Supporting Information for

Branched Peptides for Enzymatic Supramolecular Hydrogelation and Rapid Delivery Targeting Mitochondria

Hongjian He†, Huaimin Wang†, Ning Zhou†, Dongsik Yang†, and Bing Xu*, †

†Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA.

Contents

S1. Materials and instruments…………………………………………………………………………2

Scheme and Figures……………………………………………………………………………………3

Scheme S1. Synthetic route of the branched peptides and the products of hydrolysis catalyzed by ENTK.

Fig. S1. Hydrodynamic diameter distributions of L-1TplFLAG micelles in PBS buffer deduced from dynamic light scattering (DLS) measurement.

Fig. S2. LC-MS of the hydrolysis product (NapFFK(“G)Y and Napffk(“G)y, M=828) of L-1TplFLAG and D-1TplFLAG (2.5 wt%) by enterokinase (10 U/mL) after 48 h.

Fig. S3. Optical (2.5 wt%) and TEM (200 μM) image of the solution of D-1TplFLAG before (left) and after (right) adding ENTK (10 U/mL, 24 h).

Fig. S4. Time-dependent high tension (HT) data for L-1TplFLAG (500uM) incubated with ENTK (10U/mL).
Fig. S5. CD spectra and time dependent dynamic storage moduli (G') and loss moduli (G'') of D-1TFLAG (500 μM) after adding ENTK (10 U/mL) at 25°C.

Fig. S6. Time-dependent TEM images of L-1-FLAG (500 μM) incubated with ENTK.

Fig. S7. Frequency sweeps and strain sweeps of D-1TFLAG (500 μM) with ENTK.

Fig. S8. CD spectra of L-1, FLAG-tag, and the mixture of L-1 and FLAG-tag.

Fig. S9. Molecular structure and optical images of linear control L-1-FLAG.

Fig. S10. 1H-NMR spectrum in DMSO-d_6 and LC-MS data of L-1TFLAG.

Fig. S11. LC-MS data and 1H-NMR spectrum in DMSO-d_6 of D-1TFLAG.

S1. Materials and instruments

Materials

All amino acid derivatives involved in the synthesis were purchased from GL Biochem (Shanghai) Ltd. N, N-diisopropylethylamine (DIPEA), O-benzotriazole-N,N,N',N'-tetramethyluronium-hexafluorophosphate (HBTU) were purchased from Fisher Scientific. The synthesis of all peptide fragments was based on solid-phase peptide synthesis (SPPS). The branched peptides were made via the combination of SPPS and liquid phase synthesis. All crude compounds were purified by HPLC with the yield of 70-80%. All reagents and solvents were used as received without further purification unless otherwise stated.

Instruments

All peptides were purified by Water Delta600 HPLC system, equipped with an XTerra C18 RP column. LC-MS was operated on a Waters Acquity Ultra Performance LC with Waters MICRO-MASS detector. 1H-NMR spectra were gained on Varian Unity Inova 400 with Deuterated DMSO as solvent. Transmission electron microscope (TEM) images were taken on Morgagni 268 transmission electron microscope. Circular dichroism spectra were
Where k is Boltzmann's constant, T is absolute temperature, η is the solvent viscosity, and D is the diffusion constant for particles (determined from DLS experiments).

$$r_s = \frac{kT}{6\pi\eta D}$$

(1)
Scheme S1. Synthetic route of the branched peptides and ENTK hydrolysis products

Fig. S1. (A) Correlogram and (B) hydrodynamic diameter distributions of L-1踦FLAG micelles (200 μM) in PBS buffer deduced from dynamic light scattering (DLS) measurement.

Fig. S2. LC-MS evidences of the hydrolysis product (NapFFK(εG)Y and Napffk(εG)y, M=828) of L-1ในฐานะ FLAG and D-1 démarch FLAG (2.5 wt%) by enterokinase (10U/ml) after 48 hours at ambient condition.
Fig. S3. (A) Optical (2.5 wt%) and (B) TEM (200 μM) image of the solution of D-1τFLAG before (left) and after (right) adding ENTK (10U/ml, 24 h, ambient condition). Scale bar = 100 nm.

Fig. S4. (A) Time-dependent high tension (HT) data of L-1τFLAG (500 μM) incubated with ENTK (10 U/mL), and (B) UV spectra of L-1τFLAG in different concentrations. The maximum HT value and the agreement of HT curve and UV spectrum exclude the possibility of scattering artifacts.
Fig. S5. CD spectra and time dependent dynamic storage moduli (G') and loss moduli (G'') of D-‡FLAG (500 μM) after adding ENTK (10 U/mL) at 25 °C.

Fig. S6. Frequency sweeps and strain sweeps of D-‡FLAG (500 μM) with ENTK (10U/ml) after time-dependent dynamic storage moduli and loss moduli measurement (2.5 h). These results confirm that the time sweeps were conducted under appropriate conditions.
Fig. S7. Time-dependent TEM images of L-1-FLAG (500 μM) incubated with ENTK (10 U/ml). Scale bar=100 nm.
Fig. S8. CD spectra of L-1 (250 μM), FLAG-tag (250 μM), and the mixture of L-1 (250 μM) and FLAG-tag (250 μM). L-1 has β-sheet like conformation while FLAG-tag has random coil.
Fig. S9. (A) Molecular structure of linear control L-1-FLAG. (B) Optical images of the lineal control (2.5 wt%) before and after the addition of ENTK (10U/ml, 24h, ambient condition).
Fig. S10. 1H-NMR spectrum in DMSO-d_6 and LC-MS data of L-$\textbf{1TFLAG}$. The calculated molecular weight (Mw) of L-$\textbf{1TFLAG}$ is 1822.77. The observed m/z (911.16 and 923.65) is the $\frac{1}{2}$ Mw of L-$\textbf{1TFLAG}$ and its mono-sodium salt (Mw=1845.75). The observed m/z $= \frac{1}{2}$ Mw is due to the ionization of two proton ($z = -2$).
Fig. S11. LC-MS data and 1H-NMR spectrum in DMSO-d_6 of D-1تفاع. The calculated molecular weight (Mw) of D-1تفاع is 1822.77. The observed m/z (911.03 and 923.52) is the $\frac{1}{2}$ Mw of D-1تفاع and its mono-sodium salt (Mw=1845.75). The observed m/z $= \frac{1}{2}$ Mw is due to the ionization of two proton (z = -2).

Reference: