SUPPORTING INFORMATION FOR

In Situ Electron Donor Consumption Strategy for
Photoelectrochemical Biosensing of Protein Based on Ternary
Bi$_2$S$_3$/Ag$_2$S/TiO$_2$ NTs Arrays

Bing Wang,ab Jun-Tao Cao,*ab Yu-Xiang Dong,ab Fu-Rao Liu,ab Xiao-Long Fu,ab
Shu-Wei Ren,c Shu-Hui Ma,c and Yan-Ming Liu*ab

aCollege of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China

bInstitute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang 464000, China

cXinyang Central Hospital, Xinyang 464000, China

* To whom correspondence should be addressed.

* E-mail: liuym9518@sina.com; jtcao11@163.com

Tel & fax: +86-376-6392889

Section 1: Experimental

Section 2: Characterization of AuNPs

Section 3: Optimization of experimental conditions

Section 4: Selectivity and stability of the biosensor

Section 5: Table S1

Section 6: Table S2

Section 7: Reference
Section 1: Experimental

Chemicals. The oligonucleotides were ordered from Sangon Biotech Co., Ltd. (Shanghai, China) with the following sequences: NH$_2$-Apt, 5’-NH$_2$-(CH$_2$)$_6$-TTT TAT ACC AGC TTA TTC AAT T-3’; 5’-SH-(CH$_2$)$_6$-TTT TAA TTG AAT AAG C-3’. AAO from Cucurbita sp. (EC 1.10.3.3) was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). CEA was from Zhengzhou Immuno Biotech Co., Ltd. (Zhengzhou, China). Human serum albumin (HSA), human IgG (hIgG), and bovine serum albumin (BSA) were from Shanghai Solarbio Bioscience & Technology Co., Ltd. (see bio Biotechnology). SiO$_2$ nanoparticles (99.5%, 30 nm), aminopropyltriethoxysilane (APTES), silver nitrate (AgNO$_3$), bismuth nitrate [Bi(NO$_3$)$_3$·5H$_2$O] and sodium sulfide (Na$_2$S·9H$_2$O) were from Aladdin Reagent Inc. (Shanghai, China). Gold nanoparticles (Au NPs) were prepared according to our previous work1 AA, glutaraldehyde (GLD) (50% aqueous solution) and chitosan powder (CS) were from Sinopharm Chemical Reagent Co., Ltd. (China). Methanol and ethanol were from Tianjin Yongda Chemical Reagent Co., Ltd. (Tianjin, China). Phosphate buffer solution (PBS, pH 5.6 or 7.4) was freshly prepared before use. All other reagents were of analytical grade and employed as received. All aqueous solutions were made using pure water. (18.25 MΩ·cm, Kangning water treatment solution provider, China).

Apparatus. All PEC experiments were carried out in a homemade three-electrode system with a modified TiO$_2$ NTs electrode as working electrode, a Pt-wire as counter electrode, and a Ag/AgCl electrode as reference electrode. The PEC signals were measured with a CHI660E electrochemical workstation (Shanghai Chenhua Apparatus Corporation, China) and a PEAC 200A PEC reaction instrument (Tianjin Aidahengsheng Science-Technology Development Co., Ltd., China). Scanning electron microscopy (SEM) images were obtained by S-4800 (Hitachi, Tokyo, Japan).

Construction of Bi$_2$S$_3$/Ag$_2$S/TiO$_2$ NTs electrode. TiO$_2$ NTs were synthesized by anodic oxidation treatment according to our previous report.1 The Ag$_3$S was deposited on the as-prepared TiO$_2$ NTs by the successive ionic layer adsorption and reaction.
At first, the film of TiO$_2$ NTs was dipped in the 0.05 M AgNO$_3$ ethanol solution for 1 min, then rinsed with ethanol and dried. Subsequently, the film was immersed in 0.05 M Na$_2$S methanol solution for another 1 min, and washed with methanol as well as dried. This procedure was repeated 4 cycles. The obtained film was called Ag$_2$S/TiO$_2$ NTs. The formation of Bi$_2$S$_3$ on Ag$_2$S/TiO$_2$ NTs was also carried out by SILAR method. The Ag$_2$S/TiO$_2$ NTs film was steeped in 0.004 M Bi(NO$_3$)$_3$ ethanol solution and 0.26 M Na$_2$S aqueous solution for 10 min, respectively, after each solution, the film was taken out and thoroughly rinsed with respective solvent and dried. The obtained film was called Bi$_2$S$_3$/Ag$_2$S/TiO$_2$ NTs and utilized as the electrode of the biosensor. The same process was used to prepare Ag$_2$S/TiO$_2$ NTs and Bi$_2$S$_3$/TiO$_2$ NTs.

Preparation of the probe of Apt-SiO$_2$-AAO. To improve the combination with NH$_2$-Apt and AAO, SiO$_2$ was firstly functionalized by APTES before combination. Secondly, 1.5 mL of aminated SiO$_2$ was mixed with 0.5 mL GLD solution (2.5 wt %), and then stirred for 6 h at room temperature. Next, the obtained mixture was washed by centrifugation with ethanol and water to remove the unreacted GLD. The obtained aldehyde-functionalized SiO$_2$ was redissolved in 1 mL PBS (0.01 M, pH 7.4). Subsequently, NH$_2$-Apt and AAO were immobilized on the aminated SiO$_2$ through cross-linking by GLD. 400 μL NH$_2$-Apt (0.20 μM) and 400 μL AAO (0.20 mg mL$^{-1}$) were added to 400 μL acquired aldehyde-functionalized SiO$_2$ solution and stirred mildly for 1 h at 37 °C. To remove unconjugated NH$_2$-Apt as well as AAO, the resulted solution was centrifuged and washed several times with PBS, and then redispersed in 400 μL PBS. After that, 80 μL BSA (1.0 wt %) was devoted to block the nonspecific binding sites for 1 h at 37 °C. At last, after washing, the product was dissolved in 400 μL PBS and stored at 4 °C for future use.

Fabrication of the biosensor. In brief, Au NPs were modified on Bi$_2$S$_3$/Ag$_2$S/TiO$_2$ NTs electrode by CS for 1 h under 4 °C. Then, the SH-DNA was immobilized on the electrode for 1 h at 37 °C. Subsequently, 0.1% BSA was immobilized on the electrode for 0.5 h at 37 °C. Next, the Apt-SiO$_2$-AAO was anchored onto the electrode for 1 h.
at the same temperature. After that, the biorecognition between CEA and NH$_2$-Apt was performed on above-mentioned condition. After each step, the electrode was carefully washed with 0.01 M PBS. Finally, the constructed biosensor was stored under 4 °C for further application. PEC detection was performed in PBS (pH 7.4, 0.01 M) including 0.1 M AA. The white light with a spectral range from 400 to 700 nm from a 3 W LED lamp was utilized as stimulus light and switched on and off every 10 s, the experiment process lasted for 100s.

Section 2: Characterization of AuNPs

![TEM image of AuNPs](image)

Fig. S1 TEM image of AuNPs.

The morphologies of Au NPs was characterized with TEM. As demonstrated in Fig. S1, the Au NPs have a quasi-spherical structure with a diameter of about 6.4 nm. The result implys that Au NPs were successfully synthesized.

Section 3: Optimization of experimental conditions

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 4
Fig. S2 Effects of (A) depositing time and (B) loading cycles of Ag₂S as well as (C) concentration and (D) depositing time of Bi₂S₃ on photocurrent responses.

The optimum conditions for the construction of Bi₂S₃/Ag₂S/TiO₂ NTs electrode were investigated in terms of the depositing time of Ag₂S as well as Bi₂S₃, the loading cycles of Ag₂S and the concentration of Bi₂S₃. As shown in Fig. S2A and B, the photocurrent intensities of Ag₂S reach a maximum value when the depositing time and cycles of Ag₂S achieve 60 s and 4 cycles, respectively. Correspondingly, this optimal case is chosen for modification of Ag₂S. Fig. S2C and D depict the photocurrent intensities responded to the different concentrations and the depositing time of Bi₂S₃, respectively. Accordingly, 0.004 M with 10 min is selected for decorating Bi₂S₃ on the electrode in the following experiments.
Fig. S3 UV-vis absorption spectra of various probes of Apt-SiO$_2$-AAO consisted of a certain amount of Apt and different concentrations of AAO: (a) 0.00 mg mL$^{-1}$ AAO; (b) 0.05 mg mL$^{-1}$ AAO; (c) 0.10 mg mL$^{-1}$ AAO; (d) 0.15 mg mL$^{-1}$ AAO; (e) 0.20 mg mL$^{-1}$ AAO; (f) 0.25 mg mL$^{-1}$ AAO; (g) 0.30 mg mL$^{-1}$ AAO.

To evaluate the loading capacity of aptamer and AAO, we firstly fixed the amount of aptamer by optimizing concentration of the aptamer, and according to the experimental results, 0.20 μM of aptamer was used. Then, we explored the loading capacity of AAO by UV-vis absorption spectra of various probes of Apt-SiO$_2$-AAO consisted of a fixed amount of aptamer and different concentrations of AAO. As shown in Fig. S3, by comparison with absorption intensity of different probes of Apt-SiO$_2$-AAO, the absorption intensity obviously decreased with the AAO concentration increasing until 0.20 mg mL$^{-1}$. When the concentration exceeded 0.20 mg mL$^{-1}$, the absorption intensity gives no obvious change. The results indicated that the AAO concentration of 0.20 mg mL$^{-1}$ achieved a saturated binding of AAO on the SiO$_2$ nanoparticle surface. Therefore, 0.20 mg mL$^{-1}$ of AAO was used in preparation of the probe of Apt-SiO$_2$-AAO.
Effects of (A) the concentration of the aptamer, (B) incubation temperature and (C) incubation time on photocurrent responses. Working solution: 0.01 M PBS (pH 7.4) including 0.1 M AA.

We have studied the conditions of the reaction between aptamer and target protein in terms of concentration of the aptamer, incubation temperature and incubation time. The effect of concentration of the aptamer ranged from 0.00 to 0.30 μM was tested. As shown in Fig. S4A, the photocurrent intensity decreased with the rising of concentration from 0.00 to 0.20 μM and then did not produce further signal change. Therefore, the optimal concentration of the aptamer is 0.20 μM. The effect of incubation temperature ranged from 25 ℃ to 50 ℃ was tested. As shown in Fig. S4B, the photocurrent intensity increased with the rising of temperature from 25 ℃ to 37 ℃ and then decreased from 37 ℃ to 50 ℃. Therefore, the best binding temperature for aptamer-CEA interaction is 37 ℃. To screen the proper incubation time on the photocurrent response, the incubation time from 15 min to 90 min was examined. As seen from Fig. S4C, the photocurrent intensity gradually enhanced with the increasing incubation time until 60 min and the incubation time longer than 60 min did not produce further signal change. So, 60 min was chosen.
Section 4: Selectivity and stability of the biosensor.

Figure S5. (A) Selectivity of the PEC biosensor for CEA detection; (B) Time-based photocurrent response of the biosensor incubation with 1 ng mL\(^{-1}\) CEA.

The selectivity of the present system was investigated by assay of two typical interfering proteins including HSA and hlgG. As demonstrated in Figure. S5A, the PEC signals of the interfering proteins are comparable to that in the blank test. Besides, the photocurrent response of the mixture involving 10 mg mL\(^{-1}\) HSA, 1 mg mL\(^{-1}\) hlgG and 0.1 ng mL\(^{-1}\) CEA was also studied, and no obvious difference of PEC response could be observed compared to the case of 0.1 ng mL\(^{-1}\) CEA. Thus, this proposed sensing strategy exhibits good performance for distinguishing CEA against other interfering proteins.

Meanwhile, the stability of the PEC response of such biosensor was also explored. As exhibited in Figure S5B, the photocurrent intensities of the biosensor could be observed barely obvious change for 300 s. Within 2 weeks of storage at 4 °C, the PEC signal of the biosensor still is stable and no apparent change. All the results suggest a good stability of the as-prepared PEC biosensor.
Section 5:

Table S1. Analytical results of the proposed PEC biosensor and ROCHE ECL method for CEA in human serum samples.

<table>
<thead>
<tr>
<th>Serum samples</th>
<th>This work (ng mL(^{-1}))</th>
<th>ROCHE ECL (ng mL(^{-1}))</th>
<th>Relative errors (%)</th>
<th>RSD (%) ((n = 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.47</td>
<td>2.34</td>
<td>5.6</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>1.45</td>
<td>3.4</td>
<td>5.6</td>
</tr>
<tr>
<td>3</td>
<td>2.35</td>
<td>2.26</td>
<td>4.0</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>9.42</td>
<td>9.04</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>7.38</td>
<td>7.81</td>
<td>-5.5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>6.66</td>
<td>6.88</td>
<td>-3.2</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>7.99</td>
<td>8.23</td>
<td>-2.9</td>
<td>5.8</td>
</tr>
</tbody>
</table>

Section 6:

Table S2. Recovery of CEA in human serum samples.

<table>
<thead>
<tr>
<th>Serum samples</th>
<th>Found (ng mL(^{-1}))</th>
<th>Added (ng mL(^{-1}))</th>
<th>Total found (ng mL(^{-1}))</th>
<th>Recovery (%)</th>
<th>RSD (%) ((n = 3))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>1.46</td>
<td>100.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.45</td>
<td>0.10</td>
<td>1.56</td>
<td>110.0</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>2.43</td>
<td>3.43</td>
<td>98.0</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>8.24</td>
<td>8.25</td>
<td>100.0</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>8.23</td>
<td>0.10</td>
<td>8.32</td>
<td>90.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>9.18</td>
<td>10.18</td>
<td>95.0</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Section 7: Reference: