Supplementary Information

Long-life sodium/carbon fluorides batteries with flexible, binder-free fluorinated mesocarbon microbeads film electrodes

Wen Liu, Yong Wang, Yong Li, Bin Shi, Ping Huang, Rui Guo, Haijuan Pei, Yi Zheng, Jiachun Lu, Jingying Xie*

a Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, Shanghai 200245, P. R. China;
b Northwest Institute of Nuclear Technology, Xi’an 710024, P. R. China.

*Corresponding author: Shanghai Institute of Space Power-Sources, 2965#, Dongchuan Road, Shanghai, 200245, P. R. China. Tel.: +86-21-24187673, Fax: +86-21-24188008. E-mail addresses: jyxie@mail.sim.ac.cn.
1 Experimental

1.1 Preparation of F-MCMB material
All reagents are of analytical grade. Before fluorination, MCMB was dried at 100 °C for 12 h. Fluorination of MCMB was carried out with NF₃ (99.99%, 0.2 MPa) gas atmosphere in a nickel reactor. The reactor was sealed and maintained at 585°C (the heating rate < 5 °C/min) for 6 h. After reaction, the reactor was cooled to room temperature. The resulting powder was collected for further characterizations.

1.2 Preparation of F-MCMB film
Graphene oxide dispersion with a concentration of 0.5 mg ml⁻¹ (GO) was prepared by a modified Hummers’ method.¹⁻² 10 mg super P and 30 mg as-synthesized F-MCMB powder were added in the 20 ml GO solution successively, followed by vigorously stirring and sonication to obtain a uniform suspension. Subsequently, the homogeneous suspension was filtered using a 1.0 mm porous filter paper via a simple vacuum filtration method. The circular membrane (Φ4.7 cm) was peeled from the filter paper to obtain the flexible and foldable film. The loading of F-MCMB was about 0.90 mg cm⁻². The as-preparation of GO/SP/F-MCMB film was labeled as F-MCMB.

1.3 Preparation of modified F-MCMB film
A modified F-MCMB film deploying the nitrogen-doped graphene (N-GNS) was prepared to reduce the voltage gap, composed of F-MCMB (30 mg), super P, (5 mg), N-GNS (5 mg) and GO solution (20 ml, 0.5 mg ml⁻¹), denoted as MF-MCMB.

1.4 Materials characterizations
The as-prepared F-MCMB material was characterized by X-ray diffraction (XRD, Bruker D8 ADVANCE) with a monochromatized source of Cu-Kα radiation (k = 0.1540 nm) at 1.6 kW. Scanning electron microscope (SEM) images were captured using a field emission scanning electron microscope (FE-SEM, Hitachi S-4800) operated at an accelerating voltage of 10 kV. The elemental mapping was obtained using energy dispersive X-ray spectroscopy. X-ray photoelectric spectroscopy (XPS) analysis was carried out on an ESCALAB 250Xi system (Thermo) with a monochromatic Al Kα X-ray source. Granularity distribution was obtained using
Mastersizer 2000. Transmission electron microscope (TEM) was carried out by 200 kV side entry JEOL 2100F TEM. N\textsubscript{2} adsorption-desorption measurements were performed by nitrogen adsorption with a physisorption analyzer (Micro-meritics ASAP-2020M).

1.5 Electrochemical characterization

Coin cells (CR2016) were assembled in an Ar-filled glove-box with O\textsubscript{2} and H\textsubscript{2}O content all below 0.1 ppm. One sheet of high-purity sodium foil (99.9\%) was used as the anode, and 0.9 M NaPF\textsubscript{6}/1, 2-dimethoxyethane (DME) was used as the electrolyte. Glass fiber was used as separator. Galvanostatic charge-discharge measurements were carried out at room temperature with a Land CT 2001A battery test system. The current densities and capacities of electrodes were calculated based on the weight of active material. A 1 C rate corresponds to a complete discharge in one hour. The cutoff voltage was 1.50 V for discharge and 3.80 V or 2.85 V for charge process in Na/F-MCMB and Na/MF-MCMB cells, respectively.

References

Figure S1. TEM images of (a-b) F-MCMB; and (c-d) MCMB.
Figure S2. Low magnification SEM micrograph of (a) F-MCMB and (b) MCMB; N$_2$ adsorption and desorption isotherms of (c) F-MCMB and (d) MCMB. The insets show the granularity distribution of F-MCMB and MCMB, respectively.
Table S1. The ratio of F and C in F-MCMB.

<table>
<thead>
<tr>
<th>Elements</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>39.16</td>
<td>50.45</td>
</tr>
<tr>
<td>F</td>
<td>60.84</td>
<td>49.55</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure S3. The local distribution of elements of F-MCMB measured by EDX elemental mapping.
Figure S4. The discharge/charge curves of GO film/Na cell during the voltage range of 1.5 – 3.8 V at the rate of 0.05C.
Figure S5. (a) XPS survey spectra of N-GNS; (b) C 1s spectrum; and (c) N 1s spectrum.