### **Electronic Supplementary Information (ESI)**

# Nanoseed-assisted Synthesis of Nanosized SAPO-34 Zeolite Using Morpholine as the Sole Template with Superior MTO Performance

## Guangrui Chen,<sup>a</sup> Qiming Sun,<sup>\*a</sup> and Jihong Yu<sup>\*a, b</sup>

<sup>a</sup> State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China

<sup>b</sup> International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China

#### Synthesis method

**Reagents.** Aluminum iso-propoxide (Al(OPr<sup>*i*</sup>)<sub>3</sub>, 99.5 wt%, Beijing Reagents Company), Phosphoric acid (H<sub>3</sub>PO<sub>4</sub>, 85 wt%, Beijing Chemical Works), Colloidal silica (40 wt%, Aldrich), Tetraethyl orthosilicate (TEOS, Fuyu Reagents Company), Morpholine (MOR, C<sub>4</sub>H<sub>8</sub>NO, >98.5%, Fuyu Reagents Company), Tetraethylammonium hydroxide solution (TEAOH, 35 wt%, Alfa Aesar).

Synthesis of nano-sized SAPO-34 seed. The nanosized SAPO-34 seed was synthesized under conventional hydrothermal conditions from the starting gel with the molar composition of Al/P/Si/TEAOH/  $H_2O=1/1.2/0.3/1/20$  as reported in our previous work. Typically, the finely ground Al(OPr<sup>i</sup>)<sub>3</sub> was firstly added into TEAOH solution and deionized water until dissolved sufficiently. Phosphoric acid was then slowly added dropwise into the resultant solution, followed by a continuous stirring for 2 h. Finally, the colloidal silica was added dropwise into the synthesis gel. The resultant mixture was further stirred for 1 h, and was then transferred into a 100 ml Teflon-lined stainless steel autoclave, followed by static crystallization in a conventional oven at 170 °C for 3 days. The obtained zeolite products were centrifuged, washed and dried, followed by calcination at 550 °C for 6 h to remove templates.

**Synthesis of nano-sized SAPO-34 zeolites (SP34-S-X).** The nano-sized SAPO-34 zeolites were synthesized with the molar compositions of Al/P/Si/MOR/H<sub>2</sub>O=1/1/0.3/x/40 (x=2.5~0.6) combined with the addition of 8.0 wt% seed (based on the Al<sub>2</sub>O<sub>3</sub>) under hydrothermal conditions at 180 °C for 3 days. The obtained samples are named as SP34-S-X, wherein the X represents the ratio of MOR/Al. Typically, the finely ground Al(OPr<sup>i</sup>)<sub>3</sub> was firstly added into MOR solution and stirred for 1 h. Subsequently, the phosphoric acid was slowly added dropwise into the resultant solution, followed by a continuous stirring for 2 h. The TEOS was added dropwise into the synthesis gel and stirred for 2 h. Finally, the seed was added into the solution and then stirred for 3 h continuously until the seed was dissolved completely. The synthetic gel was then transferred into a 100 mL Teflon-lined stainless steel autoclave with static crystallization at 180 °C for 36 h. The obtained zeolite products were centrifuged, washed and dried, followed by calcination at 600 °C for 6 h to remove templates.

**Preparation of micron-sized SAPO-34 zeolites (SP34-N-X).** The micron-sized SAPO-34 zeolites were synthesized with the molar compositions of Al/P/Si/MOR/H<sub>2</sub>O=1/1/0.3/x/40 (x=2.5~0.6) with the same synthesis procedure of nano-sized SAPO-34 zeolites without adding the seed. The obtained

samples are named as SP34-N-X, wherein the X represents the ratio of MOR/Al.

#### Characterizations

X-ray diffraction patterns were recorded on powder X-ray diffraction on a Rigaku D-Max 2550 diffractometer using Cu K $\alpha$  radiation ( $\lambda = 1.5418$  Å). TEM images and SEM images were taken on a Tecnai F20 electron microscope operating at an acceleration voltage of 200 kV and a JSM-6510 (JEOL) electron microscope. Thermogravimetric (TG) analysis was performed on a TA company TGA Q500 unit in air at a heating rate of 10 °C min<sup>-1</sup> from room temperature to 800 °C in air. Chemical compositions of samples were analyzed by inductively coupled plasma (ICP) using Perkin-Elmer Optima 3300 DV ICP instrument. The acidity of samples was characterized by temperature-programmed desorption of ammonia (NH<sub>3</sub>-TPD) experiments using a Micromeritics AutoChem II 2920 automated chemisorption analysis unit. Nitrogen adsorption/desorption measurements were carried out on a Micromeritics 2020 analyzer at 77.35 K after the samples were degassed at 350 °C under vacuum. <sup>29</sup>Si NMR spectra were performed on a Bruker AVANCE III 400 WB spectrometer. The organic species retained in the nano-sized SAPO-34 catalysts after methanol conversion were analyzed by GC-MS (Thermo Fisher Trace ISQ, equipped with TG-5MS column, 60 m × 320  $\mu$ m × 25  $\mu$ m).

#### **MTO Catalytic Tests**

Methanol conversion was performed in a quartz tubular fixed-bed reactor at atmospheric pressure. The catalyst (300 mg, 40-60 mesh) loaded in the quartz reactor (6 mm inner diameter) was activated at 500  $^{\circ}$  C in a N<sub>2</sub> flow of 30 ml min<sup>-1</sup> for 1 h before starting each reaction run and then the temperature was adjusted to reaction temperature of 450  $^{\circ}$  C. The methanol was fed by passing the carrier gas (15 mL/min) through a saturator containing methanol at 49  $^{\circ}$ C, which gave a WHSV of 4.0 h<sup>-1</sup>. The reaction products were analyzed using an on-line gas chromatograph (Agilent GC 7890N), equipped with a flame ionization detector (FID) and Plot-Q column (Agilent J&W GC Columns, HP-PLOT/Q 19091P-Q04, 30 m × 320 µm × 20 µm). The conversion and selectivity were calculated on CH<sub>2</sub> basis and dimethyl ether (DME) was considered as reactant in the calculation.

The amount of generated coke in SAPO-34 catalysts after the MTO reactions was determined by

thermal analysis (TG) on a TGA Q500 at a heating rate of 10 °C min<sup>-1</sup> from room temperature to 800 °C under air flow. To analysize the coke species in the deactivated SAPO-34 catalysts, the deactivated catalysts were etched by HF solution for 24 h, and then extracted by CH<sub>2</sub>Cl<sub>2</sub>. Subsequently, the obtained solutions were analyzed by GC-MS. (Thermo Fisher Trace ISQ, equipped with TG-5MS column, 60 m  $\times$  320  $\mu$ m  $\times$  25  $\mu$ m).

**Figures and Tables** 

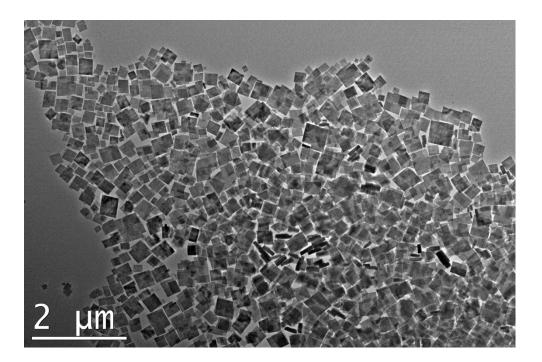
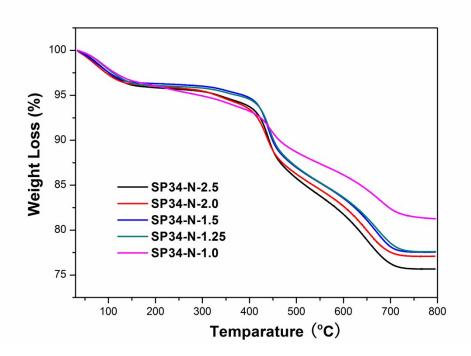
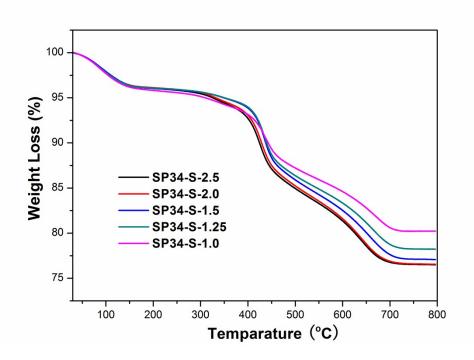
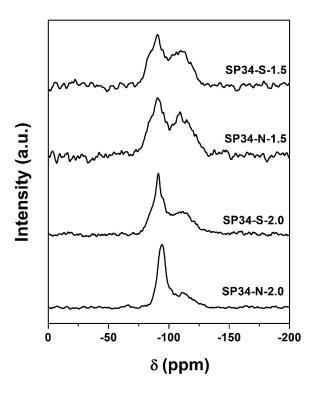
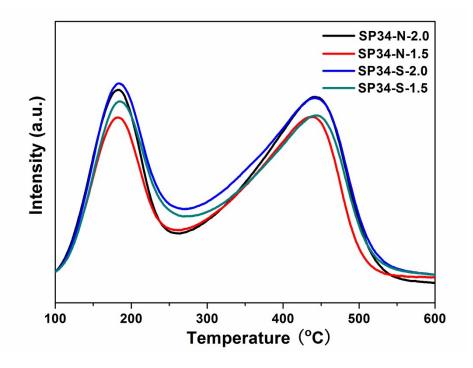
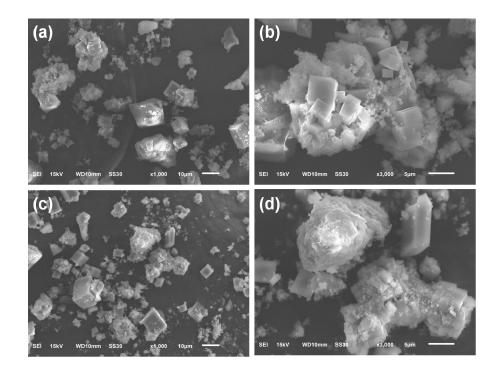



Figure S1 TEM images of nanosheet-like SAPO-34 seeds synthesized using TEAOH as template.



Figure S2 TG curves of micron-sized SAPO-34 samples.




**Figure S3** TG curves of nano-sized SAPO-34 samples synthesized using nanoseed-assisted method.



**Figure S4** <sup>29</sup>Si MAS NMR spectra of micron-sized SAPO-34 samples SP34-N-2.0 and SP34-N-1.5, and nano-sized SAPO-34 samples SP34-S-2.0 and SP34-S-1.5.



**Figure S5** NH<sub>3</sub>-TPD profiles of micron-sized SAPO-34 samples SP34-N-2.0 and SP34-N-1.5, and nano-sized SAPO-34 samples SP34-S-2.0 and SP34-S-1.5.



**Figure S6** SEM images of samples SP34-MS-2.0 (a, b) and SP34-MS-1.5 (c, d) using micronsized SAPO-34 crystals as the seed (MS means addition of the micron-sized seed, and 2.0 and 1.5 represent the ratios of MOR/AI).

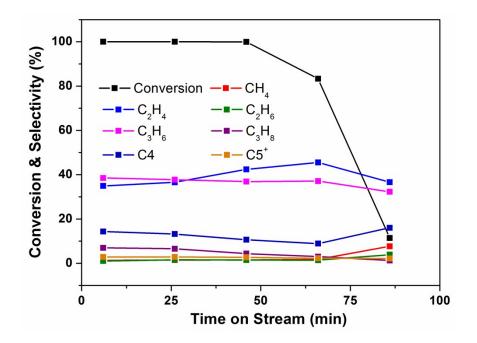
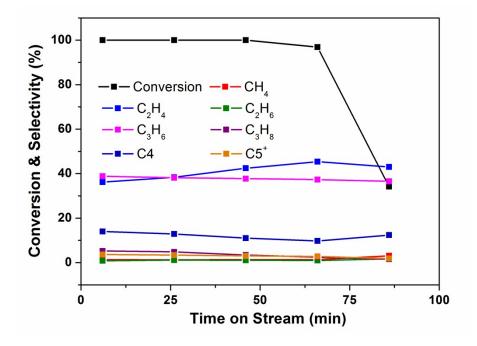
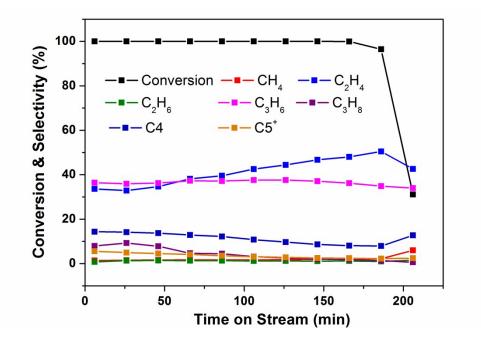
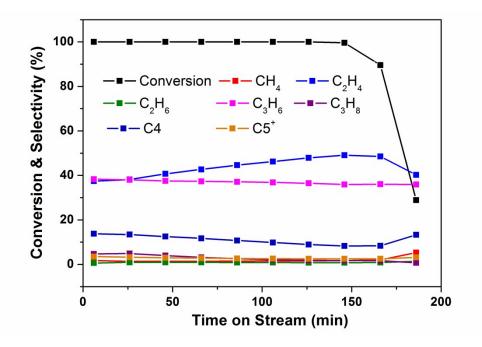
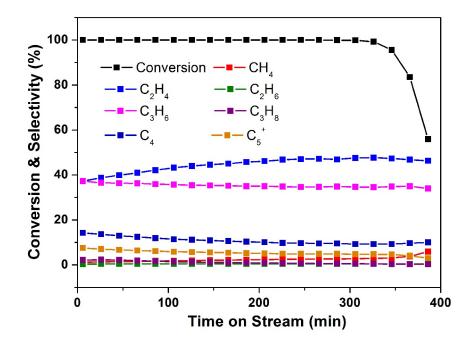
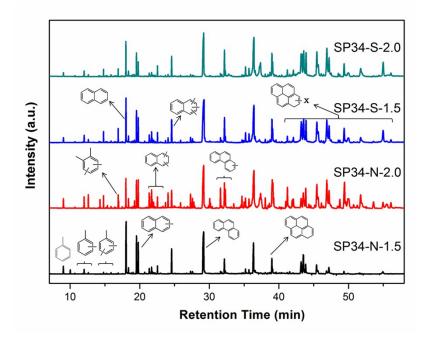



Figure S7 Catalytic lifetime and products selectivity of micron-sized SAPO-34 catalyst SP34-N-2.0. Experimental conditions: WHSV = 4 h<sup>-1</sup>, T = 450  $^{\circ}$ C.



Figure S8 Catalytic lifetime and products selectivity of micron-sized SAPO-34 catalyst SP34-N-1.5. Experimental conditions: WHSV = 4 h<sup>-1</sup>, T = 450  $^{\circ}$  C.




**Figure S9** Catalytic lifetime and products selectivity of nano-sized SAPO-34 catalyst SP34-S-2.0. Experimental conditions: WHSV = 4  $h^{-1}$ , T = 450 °C.



**Figure S10** Catalytic lifetime and products selectivity of nano-sized SAPO-34 catalyst SP34-S-1.5. Experimental conditions: WHSV = 4 h<sup>-1</sup>, T = 450 ° C.



**Figure S11** Catalytic lifetime and products selectivity of nanosheet-like SAPO-34 seed catalyst using TEAOH as template. Experimental conditions: WHSV = 4  $h^{-1}$ , T = 450 °C.



**Figure S12** GC-MS chromatograms of occluded organic species retained in deactivated SAPO-34 catalysts SP34-S-2.0, SP34-S-1.5, SP34-N-2.0 and SP34-N-1.5. The structures annotated onto the chromatograms are peak identifications in comparison with the mass spectra to those in the NIST database.

| Catalysts  | TOS   | Selectivity (%) |          |          |          |          |       |                |        |                   |
|------------|-------|-----------------|----------|----------|----------|----------|-------|----------------|--------|-------------------|
|            | (min) | $\mathrm{CH}_4$ | $C_2H_4$ | $C_2H_6$ | $C_3H_6$ | $C_3H_8$ | $C_4$ | C <sub>5</sub> | $C6^+$ | $C_2^{=}+C_3^{=}$ |
| SP34-N-2.0 | 46*   | 1.5             | 42.4     | 1.5      | 36.9     | 4.4      | 10.6  | 2.3            | 0.4    | 79.3              |
| SP34-N-1.5 | 46*   | 1.3             | 42.0     | 1.1      | 37.7     | 3.4      | 11.0  | 2.5            | 0.5    | 79.7              |
| SP34-S-2.0 | 166*  | 2.2             | 48.1     | 1.2      | 36.2     | 1.8      | 8.1   | 2.0            | 0.4    | 84.3              |
| SP34-S-1.5 | 126*  | 1.6             | 47.9     | 0.8      | 36.5     | 1.8      | 8.9   | 2.1            | 0.4    | 84.4              |
| Nanosheets | 286*  | 2.6             | 47.0     | 0.4      | 34.9     | 0.6      | 9.5   | 2.6            | 4.9    | 81.9              |
| -like Seed | 200   | 2.0             | 47.0     | 0.4      | 54.9     | 0.0      | 9.0   | 2.0            | 7.7    | 01.9              |

Table S1 MTO catalytic results of SP34-N-2.0, SP34-N-1.5, SP34-S-2.0 and SP34-S-1.5 catalysts.

Reaction conditions: WHSV = 4 h<sup>-1</sup>, T = 450 ° C.

\* Lifetime: the reaction duration with > 99.9% methanol conversion.

**Table S2** The rates of coke formation in methanol conversion over of SP34-N-2.0, SP34-N-1.5,SP34-S-2.0 and SP34-S-1.5 catalysts.

| Catalysts  | Coke (mg/g Cat.) <sup>(a)</sup> | TOS (min) <sup>(b)</sup> | R <sub>coke</sub> (mg/min) <sup>(c)</sup> | $P_{coke}(g/g \text{ MeOH})^{(d)}$ |
|------------|---------------------------------|--------------------------|-------------------------------------------|------------------------------------|
| SP34-N-2.0 | 169.9                           | 46                       | 1.12                                      | 0.055                              |
| SP34-N-1.5 | 157.5                           | 46                       | 1.03                                      | 0.051                              |
| SP34-S-2.0 | 211.6                           | 166                      | 0.38                                      | 0.019                              |
| SP34-S-1.5 | 198.5                           | 126                      | 0.47                                      | 0.024                              |

(a) Coke weight percent with > 99.9% methanol conversion;

(b) The reaction duration with > 99.9% methanol conversion;

(c) R<sub>coke</sub>(mg/min) = coke amount(mg)/reaction time (min);

(d)  $P_{coke}(g/gMeOH) = coke amount (g)/methanol feedstock (g).$