydrous MgSO$_4$, and then evaporated to dryness. The residue was purified by chromatography on a silica gel column with CH$_2$Cl$_2$/petroleum ether (1:5) as eluent. Yield 0.93 g (95%). 1H NMR (CDCl$_3$, 400 MHz): δ (ppm) 8.91 (d, J = 8 Hz, 2H), 8.25 (d, J = 8 Hz, 2H), 7.64 (d, J = 8 Hz, 2H), 7.60-7.52 (m, 6H), 7.47-7.42 (m, 2H), 7.34 (t, 2H), 7.20-7.26 (m, 2H), 1.49 (s, 24H); 13C NMR (CDCl$_3$, 100 MHz): δ 142.19, 138.64, 137.21, 135.31, 132.91, 132.85, 128.80, 127.37, 127.21, 127.12, 126.97, 126.46, 125.97, 125.82, 84.00, 25.17 ppm; HRMS (ESI) m/z calcd. for C$_{42}$H$_{42}$B$_2$O$_4$ [M+H]$^+$: 633.3347, found: 633.3345.

Synthesis of [9]CN and [12]CN. The general procedure above for [8]CN was used with the exception that 5 (125 mg, 0.20 mmol) was used in place of 2 to afford [9]CN (2.1 mg) in 2.9% yield and [12]CN (2.6 mg) in 3.5% yield. [9]CN: 1H NMR (DMSO-d_6, 400 MHz): δ (ppm) 6.23 (s, 2H), 7.00 (s, 2H), 7.03 (d, J = 8 Hz, 2H), 7.08-7.13 (m, 4H), 7.20 (d, J = 8 Hz, 2H), 7.35 (d, J = 8 Hz, 2H), 7.40 (d, J = 8 Hz, 2H), 7.44 (d, J = 8 Hz, 2H), 7.56-7.62 (m, 4H), 7.66-7.72 (m, 10H), 7.74-7.80 (m, 6H), 8.21-8.25 (m, 2H), 8.40-8.45 (m, 4H), 8.46-8.50 (m, 2H), 8.51-8.55 (m, 4H), 8.57 (d, J = 8 Hz, 2H),
8.72 (d, J = 8 Hz, 2H) (Figure S12); HRMS (MALDI-TOF) m/z calcd. for C_{90}H_{54} [M]^+: 1134.4226, found: 1134.4204 (Figure S8). [12] CN: 1H NMR (CD\textsubscript{2}Cl\textsubscript{2}, 400 MHz): δ (ppm) 7.27 (s, 24H), 7.58-7.65 (m, 24H), 8.44-8.52 (m, 24H) (Figure S13); HRMS (MALDI-TOF) m/z calcd. for C\textsubscript{120}H\textsubscript{72} [M]^+: 1513.5668, found: 1513.5630 (Figure S9).

References.

Figure S1. 1H NMR spectrum of 4,4'$\text{-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-}$$1,1'$-binaphthalene (2) in CDCl$_3$.
Figure S2. 13C NMR spectrum of 4,4′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′-binaphthalene (2) in CDCl$_3$.
Figure S3. HR-MS (ESI) data for 4,4′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′-binaphthalene (2).
Figure S4. 1H NMR spectrum of 4,4″-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′:4′,1″-terphenyl (5) in CDCl$_3$. *: signals of residue DMF.
Figure S5. 13C NMR spectrum of 4,4′′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′:4′,1′′-ternaphthalene (5) in CDCl$_3$.

![NMR spectrum of 4,4′′-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′:4′,1′′-ternaphthalene (5) in CDCl$_3$.](image)
Figure S6. HR-MS (ESI) data for 4,4″-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1′:4′,1″-terphenyl (5).
Figure S7. HRMS (MALDI-TOF) data for [8]CN.
Figure S8. HRMS (MALDI-TOF) data for [9]CN.
Figure S9. HRMS (MALDI-TOF) data for [12]CN.
Figure S10. HRMS (MALDI-TOF) data for [10]CN.
Figure S11. 1H NMR spectrum of [8]CN in CDCl$_3$.
Figure S12. 1H NMR spectrum of [9]CN in DMSO-d_6.
Figure S13. 1H NMR spectrum of [12]CN in CD$_2$Cl$_2$.

![NMR spectrum](image)

Figure S13. 1H NMR spectrum of [12]CN in CD$_2$Cl$_2$.

![NMR spectrum](image)