Supporting Information

Practical Synthesis of Fragment- and Lead-Like Molecules Enriched in sp\(^3\) Character

Peter S. Campbell,\(^a\) Craig Jamieson,\(^a\)\(^*\) Iain Simpson,\(^b\) and Allan J. B. Watson\(^a\)

\(^a\)Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, U.K. \(^b\)AstraZeneca, IMED Oncology, Darwin Building, Unit 310 Cambridge Science Park, Cambridge, CB10 4EW, U.K.

Email: craig.jamieson@strath.ac.uk

Table of Contents

General Details S2
General Experimental S3
Array Synthesis S5-S7
Characterisation Data of Products S8-S35
NMR Spectra of Products S36-S84
Chiral HPLC Data S85-S86
Physicochemical Calculations S87
References S88
General
All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods. Pd/C used is 10% Pd/C purchased from Sigma Aldrich.

Experimental Details
All reactions were carried out in oven-dried glassware, which was evacuated and purged with N₂ before use. Purging refers to a vacuum/nitrogen-refilling procedure. Room temperature was generally ca. 18 °C. Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer and sand-bath.

Purification of Products
Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analysed under 254 nm UV light or developed using potassium permanganate solution. Strong cation exchange chromatography was carried out using Silicycle SiliaPrepTM Propylsulfonic Acid (SCX-2) cartridges.

Analysis of Products

¹H NMR spectra were recorded at 400 or 500 MHz, and ¹³C NMR spectra were recorded at 101 or 126 MHz. Chemical shifts are reported in ppm and coupling constants are reported in Hz with CDCl₃ referenced at 7.26 (¹H) and 77.16 ppm (¹³C), and Acetone-d₆, referenced at 2.05 (¹H) and 29.84 ppm (¹³C). High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass Spectrometry Facility at Swansea University.
General Procedure A: Optimisation

To an oven dried 2-5 mL microwave vial was added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), catalysts, base (3 eq.) and methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.). The vial was capped and purged, then 1,4-dioxane and water were added. The reaction mixture was stirred at 80 °C for 4 h, followed by the addition of MeOH (2 mL) and the appropriate hydrogen source. The reaction was stirred for 16 h at room temperature, before being diluted with ethyl acetate and filtered through Celite. The solvent was removed in vacuo and a 1H NMR was performed on the crude material.

![Chemical Structure](image)

Entry	Catalyst (1 mol%, 2 mg)	Pd/C	Hydrogen Source	Base	10:9
1 | Pd(dppf)Cl2, DCM | 6 mol%, 16 mg | H2 (balloon) | K2CO3, 104 mg | 100:0 |
2 | Pd(dppf)Cl2, DCM | 6 mol%, 16 mg | Et3SiH (3 eq., 120 µL) | K2CO3, 104 mg | 74:26 |
3 | Pd(dppf)Cl2, DCM | 10 mol%, 26 mg | Et3SiH (3 eq., 120 µL) | K2CO3, 104 mg | 39:61 |
4 | PdXPhosG2 | 10 mol%, 26 mg | NH4HCO2 (10 eq., 158 mg) | K2PO4, 159 mg | 28:72 |
5 | PdXPhosG2 | 10 mol%, 26 mg | NH4HCO2 (10 eq., 158 mg) | K2PO4, 159 mg | 80:20 |
6 | PdXPhosG2 | 12 mol%, 32 mg | NH4HCO2 (10 eq., 158 mg) | K2PO4, 159 mg | 100:0 |

General Procedure B: General Substrate Scope

To an oven dried 2-5 mL microwave vial was added boronic ester/acid (0.25 mmol, 1 equiv.), PdXPhosG2 (2 mg, 0.0025 mmol, 0.01 equiv.), 10% Pd/C (32 mg, 0.04 mmol, 0.12 equiv.). K2PO4 (159 mg, 0.75 mmol, 3 equiv.) and aryl halide (0.25 mmol, 1 equiv.). The vial was capped and purged, then 1,4-dioxane (800 µL) and water (200 µL) were added. The reaction mixture was stirred at 80 °C for 4 h, followed by the addition of NH4HCO2 in MeOH (1.25 M) (158 mg NH4HCO2 in 2 mL MeOH, 10 eq. 2.5 mmol). After this, the reaction was stirred for 16 h at room temperature. The
vial was de-capped, and the reaction mixture was diluted with ethyl acetate, filtered through Celite and rinsed through with further ethyl acetate. The solvent was removed \textit{in vacuo} and the crude material was taken forward to purification.

General Procedure C: Wax capsule

To a boiling tube was added tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), PdXPhosG2 (2 mg, 0.0025 mmol, 0.01 equiv.), 10% Pd/C (32 mg, 0.04 mmol, 0.12 equiv.), K$_3$PO$_4$ (159 mg, 0.75 mmol, 3 equiv.), aryl halide (0.25 mmol, 1 eq.) and a wax capsule containing ammonium formate (158 mg, 2.5 mmol, 10 equiv.). The tube was capped with a Suba Seal, purged then charged with 1,4-dioxane (800 µL), water (200 µL) and MeOH (2 mL). The reaction was stirred at 65 °C for 16 h, filtered through Celite then concentrated \textit{in vacuo} before being taken forward to purification.

Synthesis of capsule: ≥65% paraffin wax was heated in a conical flask until fully melted and transferred to an unturned Suba Seal using a glass pipette. An NMR tube was placed in the molten wax to create a hollow centre and was held in position for ~1 minute until the wax had solidified. Following this, the Suba Seal was folded over to free the wax capsule, to which ammonium formate was added. Molten wax was dripped over the open capsule to fully encapsulate the ammonium formate, and then the full capsule was dipped in a conical flask of molten wax twice to ensure a full seal, then allowed to cool to room temperature.

Chiral HPLC

For Compound 22, Chiral HPLC was performed using a gradient of 5% IPA/hexanes to 10% IPA/hexanes over 20 minutes, using a ChiralpakIA column. For Compound 12s, Chiral HPLC was performed using an isocratic method of 30% IPA/hexanes over 20 minutes, using a ChiralpakIA column.
Array Synthesis

To an test tube was added Bpin (0.125 mmol, 1 eq.), PdXPhosG2 (1 mg, 0.00125 mmol, 0.01 eq.), Pd/C (16 mg, 0.015 mmol, 0.12 eq.), K$_3$PO$_4$ (79 mg, 0.375 mmol, 3 eq.) and aryl halide (0.125 mmol, 1 eq.). The test tube was sealed with a suba seal, purged with nitrogen, then 1,4-dioxane and water were added. The reaction mixture was stirred at 80 ºC for 4 h, followed by the addition of NH$_4$HCO$_2$ in MeOH (1.25 M) (79 mg NH$_4$HCO$_2$ in 1 mL MeOH, 10 eq. 1.25 mmol). Following this, the reaction was stirred for 16 h at room temperature before 1,4-dinitrobenzene was added and the reaction was filtered through Celite. Concentration in vacuo afforded the crude material, on which a 1H NMR was performed. Conversion was determined by using 1,4-dinitrobenzene as an internal standard.

<table>
<thead>
<tr>
<th>Entry</th>
<th>BPin</th>
<th>Aryl Halide</th>
<th>Product</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td> 39 mg</td>
<td> Br 26 mg</td>
<td> BocN CO$_2$Me</td>
<td>98%</td>
</tr>
<tr>
<td>2</td>
<td> 39 mg</td>
<td> Br 16 µL</td>
<td> BocN Me</td>
<td>Quant.</td>
</tr>
<tr>
<td>3</td>
<td> 39 mg</td>
<td> Br 16 µL</td>
<td> BocN OMe</td>
<td>94%</td>
</tr>
<tr>
<td>4</td>
<td> 39 mg</td>
<td> Br 12 µL</td>
<td> BocN </td>
<td>79%</td>
</tr>
<tr>
<td>5</td>
<td> 39 mg</td>
<td> Br 30 mg</td>
<td> BocN </td>
<td>99%</td>
</tr>
<tr>
<td>6</td>
<td> 39 mg</td>
<td> Br 26 mg</td>
<td> H$_2$N </td>
<td>95%</td>
</tr>
<tr>
<td>7</td>
<td> 26 mg</td>
<td> Br 26 mg</td>
<td> </td>
<td>95%</td>
</tr>
<tr>
<td>8</td>
<td> 26 mg</td>
<td> Br 16 µL</td>
<td> </td>
<td>80%</td>
</tr>
<tr>
<td>9</td>
<td>BPin</td>
<td>26 mg</td>
<td>16 µL</td>
<td>OMe</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>BPin</td>
<td>26 mg</td>
<td>12 µL</td>
<td>Py</td>
</tr>
<tr>
<td>11</td>
<td>BPin</td>
<td>26 mg</td>
<td>30 mg</td>
<td>SO₂Me</td>
</tr>
<tr>
<td>12</td>
<td>BPin</td>
<td>26 mg</td>
<td>O₂N</td>
<td>26 mg</td>
</tr>
<tr>
<td>13</td>
<td>BPin</td>
<td>27 mg</td>
<td>26 mg</td>
<td>CO₂Me</td>
</tr>
<tr>
<td>14</td>
<td>BPin</td>
<td>27 mg</td>
<td>16 µL</td>
<td>Me</td>
</tr>
<tr>
<td>15</td>
<td>BPin</td>
<td>27 mg</td>
<td>16 µL</td>
<td>OMe</td>
</tr>
<tr>
<td>16</td>
<td>BPin</td>
<td>27 mg</td>
<td>12 µL</td>
<td>Py</td>
</tr>
<tr>
<td>17</td>
<td>BPin</td>
<td>27 mg</td>
<td>30 mg</td>
<td>SO₂Me</td>
</tr>
<tr>
<td>18</td>
<td>BPin</td>
<td>27 mg</td>
<td>O₂N</td>
<td>26 mg</td>
</tr>
<tr>
<td>19</td>
<td>BPin</td>
<td>30 mg</td>
<td>26 mg</td>
<td>CO₂Me</td>
</tr>
<tr>
<td>20</td>
<td>BPin</td>
<td>30 mg</td>
<td>Me</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reaction</td>
<td>Yield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td> 16 µL, 16 µL, 70%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td> 30 mg, 12 µL, 38%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td> 30 mg, 30 mg, 50%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td> 30 mg, 26 mg, -</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Compound 11a, *tert*-butyl 4-(4-(methoxycarbonyl)phenyl)piperidine-1-carboxylate

![Chemical Structure](image)

Synthesised according to General Procedure B using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.). The crude material was taken up in ethyl acetate and washed with water (2 x 10 mL) and brine (10 mL), dried with Na$_2$SO$_4$ and concentrated *in vacuo* to afford the title compound as a white amorphous solid (79.6 mg, 99%).

Synthesised according to General Procedure C using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as a white amorphous solid (36.7 mg, 46%).

ν_{max} (neat): 2973, 2930, 2848, 1719, 1688 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.97 (d, 2H, 2 x ArH, $J = 8.3$ Hz), 7.26 (d, 2H, 2 x ArH, $J = 8.3$ Hz), 4.25 (br. s, 2H, 2 x CH), 3.89 (s, 3H, CH$_3$), 2.80 (t, 2H, 2 x CH, $J = 11.0$ Hz), 2.70 (tt, 1H, CH, $J = 12.1, 3.5$ Hz), 1.82 (d, 2H, 2 x CH, $J = 13.0$ Hz), 1.62 (qd, 2H, 2 x CH, $J = 12.7, 4.3$ Hz), 1.47 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 167.1, 154.9, 151.2, 130.0, 128.5, 127.0, 79.7, 52.1, 44.3, 42.9, 33.0, 28.6.

HRMS (C$_{18}$H$_{26}$O$_4$N) [M+H]$^+$ requires: 320.1856, observed: 320.1856

Consistent with previously reported data.1

Compound 11b, *tert*-butyl 4-(2-aminophenyl)piperidine-1-carboxylate

![Chemical Structure](image)

Synthesised according to General Procedure B using 2-bromo nitrobenzene (51 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a dark yellow oil (66.2 mg, 96%).

ν_{max} (neat): 3456, 3357, 2971, 2921, 2850, 1677, 1625 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.10 – 7.02 (m, 2H, 2 x ArH), 6.79 (td, 1H, ArH, $J = 7.5, 1.1$ Hz), 6.70 (dd, 1H, ArH, $J = 7.9, 1.1$ Hz), 4.27 (br. s, 2H, 2 x CH), 3.64 (s, 2H, NH$_2$), 2.82 (t, 2H, 2 x CH, $J =$
11.3 Hz), 2.62 (tt, 1H, CH, J = 11.9, 3.2 Hz), 1.85 (d, 2H, 2 x CH, J = 13.3 Hz), 1.61 (qd, 2H, 2 x CH, J = 12.7, 4.3 Hz), 1.49 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.2, 154.4, 138.0, 127.9, 115.5, 79.8, 44.7, 41.9, 33.6, 28.7 (2C not observed).

HRMS (C₁₆H₂₅O₂N₂) [M+H]+ requires: 277.1911, observed: 277.1911

Compound 11c, tert-butyl 4-(3-aminophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromoaniline (27 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as a off-white solid (34.4 mg, 50%).

υmax (neat): 3443, 3352, 2935, 2852, 1651, 1604 cm⁻¹

¹¹H NMR (500 MHz, CDCl₃): δ 7.09 (t, 1H, ArH, J = 7.9 Hz), 6.60 (d, 1H, ArH, J = 7.6 Hz), 6.56 – 6.51 (m, 2H, 2 x ArH), 4.22 (br. s, 2H, 2 x CH), 3.63 (s, 2H, NH₂), 2.77 (t, 2H, 2 x CH, J = 10.7 Hz), 2.54 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.79 (d, 2H, 2 x CH, J = 13.0 Hz), 1.65 – 1.53 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 147.3, 146.7, 129.5, 117.3, 113.7, 113.3, 79.5, 44.6, 42.9, 33.2, 28.6.

HRMS (C₁₆H₂₅O₂N₂) [M+H]+ requires: 277.1911, observed: 277.1912

Compound 11d, tert-butyl 4-(4-aminophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromo nitrobenzene (50 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (67.6 mg, 98%).

Synthesised according to General Procedure B using benzyl (4-bromophenyl)carbamate (77 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (53.0 mg, 77%).
Synthesised according to General Procedure C using 4-bromo nitrobenzene (50 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a white solid (47.6 mg, 69%).

υ max (neat): 3462, 3363, 2985, 2928, 2846, 1667 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 6.99 (d, 2H, 2 x ArH, J = 8.3 Hz), 6.64 (d, 2 x ArH, J = 8.5 Hz), 4.21 (br. s, 2H, 2 x CH), 3.58 (br. s, 2H, NH₂), 2.77 (t, 2H, 2 x CH, J = 12.4 Hz), 2.53 (tt, 1H, CH, J = 12.1, 3.6 Hz), 1.77 (d, 2H, 2 x CH, J = 13.3 Hz), 1.62 – 1.50 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 144.8, 136.2, 127.7, 115.4, 79.5, 44.6, 42.0, 33.6, 28.6.

HRMS (C₁₆H₂₅O₂N₂) [M+H]⁺ requires: 277.1911, observed: 277.1911

Compound 11e, tert-butyl 4-(5-(trifluoromethyl)pyridin-3-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromo-5-(trifluoromethyl)pyridine (57 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound as a yellow oil (61.4 mg, 74%).

υ max (neat): 2981, 2858, 1670, 1498 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 8.75 (s, 1H, ArH), 8.67 (s, 1H, ArH), 7.73 (s, 1H, ArH), 4.28 (br. s, 2H, 2 x CH), 2.89 – 2.73 (m, 3H, 3 x CH), 1.86 (d, 2H, 2 x CH, J = 13.3 Hz), 1.75 – 1.58 (m, 3H, 3 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, Acetone): δ 155.2, 153.8, 145.3 (J CF, q, J = 4.2 Hz) 142.9, 132.2 (J CF, q, J = 3.3 Hz), 126.9 (J CF, app. d, J = 32.3 Hz), 125.1 (J CF, q, J = 272.3 Hz), 79.6, 45.0, 40.8, 33.5, 28.8.

¹⁹F NMR (376 MHz, CDCl₃): δ -62.42.

HRMS (C₁₆H₂₂F₅O₂N₂) [M+H]⁺ requires: 331.1628, observed: 331.1630

Compound 11f, tert-butyl 4-(6-methylpyridin-2-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 3-bromo-5-(trifluoromethyl)pyridine (28 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-
dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (40.9 mg, 59%).

ν_{max} (neat): 2973, 2922, 2852, 1690, cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.50 (t, 1H, ArH, J = 7.7 Hz), 6.95 (dd, 2H, 2 x ArH, J = 18.4, 7.7 Hz), 4.23 (br. s, 2H, 2 x CH), 2.88 – 2.75 (m, 3H, 3 x CH), 2.52 (s, 3H, CH$_3$), 1.91 (d, 2H, 2 x CH, J = 13.4 Hz), 1.66 (qd, 2H, 2 x CH, J = 12.7, 4.8 Hz), 1.47 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 164.0, 157.9, 155.0, 136.9, 121.2, 117.5, 79.5, 44.9, 44.2, 32.0, 28.6, 24.7.

HRMS (C$_{16}$H$_{25}$O$_2$N$_2$) [M+H]$^+$ requires: 277.1911, observed: 277.1910

Compound 11g, tert-butyl 4-((tert-butoxycarbonyl)amino)pyridin-3-yl)piperidine-1-carboxylate

Synthesised according to General Procedure B using tert-butyl (5-bromopyridin-2-yl)carbamate (68 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (20% EtOAc/PE) to afford the title compound as a white amorphous solid (70.7 mg, 75%).

ν_{max} (neat): 3171, 2972, 2858, 1720, 1688 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 8.54 (s, 1H, NH), 8.14 (d, 1H, ArH, J = 2.2 Hz), 7.89 (d, 1H, ArH, J = 8.6 Hz), 7.49 (dd, 1H, ArH, J = 8.7, 2.4 Hz), 4.23 (br. s, 2H, 2 x CH), 2.78 (t, 2H, 2 x CH, J = 12.2 Hz), 2.60 (tt, 1H, CH, J = 12.1, 3.5 Hz), 1.78 (d, 2H, 2 x CH, J = 12.8 Hz), 1.67 – 1.53 (m, 2H, 2 x CH), 1.53 (s, 9H, 3 x CH$_3$), 1.47 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 154.9, 152.9, 151.0, 146.2, 136.6, 135.6, 112.5, 80.9, 79.7, 44.3, 39.8, 33.2, 28.6, 28.5.

HRMS (C$_{20}$H$_{32}$N$_3$O$_4$) [M+H]$^+$ requires: 378.2387, observed: 378.2385

Compound 11h, tert-butyl 4-(4-hydroxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 1-(benzyloxy)-4-bromobenzene (66 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-
1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a clear oil (53.0 mg, 77%).

ν_{max} (neat): 3317, 3006, 2974, 2932, 2852, 1660 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.04 (d, 2H, 2 x ArH, $J = 8.5$ Hz), 6.79 (d, 2H, 2 x ArH, $J = 8.6$ Hz), 6.17 (s, 1H, OH), 4.21 (br. s, 2H, 2 x CH), 2.79 (t, 2H, 2 x CH, $J = 12.0$ Hz), 2.56 (tt, 1H, CH, $J = 12.1$, 3.5 Hz), 1.77 (d, 2H, 2 x CH, $J = 14.0$ Hz), 1.62 – 1.50 (m, 2H, 2 x CH), 1.49 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 155.2, 154.7, 137.7, 127.9, 115.5, 79.9, 44.8, 41.9, 33.6, 28.6.

HRMS (C$_{16}$H$_{24}$NO$_3$) [M+H]$^+$ requires: 278.1751, observed: 278.1752

Compound 11i, tert-butyl 4-(2-methoxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromoanisole (31 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (71.3 mg, 98%).

ν_{max} (neat): 2999, 1667, 1520, 1403 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.21 – 7.17 (m, 1H, ArH), 7.15 (dd, 1H, ArH, $J = 7.6$, 1.4 Hz), 6.93 (t, 1H, ArH, $J = 7.5$ Hz), 6.86 (d, 1H, ArH, $J = 8.2$ Hz), 4.23 (br. s, 2H, 2 x CH), 3.83 (s, 3H, OCH$_3$), 3.09 (tt, 1H, CH, $J = 12.1$, 3.4 Hz), 2.83 (t, 2H, 2 x CH, $J = 11.1$ Hz), 1.79 (d, 2H, 2 x CH, $J = 12.8$ Hz), 1.59 (qd, 2H, 2 x CH, $J = 12.6$, 4.0 Hz), 1.49 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 156.9, 155.1, 134.0, 127.2, 126.7, 120.8, 110.5, 79.4, 55.4, 44.9, 35.5, 32.0, 28.6.

HRMS (C$_{17}$H$_{26}$O$_3$N) [M+H]$^+$ requires: 292.1907, observed: 292.1909

Consistent with previously reported data.

Compound 11j, tert-butyl 4-(4-methoxyphenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 4-bromoanisole (31 µL, 0.25 mmol, 1 equiv.) and tert-Butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a white solid (51.4 mg, 71%).
υ_{max} (neat): 2980, 1671, 1590, 1501 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.12 (d, 2H, 2 x ArH, <i>J</i> = 8.6 Hz), 6.85 (d, 2H, 2 x ArH, <i>J</i> = 8.7 Hz), 4.23 (br. s, 2H, 2 x CH), 3.79 (s, 3H, CH₃), 2.79 (t, 2H, 2 x CH, <i>J</i> = 11.2 Hz), 2.59 (tt, 1H, CH, <i>J</i> = 12.1, 3.5 Hz), 1.79 (d, 2H, 2 x CH, <i>J</i> = 13.0 Hz), 1.65 – 1.52 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 158.2, 155.0, 138.2, 127.8, 114.0, 79.5, 55.4, 44.5, 42.0, 33.6, 28.6.

HRMS (C₁₇H₂₆O₃N) [M+H]⁺ requires: 292.1907, observed: 292.1908

Consistent with previously reported data.²

Compound 11k, tert-butyl 4-(1-methyl-1H-indol-5-yl)piperidine-1-carboxylate

![Chemical structure](image)

Synthesised according to General Procedure B using 5-bromo-1-methylindole (53 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (45.3 mg, 58%).

υ_{max} (neat): 2973, 2928, 2848, 1688, 1422 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.46 (s, 1H, ArH), 7.27 (d, 1H, ArH, <i>J</i> = 8.4 Hz), 7.10 (dd, 1H, ArH, <i>J</i> = 8.5, 1.5 Hz), 7.04 (d, 1H, ArH, <i>J</i> = 3.1 Hz), 6.44 (d, 1H, ArH, <i>J</i> = 3.0 Hz), 4.27 (br. s, 2H, 2 x CH), 3.77 (s, 3H, CH₃), 2.84 (t, 2H, 2 x CH, <i>J</i> = 11.1 Hz), 2.75 (tt, 1H, CH, <i>J</i> = 12.1, 3.5 Hz), 1.88 (d, 2H, 2 x CH, <i>J</i> = 12.9 Hz), 1.71 (qd, 2H, 2 x CH, <i>J</i> = 12.7, 4.0 Hz), 1.51 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.1, 137.1, 135.7, 129.2, 128.8, 121.1, 118.5, 109.3, 100.8, 79.5, 44.7, 43.0, 34.1, 33.0, 28.7.

HRMS (C₁₉H₂₆O₂N₂) [M] requires: 314.1994, observed: 314.1986

Consistent with previously reported data.³

Compound 11l, tert-butyl 4-benzylpiperidine-1-carboxylate

![Chemical structure](image)

Synthesised according to General Procedure B using benzyl bromide (30 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound as a yellow oil (33.0 mg, 48%).

υ_{max} (neat): 3021, 2999, 2939, 1688 cm⁻¹
1H NMR (400 MHz, CDCl$_3$): δ 7.31 – 7.24 (m, 2H, 2 x ArH), 7.23 – 7.16 (m, 1H, ArH), 7.16 – 7.11 (m, 2H, 2 x ArH), 4.06 (br. s, 2H, 2 x CH), 2.63 (t, 2H, 2 x CH, J = 12.4 Hz), 2.53 (d, 2H, CH$_2$, J = 7.0 Hz), 1.69 – 1.57 (m, 3H, 3 x CH), 1.45 (s, 9H, 3 x CH$_3$), 1.21 – 1.08 (m, 2H, 2 x CH).

13C NMR (101 MHz, CDCl$_3$): δ 155.0, 140.4, 129.3, 128.4, 126.1, 79.4, 44.1, 43.3, 38.3, 32.1, 28.6.

HRMS (C$_{13}$H$_{18}$ON) [M+H]$^+$ requires: 220.1338, observed: 220.1337

Consistent with previously reported data.

Compound 11m, tert-butyl 4-(4-(trifluoromethyl)phenyl)piperidine-1-carboxylate

![Chemical structure](attachment:structure.png)

Synthesised according to General Procedure B using 4-bromobenzotrifluoride (36 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (70.0 mg, 85%).

Synthesised according to General Procedure C using 4-bromobenzotrifluoride (36 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (6% EtOAc/PE) to afford the title compound as a yellow oil (57.6 mg, 70%).

ν_{max} (neat): 3005, 2931, 2849, 1655 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.56 (d, 2H, 2 x ArH, J = 8.2 Hz), 7.31 (d, 2H, 2 x ArH, J = 8.1 Hz), 4.26 (br. s, 2H, 2 x CH), 2.81 (t, 2H, 2 x CH, J = 11.4 Hz), 2.71 (tt, 1H, CH, J = 12.2, 3.5 Hz), 1.82 (d, 2H, 2 x CH, J = 13.0 Hz), 1.62 (qd, 2H, 2 x CH, J = 12.6, 4.1 Hz), 1.48 (s, 9H, 3 x CH$_3$).

13C NMR (126 MHz, CDCl$_3$): δ 155.0, 149.9, 128.9 (3J$_{CF}$, q, J = 32.3 Hz), 127.3, 125.6 (3J$_{CF}$, q, J = 3.6 Hz), 124.3 (4J$_{CF}$, q, J = 218.2 Hz), 79.7, 44.4, 42.8, 33.1, 28.6.

19F NMR (471 MHz, CDCl$_3$): δ -62.4.

HRMS (C$_{17}$H$_{23}$F$_3$NO$_2$) [M+H]$^+$ requires: 330.1675, observed: 330.1678

Consistent with previously reported data.

Compound 11n, tert-butyl 4-(naphthalen-1-yl)piperidine-1-carboxylate

![Chemical structure](attachment:structure.png)

Synthesised according to General Procedure B using 1-bromonaphthalene (52 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-
carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (45.9 mg, 59%).

υ_{max} (neat): 2982, 2965, 2924, 2835, 1695 cm⁻¹

¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.77 (m, 3H, 3 x ArH), 7.64 (s, 1H, ArH), 7.49 – 7.41 (m, 2H, 2 x ArH), 7.36 (dd, 1H, ArH, <i>J</i> = 8.5, 1.7 Hz), 4.30 (br. s, 2H, 2 x CH), 2.93 – 2.76 (m, 3H, 3 x CH), 1.92 (d, 2H, 2 x CH, <i>J</i> = 13.0 Hz), 1.74 (qd, 2H, 2 x CH, <i>J</i> = 12.7, 4.1 Hz), 1.51 (s, 9H, 3 x CH₃), 1.48 (s, 9H, 3 x CH₃), 1.29 (s, 9H, 3 x CH₃).

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 143.4, 133.7, 132.4, 128.2, 127.8, 127.7, 126.1, 125.9, 125.5, 124.9, 79.6, 44.6, 42.9, 33.3, 28.6.

HRMS (<i>C</i>₂₀<i>H</i>₂₆<i>N</i>₂<i>O</i>₂) [M+H]⁺ requires: 312.1958, observed: 312.1958

Compound 11o, tert-butyl 4-(2-amino-4-fluorophenyl)piperidine-1-carboxylate

Synthesised according to General Procedure B using 2-bromo-5-fluoroaniline (48 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2<i>H</i>)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (35% EtOAc/PE) to afford the title compound as a yellow oil (58.1 mg, 79%).

υ_{max} (neat): 3460, 3363, 2930, 2850, 1673 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 6.98 (dd, 1H, ArH, <i>J</i> = 8.6, 6.4 Hz), 6.46 (td, 1H, ArH, <i>J</i> = 8.5, 2.6 Hz), 6.39 (dd, 1H, ArH, <i>J</i> = 10.5, 2.6 Hz), 4.25 (br. s, 2H, 2 x CH), 2.80 (t, 2H, 2 x CH, <i>J</i> = 12.4 Hz), 2.53 (tt, 1H, CH, <i>J</i> = 11.9, 3.2 Hz), 1.82 (d, 2H, 2 x CH, <i>J</i> = 13.3 Hz), 1.62 – 1.51 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH₃). 2H not observed (exchangeable).

¹³C NMR (101 MHz, CDCl₃): δ 162.1 (<i>J</i>_{CF}, d, <i>J</i> = 242.5 Hz), 155.0, 145.0 (<i>J</i>_{CF}, d, <i>J</i> = 10.5 Hz), 127.4 (<i>J</i>_{CF}, d, <i>J</i> = 10.1 Hz), 125.4, 105.6 (<i>J</i>_{CF}, d, <i>J</i> = 21.1 Hz), 102.8 (<i>J</i>_{CF}, d, <i>J</i> = 24.4 Hz), 79.7, 44.7, 36.5, 31.8, 28.6, 25.0.

¹⁹F NMR (376 MHz, CDCl₃): δ -116.7.

HRMS (C₁₆H₂₄FO₂N₂) [M+H]⁺ requires: 295.1816, observed: 295.1819

Compound 11p, tert-butyl 4-(4-hydroxymethyl)phenyl)piperidine-1-carboxylate
Synthesised according to General Procedure B using 4-bromobenzyl alcohol (47 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a yellow oil (50.1 mg, 69%).

ν_{max} (neat): 3442, 3014, 2910, 2851, 1666 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.31 (d, 2H, 2 x ArH, $J = 8.2$ Hz), 7.19 (d, 2H, 2 x ArH, $J = 8.1$ Hz), 4.66 (s, 2H, CH$_2$), 4.22 (br. s, 2H, 2 x CH), 2.79 (t, 2H, 2 x CH, $J = 12.2$ Hz), 2.64 (tt, 1H, CH, $J = 12.1$, 3.6 Hz), 1.89 (br. s, 1H, OH), 1.80 (d, 2H, 2 x CH, $J = 13.5$ Hz), 1.60 (qd, 2H, 2 x CH, $J = 12.7$, 4.4 Hz), 1.48 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 155.0, 145.4, 139.2, 127.4, 127.1, 79.6, 65.2, 44.5, 42.6, 33.3, 28.6.

HRMS (C$_{17}$H$_{26}$O$_3$N) [M+H]$^+$ requires: 292.1907, observed: 292.1909

Compound 11q, tert-butyl 4-(2-cyanophenyl)piperidine-1-carboxylate

![Image of the compound structure]

Synthesised according to General Procedure B using 2-bromobenzonitrile (46 mg, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a yellow oil (54.0 mg, 76%).

ν_{max} (neat): 2999, 2923, 2222, 1681 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.63 (dd, 1H, ArH, $J = 7.7$, 1.0 Hz), 7.55 (td, 1H, ArH, $J = 7.8$, 1.2 Hz), 7.31 (ddd, 2H, 2 x ArH, $J = 9.2$, 8.5, 4.4 Hz), 4.27 (br. s, 2H, 2 x CH), 3.13 (tt, 1H, CH, $J = 12.1$, 3.5 Hz), 2.87 (br. s, 2H, 2 x CH), 1.86 (d, 2H, 2 x CH, $J = 13.1$ Hz), 1.71 – 1.57 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH$_3$).

13C NMR (126 MHz, CDCl$_3$): δ 154.8, 149.2, 133.1, 133.1, 126.9, 126.5, 117.9, 112.0, 79.6, 44.1, 40.9, 32.4, 28.5.

HRMS (C$_{17}$H$_{23}$O$_2$N$_2$) [M+H]$^+$ requires: 287.1754, observed: 287.1755

Consistent with previously reported data.6

Compound 11r, tert-butyl 4-(p-tolyl)piperidine-1-carboxylate

![Image of the compound structure]

Synthesised according to General Procedure B using 4-bromotoluene (31µL, 0.25 mmol, 1 equiv.) and *tert*-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.). The crude material was taken up in ethyl acetate and
washed with water (2 x 10 mL) and brine (10 mL), dried with Na$_2$SO$_4$ and concentrated in vacuo to afford the title compound as a clear oil (68.0 mg, 99%).

Synthesised according to General Procedure C using 4-bromobenzotrifluoride (36 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (5% EtOAc/PE) to afford the title compound as a yellow oil (67.6 mg, 99%).

ν_{max} (neat): 2971, 2926, 2848, 1688 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.13 – 7.09 (m, 4H, 4 x ArH), 4.24 (br. s, 2H), 2.79 (t, 2H, 2 x CH, J = 11.4 Hz), 2.60 (tt, 1H, J = 12.1, 3.5 Hz), 2.32 (s, 3H, CH$_3$), 1.80 (d, 2H, 2 x CH, J = 13.1 Hz), 1.69 – 1.55 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 155.0, 143.0, 136.0, 129.3, 126.8, 79.5, 44.6, 42.4, 33.4, 28.6, 21.1.

HRMS (C$_{17}$H$_{26}$O$_2$N) [M+H]$^+$ requires: 276.1958, observed: 276.1958

Consistent with previously reported data.5

Compound 11s, tert-butyl 4-phenylpiperidine-1-carboxylate

Synthesised according to General Procedure B using bromobenzene (26 µL, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (61.3 mg, 94%).

ν_{max} (neat): 2945, 2843, 1667 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.34 – 7.28 (m, 2H, 2 x ArH), 7.24 – 7.18 (m, 3H, 3 x ArH), 4.24 (br. s, 2H, CH$_2$), 2.80 (t, 2H, J = 12.4 Hz, 2 x CH), 2.64 (tt, 1H, CH, J = 12.2, 3.6 Hz), 1.83 (d, 2H, 2 x CH, J = 13.3 Hz), 1.63 (qd, 2H, 2 x CH, J = 12.8, 4.3 Hz), 1.49 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 155.0, 145.9, 128.6, 126.9, 126.5, 79.5, 44.6, 42.9, 33.3, 28.6.

HRMS (C$_{16}$H$_{25}$O$_2$NNa) [M+Na]$^+$ requires: 284.1621, observed: 284.1621

Consistent with previously reported data.7
Compound 12a, 3-(4-methoxyphenyl)-1-tosylpyrrolidine

![Chemical structure of compound 12a]

Synthesised according to General Procedure B using 3-bromo-1-tosyl-2,5-dihydro-1H-pyrrole (75 mg, 0.25 mmol, 1 equiv.) and 4-methoxyphenyl boronic acid (38 mg, 0.25 mmol, 1 eq.) and purified by flash column chromatography (7% EtOAc/PE) to afford the title compound an off-white amorphous solid (65.3 mg, 79%).

ν_{max} (neat): 2930, 2815, 1523, 1493 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.74 (d, 2H, 2 x ArH, $J = 8.2$ Hz), 7.34 (d, 2H, 2 x ArH, $J = 8.0$ Hz), 7.01 (d, 2H, 2 x ArH, $J = 8.6$ Hz), 6.80 (d, 2H, 2 x ArH, $J = 8.7$ Hz), 3.77 (s, 3H, CH$_3$), 3.69 (dd, 1H, CH, $J = 8.8$, 6.8 Hz), 3.51 (ddd, 1H, CH, $J = 10.0$, 8.5, 3.1 Hz), 3.32 (td, 1H, CH, $J = 9.5$, 7.0 Hz), 3.22 – 3.11 (m, 2H, 2 x CH), 2.45 (s, 3H, CH$_3$), 2.20 – 2.12 (m, 1H, CH), 1.87 – 1.76 (m, 1H, CH).

13C NMR (101 MHz, CDCl$_3$): δ 158.7, 143.6, 134.2, 129.8, 128.0, 127.7, 114.2, 55.4, 54.4, 47.9, 43.3, 33.2, 21.7. (1C not observed).

HRMS (C$_{18}$H$_{22}$N$_{2}$O$_{3}$S) [M+H]$^+$ requires: 332.1315, observed: 332.1317

Consistent with previously reported data.8

Compound 12b, 5-(tetrahydro-2H-pyran-4-yl)pyridin-2-amine

![Chemical structure of compound 12b]

Synthesised according to General Procedure B using 5-bromo-1-indanone (53 mg, 0.25 mmol, 1 equiv.) and 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (53 mg, 0.25 mmol, 1 eq.) and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound an off-white amorphous solid (43.2 mg, 80%).

ν_{max} (neat): 2949, 2930, 2846, 1701, 1610 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.70 (d, 1H, ArH, $J = 8.2$ Hz), 7.34 – 7.31 (m, 1H, ArH), 7.24 (ddd, 1H, ArH, $J = 7.9$, 1.4, 0.6 Hz), 4.12 – 4.07 (m, 2H, 2 x CH), 3.54 (td, 2H, 2 x CH, $J = 11.7$, 2.4 Hz), 3.14 – 3.10 (m, 2H, CH$_2$), 2.85 (tt, 1H, CH, $J = 11.8$, 4.1 Hz), 2.70 – 2.66 (m, 2H, 2 x CH), 1.89 – 1.75 (m, 4H, 2 x CH$_2$).

13C NMR (126 MHz, CDCl$_3$): δ 206.6, 156.0, 153.4, 135.8, 126.7, 124.8, 124.0, 68.3, 42.3, 36.6, 33.8, 25.9.
HRMS (C_{14}H_{17}O_{2}) [M+H]^+ requires: 217.1229, observed: 217.1233

Compound 12c, 5-cyclohexylpyridin-2-amine

![Structure of 5-cyclohexylpyridin-2-amine]

Synthesised according to General Procedure B using 5-bromo-2-nitropyridine (51 mg, 0.25 mmol, 1 equiv.) and 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (80% PE/EtOAc) to afford the title compound an off-white amorphous solid (39.4 mg, 90%).

ν_{max} (neat): 3441, 3304, 3144, 2918, 2847, 1639, 1505 cm^{-1}

\(^1\)H NMR (600 MHz, acetone-d_6) \(\delta\) 7.82 (d, 1H, ArH, \(J = 1.8\) Hz), 7.27 (dd, 1H, ArH, \(J = 8.4, 2.3\) Hz), 6.47 (d, 1H, ArH, \(J = 8.4\) Hz), 5.11 (br. s, 2H, NH_2), 2.40 – 2.33 (m, 1H, CH), 1.84 – 1.74 (m, 4H, 4 x CH), 1.74 – 1.68 (m, 1H, CH), 1.41 – 1.35 (m, 4H, 4 x CH), 1.28 – 1.22 (m, 1H, CH).

\(^{13}\)C NMR (151 MHz, acetone-d_6): \(\delta\) 159.1, 147.0, 136.4, 132.5, 108.7, 42.0, 35.3, 27.6.

HRMS (C_{11}H_{17}N_2) [M+H]^+ requires: 177.1383, observed: 177.1386

Compound 12d, 3-(tetrahydro-2H-pyran-2-yl)aniline

![Structure of 3-(tetrahydro-2H-pyran-2-yl)aniline]

Synthesised according to General Procedure B using 2-(3,4-dihydro-2H-pyran-6-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53 mg, 0.25 mmol, 1 equiv.) and 3-nitrobromobenzene (50 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (30% EtOAc/PE) to afford the title compound as a clear oil (24.0 mg, 55%).

ν_{max} (neat): 3390, 3313, 3067, 2993, 2961, 2806, 1645, 1501 cm^{-1}

\(^1\)H NMR (500 MHz, CDCl_3): \(\delta\) 7.11 (t, 1H, ArH, \(J = 7.9\) Hz), 6.74 – 6.69 (m, 2H, 2 x ArH), 6.58 (dd, 1H, ArH, \(J = 7.9, 1.4\) Hz), 4.24 (dd, 1H, CH, \(J = 10.7, 1.9\) Hz), 4.17 – 4.09 (m, 1H, CH), 3.60 (td, 1H, CH, \(J = 11.7, 2.4\) Hz), 1.96 – 1.90 (m, 1H, CH), 1.84 – 1.78 (m, 1H, CH), 1.71 – 1.55 (m, 4H, 4 x CH).

\(^{13}\)C NMR (101 MHz, CDCl_3): \(\delta\) 146.5, 144.8, 129.3, 116.4, 114.3, 112.7, 80.3, 69.1, 34.1, 26.1, 24.2.

HRMS (C_{11}H_{16}ON) [M+H]^+ requires: 178.1226, observed: 178.1223

Compound 12e, (2-(2-(trimethylsilyl)ethyl)phenyl)methanol
Synthesised according to General Procedure B using (2-(hydroxymethyl)phenyl)boronic acid (38 mg, 0.25 mmol, 1 equiv.) and (E)-(2-bromovinyl)trimethylsilane (45 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% PE/EtOAc) to afford the title compound a clear oil (33.6 mg, 65%).

υ_max (neat): 3290 (br.), 2948, 2891, 1247 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.39 (d, 1H, ArH, J = 7.3 Hz), 7.29 – 7.19 (m, 3H, 3 x ArH), 4.74 (s, 2H, CH₂), 2.73 – 2.65 (m, 2H, CH₂), 0.89 – 0.82 (m, 2H, CH₂), 0.08 (s, 9H, 3 x CH₃) (1H not observed, exchangeable).

¹³C NMR (101 MHz, CDCl₃): δ 143.6, 137.9, 128.8, 128.2, 126.1, 63.1, 26.5, 18.9, -1.7 (1C not observed).

HRMS (C₁₂H₂₁O₃Si) [M-H] requires: 207.1205, observed: 207.1207

Compound 12f, methyl 4-(1-phenylethyl)benzoate

Synthesised according to General Procedure B using α-bromostyrene (36 µL, 0.25 mmol, 1 equiv.) and 4-methoxycarbonylphenylboronic acid (45 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound as a clear oil (49 mg, 82%).

υ_max (neat): 2920, 2852, 1719 cm⁻¹

¹H NMR (400 MHz, CDCl₃): δ 7.98 – 7.93 (m, 2H, ArH), 7.32 – 7.27 (m, 4H, 4 x ArH), 7.23 – 7.17 (m, 3H, 3 x ArH), 4.20 (q, 1H, CH, J = 7.2 Hz), 3.89 (s, 3H, CH₃), 1.66 (d, 3H, CH₃, J = 7.2 Hz)

¹³C NMR (101 MHz, CDCl₃): δ 167.2, 151.9, 129.9, 128.7, 127.8, 127.8, 126.5, 52.1, 45.0, 21.7 (2C not observed).

HRMS (C₁₆H₁₇O₂) [M+H]+ requires: 241.1223, observed: 241.1223

Consistent with previously reported data.⁹

Compound 12g, 2-methoxy-3-(1-(p-tolyl)ethyl)pyridine
Synthesised according to General Procedure B using 1-(1-bromovinyl)-4-methylbenzene (49 mg, 0.25 mmol, 1 equiv.) and (2-methoxypyridin-3-yl)boronic acid (38 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (6% EtOAc/PE) to afford the title compound as a clear oil (34.0 mg, 60%).

ν_{max} (neat): 3421, 2928, 1703, 1409, 1323 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 8.00 (dd, 1H, ArH, J = 5.0, 1.9 Hz), 7.37 (ddd, 1H, ArH, J = 7.3, 1.8, 0.5 Hz), 7.11 (app. q, 4H, 4 x ArH, J = 8.3 Hz), 6.81 (dd, 1H, ArH, J = 7.3, 5.0 Hz), 4.40 (q, 1H, CH, J = 7.2 Hz), 3.93 (s, 3H, CH$_3$), 2.31 (s, 3H, CH$_3$), 1.55 (d, 3H, CH$_3$, J = 7.2 Hz).

13C NMR (101 MHz, CDCl$_3$): δ 161.6, 144.3, 142.2, 135.8, 135.7, 129.5, 129.1, 127.7, 116.9, 53.5, 37.4, 21.1, 20.6.

HRMS (C$_{15}$H$_{18}$O$^+$_N) [M+H]$^+$ requires: 228.1383, observed: 228.1382

Compound 12h, methyl 4-(tetrahydro-2H-pyran-2-yl)benzoate

ν_{max} (neat): 2937, 2844, 1714, 1610, 1437 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 8.00 (d, 2H, 2 x ArH, J = 8.3 Hz), 7.41 (d, 2H, 2 x ArH, J = 8.3 Hz), 4.38 (ddd, 1H, CH, J = 11.1, 2.0 Hz), 4.18 – 4.13 (m, 1H, CH), 3.90 (s, 3H, CH$_3$), 3.62 (td, 1H, CH, J = 11.6, 2.5 Hz), 1.98 – 1.91 (m, 1H, CH), 1.85 (d, 1H, CH, J = 13.2 Hz), 1.73 – 1.65 (m, 2H, 2 x CH), 1.62 – 1.51 (m, 2H, 2 x CH).

13C NMR (101 MHz, CDCl$_3$): δ 167.2, 148.7, 129.8, 129.1, 125.8, 79.7, 69.1, 52.2, 34.3, 25.9, 24.0.

HRMS (C$_{13}$H$_{17}$O$_3$) [M+H]$^+$ requires: 221.1178, observed: 221.1183

Compound 12i, 1-cyclohexyl-3-(methylsulfonyl)benzene
Synthesised according to General Procedure B using 4-bromophenyl methyl sulfone (59 mg, 0.25 mmol, 1 equiv.) and 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (30% PE/EtOAc) to afford the title compound an off-white solid (48.2 mg, 81%).

υmax (neat): 2921, 2848, 1597, 1297, 1143 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.77 (s, 1H, ArH), 7.74 (dt, 1H, ArH, J = 6.4, 2.1 Hz), 7.50 – 7.44 (m, 2H, 2 x ArH), 3.04 (s, 3H, CH₃), 2.60 (ddd, 1H, CH, J = 11.8, 7.4, 3.2 Hz), 1.92 – 1.82 (m, 4H, 4 x CH), 1.80 – 1.72 (m, 1H, CH), 1.49 – 1.36 (m, 4H, 4 x CH), 1.31 – 1.23 (m, 1H, CH).

¹³C NMR (101 MHz, CDCl₃): δ 149.9, 140.6, 132.5, 129.4, 125.7, 124.9, 44.7, 44.6, 34.3, 26.8, 26.0.

HRMS (C₁₃H₁₉O₂S) [M+H]^+ requires: 239.1106, observed: 239.1107

Compound 12j, 3-(1,1-diethoxypropan-2-yl)-2-methoxypyridine

Synthesised according to General Procedure B using 2-bromopropenal diethyl acetal (42 µL, 0.25 mmol, 1 equiv.) and 2-methoxy-3-pyridinylboronic acid (38 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (10% EtOAc/PE) to afford the title compound a colourless oil (32.4 mg, 54%).

υmax (neat): 2973, 2876, 1584, 1461, 1413 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.02 (dd, 1H, ArH, J = 5.0, 1.8 Hz), 7.51 (dd, 1H, ArH, J = 7.3, 1.8 Hz), 6.83 (dd, 1H, ArH, J = 5.0 Hz), 4.60 (d, 1H, CH, J = 5.8 Hz), 3.95 (s, 3H, CH₃), 3.69 (dq, 1H, CH, J = 9.3, 7.0 Hz), 3.58 (dq, 1H, CH, J = 9.4, 7.0 Hz), 3.48 – 3.38 (m, 2H, 2 x CH), 3.38 – 3.31 (m, 1H, CH), 1.25 (d, 3H, CH₃, J = 7.1 Hz), 1.14 (t, 3H, CH₃, J = 7.0 Hz), 1.08 (t, 3H, CH₃, J = 7.0 Hz).

¹³C NMR (101 MHz, CDCl₃): δ 161.8, 144.4, 137.3, 125.9, 116.9, 105.2, 63.3, 62.4, 53.4, 37.1, 15.3, 14.6.

HRMS (C₁₃H₂₂O₃N) [M+H]^+ requires: 240.1594, observed: 240.1592

Compound 12k, methyl 4-(3-methoxypropyl)benzoate

Synthesised according to General Procedure B using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and trans-3-methoxy-1-propenylboronic acid pinacol ester (50 mg, 0.25 mmol, 1 equiv)
equiv.), and purified by flash column chromatography (15% EtOAc/PE) to afford the title compound an yellow oil (30.6 mg, 59%).

ν_{max} (neat): 2973, 2922, 1690, 1167 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.95 (d, 2H, 2 x ArH, $J = 8.3$ Hz), 7.25 (d, 2H, 2 x ArH, $J = 8.4$ Hz), 3.90 (s, 3H, CH$_3$), 3.37 (t, 2H, 2 x CH, $J = 6.3$ Hz), 3.34 (s, 3H, CH$_3$, $J = 2.6$ Hz), 2.78 – 2.70 (m, 2H, 2 x CH).

13C NMR (101 MHz, CDCl$_3$): δ 167.3, 147.7, 129.9, 128.6, 128.0, 71.8, 58.7, 52.1, 32.5, 31.0.

HRMS (C$_{12}$H$_{17}$O$_3$) [M+H]$^+$ requires: 209.1178, observed: 209.1181

Compound 12l, 1-methyl-5-(2-(trimethylsilyl)ethyl)-1H-imidazole

![Structure of Compound 12l](image)

Synthesised according to General Procedure B using (2-bromovinyl)trimethylsilane (45 mg, 0.25 mmol, 1 equiv.) 1-methyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-imidazole (52 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (7% PE/EtOAc) to afford the title compound an off-white solid (32.1 mg, 71%).

ν_{max} (neat): 2921, 2850, 1736 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.36 (d, 1H, ArH, $J = 1.8$ Hz), 6.02 (d, 1H, ArH, $J = 1.7$ Hz), 3.77 (s, 3H, CH$_3$), 2.60 – 2.54 (m, 2H, CH$_2$), 0.90 – 0.84 (m, 2H, CH$_2$), 0.04 (s, 9H, 3 x CH$_3$).

13C NMR (101 MHz, CDCl$_3$): δ 145.4, 138.1, 103.8, 36.1, 20.2, 15.6, -1.7.

HRMS (C$_9$H$_{19}$N$_2$Si) [M+H]$^+$ requires: 183.1318, observed: 183.1321

Compound 12m, methyl 4-(tetrahydro-2H-pyran-4-yl)benzoate

![Structure of Compound 12m](image)

Synthesised according to General Procedure B using methyl 4-bromobenzoate (54 mg, 0.25 mmol, 1 equiv.) and MeOH (1 mL) and purified by flash column chromatography (25% EtOAc/PE) to afford the title compound as an off white amorphous solid (47.3 mg, 86%).

ν_{max} (neat): 3099, 2983, 2799, 1744 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.98 (d, 2H, 2 x ArH, $J = 8.3$ Hz), 7.29 (d, 2H, 2 x ArH, $J = 8.3$ Hz), 4.09 (dd, 2H, 2 x CH, $J = 11.2, 3.9$ Hz), 3.90 (s, 3H, CH$_3$), 3.53 (td, 2H, 2 x CH, $J = 11.6, 2.3$ Hz), 2.82 (tt, 1H, CH, $J = 11.7, 4.1$ Hz), 1.87 – 1.85 (m, 4H, 2 x CH$_2$).
\(^{13} \text{C NMR} (151 \text{ MHz, CDCl}_3): \delta 167.1, 151.2, 130.0, 128.4, 126.9, 68.3, 52.1, 41.8, 33.7. \)

HRMS (C\(_{13}\)H\(_{16}\)O\(_3\)Na) \([\text{M+Na}^+]\) requires: 243.0993, observed: 243.0992

Consistent with previously reported data.\(^1\)

Compound 12n, 2-([1,1'-biphenyl]-4-yl)propan-1-ol

\[
\begin{align*}
\text{Me} & \
\end{align*}
\]

Synthesised according to General Procedure B using 2-bromoallyl alcohol (22 \(\mu \text{L}, 0.25 \text{ mmol, 1 equiv.} \)) and 4-biphenylboronic acid (50 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (70% EtOAc/PE) to afford the title compound a clear oil (39 mg, 73%).

\(\nu_{\text{max}} \) (neat): 3301, 3060, 2902, 1491 cm\(^{-1}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.61 - 7.54 \) (m, 4H, 4 x ArH), 7.48 - 7.40 (m, 2H, 2 x ArH), 7.37 - 7.29 (m, 3H, 3 x ArH), 3.76 (d, 2H, CH\(_2\), \(J = 6.8 \text{ Hz} \)), 3.06 - 2.96 (m, 1H, CH), 1.40 (s, 1H, OH), 1.33 (d, 3H, CH\(_3\), \(J = 7.0 \text{ Hz} \)).

\(^{13} \text{C NMR} (101 \text{ MHz, CDCl}_3): \delta 142.9, 141.1, 139.8, 128.9, 128.1, 127.5, 127.3, 127.2, 68.8, 42.3, 17.7. \)

HRMS (C\(_{15}\)H\(_{20}\)ON) \([\text{M+NH}_4^+]\) requires: 230.1540, observed: 230.1539

Compound 12o, 3-(3-cyclopentylpropyl)-5-(trifluoromethyl)pyridine

\[
\begin{align*}
\text{CF}_3 & \
\end{align*}
\]

Synthesised according to General Procedure B using 3-bromo-5-(trifluoromethyl)pyridine (57 mg, 0.25 mmol, 1 equiv.) and (E)-2-(3-cyclopentylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (59 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound an yellow oil (33.6 mg, 52%).

\(\nu_{\text{max}} \) (neat): 2941, 2861, 1338, 1132 cm\(^{-1}\)

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 8.71 \) (s, 1H, ArH), 8.63 (s, 1H, ArH), 7.71 (s, 1H, ArH), 2.71 - 2.65 (m, 2H, 2 x CH), 1.78 - 1.74 (m, 2H, 2 x CH), 1.72 - 1.62 (m, 3H, 3 x CH), 1.62 - 1.54 (m, 2H, 2 x CH), 1.54 - 1.45 (m, 2H, 2 x CH), 1.40 - 1.31 (m, 2H, 2 x CH), 1.13 - 0.99 (m, 2H, 2 x CH).

\(^{13} \text{C NMR} (101 \text{ MHz, CDCl}_3): \delta 153.3, 144.1 \left(^{1}J_{\text{CF}}, q, J = 4.0 \text{ Hz} \right), 138.4, 132.7 \left(^{1}J_{\text{CF}}, q, J = 3.7 \text{ Hz} \right), 123.8 \left(^{1}J_{\text{CF}}, q, J = 247.3 \text{ Hz} \right), 40.0, 35.8, 33.2, 32.8, 30.2, 25.3 (1C not observed).

\(^{19} \text{F NMR} (471 \text{ MHz, CDCl}_3): \delta -62.43. \)
HRMS (C₁₄H₁₆F₃N) [M+H]^+ requires: 258.1470, observed: 258.1466

Compound 12p, 1-(4-(3-cyclopentylpropyl)phenyl)ethan-1-one

\[
\begin{align*}
&\text{O} \\
&\text{BocN}
\end{align*}
\]

Synthesised according to General Procedure B using (E)-2-(3-cyclopentylprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (59 mg, 0.25 mmol, 1 equiv.) and 4 bromoacetophenone (50 mg, 0.25 mmol, 1 equiv.) and purified by flash column chromatography (8% EtOAc/PE) to afford the title compound as a clear oil (28.5 mg, 60%).

\[\nu_{\text{max}}\text{ (neat): } 2934, 2855, 1680, 1606, 1266 \text{ cm}^{-1}\]

\[^{1}\text{H NMR (500 MHz, CDCl}_3\): } \delta 7.85 (d, 2H, 2 x ArH, J = 8.3 Hz), 7.24 (d, 2H, 2 x ArH, J = 8.2 Hz), 2.67 – 2.60 (m, 2H, 2 x CH), 2.55 (s, 3H, CH₃), 1.73 – 1.68 (m, 2H, 2 x CH), 1.65 – 1.59 (m, 2H, 2 x CH), 1.50 – 1.42 (m, 2H, 2 x CH), 1.34 – 1.28 (m, 2H, 2 x CH)

\[^{13}\text{C NMR (101 MHz, CDCl}_3\): } \delta 198.0, 149.0, 135.1, 128.7, 128.6, 127.4, 40.1, 36.4, 35.9, 32.8, 30.4, 26.7, 25.3.

HRMS (C₁₆H₂₂O) [M] requires: 230.1671, observed: 230.1670

Compound 12q, tert-butyl 4-(2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)piperidine-1-carboxylate

\[
\begin{align*}
&\text{N} \\
&\text{BocN}
\end{align*}
\]

Synthesised according to General Procedure B using ethyl 3-(5-bromo-2-nitrophenyl)acrylate (75 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (60% EtOAc/PE) to afford the title compound as a white solid (65.9 mg, 80%).

\[\nu_{\text{max}}\text{ (neat): } 3066, 2944, 1683, 1670 \text{ cm}^{-1}\]

\[^{1}\text{H NMR (400 MHz, CDCl}_3\): } \delta 8.45 (s, 1H, NH), 7.03 – 6.96 (m, 2H, 2 x ArH), 6.73 (d, 1H, ArH, J = 8.7 Hz), 4.22 (br. s, 2H, 2 x CH), 2.97 – 2.91 (m, 2H, 2 x CH), 2.78 (t, 2H, 2 x CH, J = 12.3 Hz), 2.66 – 2.53 (m, 3H, 3 x CH), 1.79 (d, 2H, 2 x CH, J = 13.0 Hz), 1.58 (ddd, 2H, 2 x CH, J = 25.4, 12.8, 4.3 Hz), 1.48 (s, 9H, 3 x CH₃).

\[^{13}\text{C NMR (101 MHz, CDCl}_3\): } \delta 171.8, 155.0, 141.0, 135.7, 126.5, 125.9, 123.9, 115.6, 79.6, 44.5, 42.3, 33.5, 30.9, 28.6, 25.6.

HRMS (C₁₉H₂₇O₃N₂) [M+H]^+ requires: 331.2016, observed: 331.2018
Compound 12r, 6-cyclohexyl-3,4-dihydroquinolin-2(1H)-one

\[
\begin{align*}
\text{H} & \quad \text{N} \\
& \quad \text{O}
\end{align*}
\]

Synthesised according to General Procedure B using 1-cyclohexen-yl-boronic acid pinacol ester (52 mg, 0.25 mmol, 1 equiv.) and ethyl (E)-3-(5-bromo-2-nitrophenyl)acrylate (75 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (50% EtOAc/PE) to afford the title compound an off-white amorphous solid (40.5 mg, 71%).

\(\nu_{\text{max}}\) (neat): 3052, 2921, 2834, 1694 cm\(^{-1}\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 8.60 (s, 1H, NH), 7.01 (d, 2H, 2 x ArH, \(J = 6.9\) Hz), 6.73 (d, 1H, ArH, \(J = 8.6\) Hz), 2.94 (t, 2H, 2 x CH, \(J = 7.6\) Hz), 2.65 – 2.60 (t, 2H, 2 x CH, \(J = 7.6\) Hz), 2.48 = 2.40 (m, 1H, CH), 1.89 – 1.79 (m, 4H, 4 x CH), 1.74 (d, 1H, CH, \(J = 13.1\) Hz), 1.44 – 1.32 (m, 4H, 4 x CH), 1.30 – 1.18 (m, 1H, CH).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 172.0, 143.3, 135.2, 126.5, 125.9, 123.6, 115.4, 44.1, 34.7, 31.0, 27.0, 26.3, 25.7.

HRMS (C\(_{15}\)H\(_{20}\)N\(_2\)O) [M+H]\(^+\) requires: 230.1539, observed: 230.1538

Compound 12s, (2R,3S)-2,3-diphenyl-1-tosylpyrrolidine (12:1, trans: cis)

\[
\begin{align*}
\text{Ts} & \quad \cdots \quad \text{Ts}
\end{align*}
\]

Synthesised according to General Procedure B using phenyl boronic acid (31 mg, 0.25 mmol, 1 equiv.) and (S)-3-bromo-2-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole (95 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (14% EtOAc/PE) to afford the title compound an off-white amorphous solid (66.0 mg, 70%).

\(\nu_{\text{max}}\) (neat): 3002, 2990, 2713, 1515, cm\(^{-1}\)

\(^1\)H NMR (500 MHz, CDCl\(_3\)): \(\delta\) 7.70 (d, 2H, 2 x ArH, \(J = 8.2\) Hz), 7.29 (d, 2H, 2 x ArH, \(J = 8.2\) Hz), 7.10 – 6.99 (m, 6H, 6 x ArH), 6.74 (d, 2H, 2 x ArH, \(J = 7.2\) Hz), 6.65 (d, 2H, 2 x ArH, \(J = 6.6\) Hz), 5.03 (d, 1H, CH, \(J = 8.1\) Hz), 3.87 (t, 1H, CH, \(J = 8.7\) Hz), 3.52 (ddd, 1H, CH, \(J = 10.9, 9.6, 6.6\) Hz), 3.29 (ddd, 1H, CH, \(J = 13.6, 8.0, 5.7\) Hz), 2.44 (s, 3H, CH\(_3\)), 2.41 – 2.34 (m, 1H, CH), 2.06 (dt, 1H, CH, \(J = 12.3, 6.1\) Hz).

\(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta\) 143.5, 138.8, 137.0, 135.5, 129.7, 128.6, 128.0, 127.6, 127.6, 127.5, 127.0, 67.2, 50.6, 48.0, 27.8, 21.7.
cis isomer observed in 1H and 13C NMR but not reported. Diastereomeric ratio determined by 1H NMR, ratio between doublet at 5.03 and 4.65.

HRMS (C$_{23}$H$_{32}$O$_2$NS) [M+H]$^+$ requires: 378.1522, observed: 378.1522

$\text{ee} = >97\%$ (by chiral HPLC)

Compound 13, 4-(3-(methylsulfonyl)phenyl)piperidine

![Diagram of Compound 13]

Synthesised according to General Procedure B using 3-bromophenylmethylsulfone (59 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (75.4 mg, 89%).

Synthesised according to General Procedure C using 3-bromophenylmethylsulfone (59 mg, 0.25 mmol, 1 equiv.) and tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-6-dihydropyridine-1(2H)-carboxylate (77 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography (40% EtOAc/PE) to afford the title compound as a yellow oil (68.6 mg, 81%).

ν_{max} (neat): 2974, 2926, 1683, 1423 cm$^{-1}$

1H NMR (600 MHz, CDCl$_3$) δ 7.80 – 7.76 (m, 2H, 2 x ArH), 7.53 – 7.47 (m, 2H, 2 x ArH), 4.26 (br. s, 2H, CH$_2$), 3.04 (s, 3H, CH$_3$), 2.86 – 2.72 (m, 3H, 3 x CH), 1.84 (d, 2H, 2 x CH, $J = 12.8$ Hz), 1.69 – 1.60 (m, 2H, 2 x CH), 1.48 (s, 9H, 3 x CH$_3$).

13C NMR (151 MHz, CDCl$_3$): δ 154.9, 147.7, 141.0, 132.3, 129.8, 125.7, 125.5, 79.8, 44.6, 42.7, 33.1, 28.6. (1C not observed).

HRMS (C$_{17}$H$_{26}$O$_2$N$_2$S) [M+H]$^+$ requires: 357.1843, observed: 357.1843

Compound 14, 4-(3-(methylsulfonyl)phenyl)piperidine

![Diagram of Compound 14]

To a vial containing Compound 13 (60 mg, 0.18 mmol, 1 equiv.) was added DCM (1 mL), then TFA (138 μL, 1.8 mmol, 10 equiv.) dropwise. The reaction mixture was stirred at room temperature for 4 hours before being concentrated under compressed air. The crude material was dissolved in minimal MeOH and applied to a 2g SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH$_3$/MeOH (3M). The NH$_3$/MeOH fractions were combined and concentrated in vacuo to afford the title compound as a white amorphous solid (39 mg, 91%).

ν_{max} (neat): 3210, 2901, 1688, 1499, 1300 cm$^{-1}$
1H NMR (500 MHz, CDCl$_3$): δ 7.81 – 7.74 (m, 2H, 2 x ArH), 7.53 – 7.47 (m, 2H, 2 x ArH), 3.21 (d, 2H, CH$_2$, $J = 12.0$ Hz), 3.04 (s, 3H, CH$_3$), 2.74 (m, 2H, CH$_2$), 2.11 (br. s, 1H, NH), 1.86 (d, 2H, CH$_2$, $J = 12.8$ Hz), 1.67 (q, 2H, CH$_2$, $J = 12.4$ Hz).

13C NMR (101 MHz, CDCl$_3$) δ 148.6, 140.8, 132.3, 129.7, 125.8, 125.3, 47.0, 44.6, 43.0, 34.3.

HRMS (C$_{12}$H$_{18}$O$_2$NS) [M+H]$^+$ requires: 240.1052, observed: 240.1053

Consistent with reported data.10

Compound 3, 4-(3-(methylsulfonyl)phenyl)-1-propypiperidine

![Chemical structure](image)

To an oven dried round bottom flask was added K$_2$CO$_3$ (45 mg, 0.39 mmol, 2.5 equiv.) and was purged with nitrogen. Compound 14 (30 mg, 0.13 mmol, 1 equiv.) was added in MeCN (2 mL) and the reaction mixture was stirred at room temperature for 15 minutes. Iodopropane (15 μL, 0.16 mmol, 1.2 equiv.) was added dropwise at 0 °C and the reaction mixture was heated to 70 °C and stirred for 24 h. The reaction was then allowed to cool to room temperature and applied directly to an SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH$_3$/MeOH (3M). The NH$_3$/MeOH fractions were combined and concentrated in vacuo to afford a clear gum which was purified by flash column chromatography (10% MeOH/DCM) to afford the title compound as a colourless gum (25 mg, 69%).

ν_{max} (neat): 2991, 2920, 1646, 1333 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.81 – 7.75 (m, 2H, 2 x ArH), 7.57 – 7.47 (m, 2H, 2 x ArH), 3.19 (d, 2H, 2 x CH, $J = 11.6$ Hz), 3.04 (s, 3H, CH$_3$), 2.67 (tt, 1H, CH, $J = 11.9, 4.0$ Hz), 2.49 – 2.42 (m, 2H, 2 x CH), 2.20 (t, 2H, 2 x CH, $J = 11.8$ Hz), 2.02 – 1.85 (m, 4H, 4 x CH), 1.68 – 1.58 (m, 2H, 2 x CH), 0.94 (t, 3H, CH$_3$, $J = 7.4$ Hz).

13C NMR (101 MHz, CDCl$_3$): δ 147.7, 140.9, 132.2, 129.8, 126.0, 125.4, 60.7, 54.0, 44.6, 42.3, 32.7, 19.8, 12.0.

HRMS (C$_{15}$H$_{24}$O$_2$NS) [M+H]$^+$ requires: 282.1528, observed: 282.1532

Consistent with reported data.11

Compound 17, N-(2-[(1,1'-biphenyl)-4-yl]propyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide
Synthesised according to General Procedure C using N-(2-bromoallyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide (98 mg, 0.25 mmol, 1 equiv.) and 4-biphenylboronic acid (50 mg, 0.25 mmol, 1 equiv.), and purified by flash column chromatography to afford the title compound as a white solid (116.7 mg, 71%).

ν_{max} (neat): 2931, 2834, 1612, 1508 cm$^{-1}$

1H NMR (400 MHz, Acetone): δ 7.66 – 7.56 (m, 4H, 4 x ArH), 7.47 – 7.41 (m, 2H, 2 x ArH), 7.38 – 7.28 (m, 4H, 4 x ArH), 6.59 (d, 1H, ArH, $J = 2.4$ Hz), 6.55 (dd, 1H, ArH, $J = 8.3$, 2.4 Hz), 4.45 (d, 1H, CH, $J = 15.0$ Hz), 4.29 (d, 1H, CH, $J = 15.0$ Hz), 3.89 (s, 3H, OCH$_3$), 3.81 (s, 3H, OCH$_3$), 3.38 (qd, 2H, 2 x CH, $J = 14.2$, 7.6 Hz), 2.91 (dt, 1H, CH, $J = 13.6$, 6.8 Hz), 1.22 (d, 3H, CH$_3$, $J = 7.0$ Hz), 1.14 (dd, 6H, 2 x CH$_3$, $J = 6.8$, 1.7 Hz).

13C NMR (101 MHz, Acetone): δ 161.9, 159.7, 144.9, 141.7, 140.2, 132.6, 129.7, 128.8, 128.0, 127.8, 127.6, 117.7, 105.6, 99.0, 55.8, 55.7, 54.1, 46.3, 39.1, 19.4, 17.0, 16.9.

HRMS (C$_{27}$H$_{34}$NO$_4$S) [M+H]$^+$ requires: 468.2203, observed: 468.2201

Compound 18, N-(2-([1,1'-biphenyl]-4-yl)propyl)propane-2-sulfonamide

To a solution of N-(2-([1,1'-biphenyl]-4-yl)propyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide (100 mg, 0.21 mmol, 1 eq.) in DCM (2 mL) was added TFA (161 µL, 2.1 mmol, 10 eq.). The reaction was stirred for 1 h at room temperature before being concentrated in vacuo. The crude material was dissolved in minimal MeOH and applied to a 2g SCX cartridge which had been equilibrated with MeOH. The cartridge was washed with 2 column volumes of MeOH, followed by 2 column volumes of NH$_3$/MeOH (3M). The NH$_3$/MeOH fractions were combined and concentrated in vacuo to afford the title compound as an off-white amorphous solid (64.5 mg, 97%).

ν_{max} (neat): 3284, 2925, 1612, 1315 cm$^{-1}$

1H NMR (400 MHz, Acetone): δ 7.70 – 7.57 (m, 4H, 4 x ArH), 7.48 – 7.42 (m, 2H, 2 x ArH), 7.39 – 7.32 (m, 3H, 3 x ArH), 5.88 (app. t, 1H, NH, $J = 5.8$ Hz), 3.39 – 3.25 (m, 2H, 2 x CH), 3.14 – 3.00 (m, 2H, 2 x CH), 1.34 (d, 3H, CH$_3$, $J = 7.0$ Hz), 1.25 (d, 1H, $J = 6.8$ Hz), 1.21 (d, 1H, $J = 6.8$ Hz).
13C NMR (101 MHz, Acetone): δ 144.6, 141.7, 140.1, 129.7, 128.8, 128.0, 127.8, 127.6, 53.0, 50.9, 41.4, 19.5, 16.9, 16.8.

HRMS (C18H24NO2S) [M+H]+ requires: 318.1522, observed: 318.1527

Synthesis of starting materials and intermediates

Compound 19, Ethyl 3-(5-bromo-2-nitrophenyl)acrylate (20:1, E:Z)

To a round bottom flask containing 5-bromo-2-nitrobenzaldehyde (300 mg, 1.3 mmol, 1 eq.) and triphenylcarbethoxymethylene phosphorane (1.044 g, 3 mmol, 2.3 eq.) was added DCM (6 mL). The reaction was stirred at room temperature for 16 h before being washed with water (10 mL) and brine (10 mL). The organic layer was dried with Na2SO4 before being concentrated in vacuo. Purification by flash column chromatography (30% EtOAc/PE) afforded the title compound a yellow amorphous solid (385 mg, 99%).

νmax (neat): 3096, 2977, 1727, 1709 cm⁻¹

1H NMR (500 MHz, CDCl3): δ 8.07 (d, 1H, alkene CH, J = 15.8 Hz), 7.95 (d, 1H, ArH, J = 8.7 Hz), 7.78 (d, 1H, ArH, J = 2.1 Hz), 7.67 (dd, 1H, ArH, J = 8.7, 2.1 Hz), 6.37 (d, 1H, alkene CH, J = 15.8 Hz), 4.30 (q, 2H, CH2, J = 7.1 Hz), 1.35 (t, 3H, CH3, J = 7.1 Hz).

13C NMR (101 MHz, CDCl3): δ 165.5, 147.0, 138.8, 133.3, 132.7, 132.2, 128.5, 126.5, 124.6, 61.2, 14.3.

(Inconsequential Z (~5%) isomer observed in 1H and 13C NMR but not reported).

HRMS (C11H11NO4Br) [M+H'] requires: 299.9872, observed: 299.9868

Synthetic route to 12r starting material:
To a solution of (Z)-2-bromo-3-phenylacrylaldehyde (422 mg, 2 mmol, 1 eq.) in DCM (8 mL) was added (R)-2-methyl-2-propanesulfinamide (242 mg, 2 mmol, 1 eq.) and Cs₂CO₃ (704 mg, 2 mmol, 1 eq.) and the reaction was stirred at 40 °C with a reflux condenser for 16 h. Following this, the reaction was filtered through Celite, rinsed with DCM and concentrated in vacuo. Purification by flash chromatography (14% EtOAc) gave the title compound as a yellow oil (521.2 mg 83%).

\[\nu_{\text{max}} \text{(neat)}: 3100, 2977, 1726, 1709, 1519 \text{ cm}^{-1} \]

\(^1\text{H NMR (400 MHz, CDCl}_3\):} \delta 8.21 (s, 1H, imine CH), 7.95 – 7.88 (m, 2H, 2 x ArH), 7.64 (s, 1H, alkene CH), 7.48 – 7.40 (m, 3H, 3 x ArH), 1.27 (s, 9H, 3 x CH₃).

\(^1\text{C NMR (101 MHz, CDCl}_3\):} \delta 161.7, 144.7, 134.0, 130.7, 130.6, 128.7, 120.9, 58.4, 22.7.

HRMS (C₁₃H₁₇NOS) [M+H]^+ requires: 316.0187, observed: 316.0187
$[\alpha]_D^{20}$: +18.6 (c=0.1, CH$_2$Cl$_2$)

Compound 21, (S)-N-((S,Z)-2-bromo-1,3-diphenallyl)-2-methylpropane-2-sulfinamide

![Chemical Structure](image)

ν_{max} (neat): 3107, 2988, 1729, 1709, 1517 cm$^{-1}$

To a solution of (S)-N-((1E,2Z)-2-bromo-3-phenylallyliden)-2-methylpropane-2-sulfinamide (500 mg, 1.59 mmol, 1 eq.) in dry toluene (10 mL) was added PhMgBr (3M in Et$_2$O) (793 µL, 2.38 mmol, 1.5 eq.) dropwise at -40 °C. The reaction was stirred for 5 h at -40 °C before being quenched with NH$_4$Cl and washed between water and ethyl acetate. The organic layer was dried with Na$_2$SO$_4$, concentrated in vacuo and purified by flash chromatography (55% EtOAc/PE) to afford the title compound as a clear oil (330.3 mg, 53%).

1H NMR (500 MHz, CDCl$_3$) δ 7.66 (d, 2H, 2 x ArH, $J = 7.3$ Hz), 7.50 (d, 2H, 2 x ArH, $J = 7.3$ Hz), 7.42 – 7.29 (m, 7H, 6 x ArH, 1 x alkene CH), 5.38 (d, 1H, CH, $J = 3.4$ Hz), 3.76 (d, 1H, CH, $J = 3.2$ Hz), 1.32 (s, 9H, 3 xCH$_3$).

13C NMR (126 MHz, CDCl$_3$): δ 139.4, 135.1, 130.9, 129.4, 128.9, 128.6, 128.5, 128.3, 127.6, 127.1, 66.4, 56.3, 22.9.

HRMS (C$_{19}$H$_{23}$NO$_3$) [M+H]$^+$ requires: 394.0657, observed: 394.0655

$[\alpha]_D^{20}$: +8.9 (c=0.1, CH$_2$Cl$_2$)

Compound 22, (S,Z)-N-allyl-N-(2-bromo-1,3-diphenallyl)-4-methylbenzenesulfonamide

![Chemical Structure](image)

To a solution of (S)-N-((S,Z)-2-bromo-1,3-diphenallyl)-2-methylpropane-2-sulfinamide (300 mg, 0.77 mmol, 1 eq.) in MeOH (2 mL) was added AcCl (540 µL, 7.7 mmol, 10 eq.) at 0 °C. The reaction mixture was stirred at room temperature for 1 h before being concentrated in vacuo. The resulting HCl salt was taken up in MeCN (4 mL) and K$_2$CO$_3$ (638, 4.62 mmol, 6 eq.) was added. After stirring for 15 minutes at room temperature, allyl bromide (80 µL, 0.92, 1.2 eq.) was added dropwise. The reaction was stirred 60 °C for 6 h before being quenched with NH$_4$Cl. The mixture was washed between water and EtOAc and the organic layer was dried with Na$_2$SO$_4$, filtered and concentrated in vacuo. To this was added pyridine (3 mL) and tosyl chloride (195 µL, 1.54 mmol, 2 eq.) and the reaction was stirred at room temperature for 16 h. HCl (1M) was added and the mixture was washed with DCM. The organic layer was dried with Na$_2$SO$_4$, filtered, concentrated in vacuo and purified by flash chromatography (10% EtOAc/PE) to afford the title compound as a yellow oil (122.2 mg, 33%, >99% ee).
\[\nu_{\text{max}} \text{ (neat): } 3057, 2920, 1597, 1493, 1342 \text{ cm}^{-1} \]

\[^1{H} \text{ NMR (400 MHz, CDCl}_3\)): \(\delta 7.75 \text{ (d, } 2\text{H, } 2 \times \text{ ArH, } J = 8.3 \text{ Hz}), 7.45 - 7.39 \text{ (m, } 2\text{H, } 2 \times \text{ ArH}), 7.37 - 7.24 \text{ (m, } 10\text{H, } 10 \times \text{ ArH}), 6.80 \text{ (s, } 1\text{H, alkene CH}), 6.09 \text{ (s, } 1\text{H, CH}), 5.53 - 5.41 \text{ (m, } 1\text{H, CH}), 4.90 - 4.79 \text{ (m, } 2\text{H, } 2 \times \text{ CH}), 4.03 - 3.81 \text{ (m, } 2\text{H, CH}) \]

\[^{13}{C} \text{ NMR (101 MHz, CDCl}_3\)): \(\delta 143.57, 137.66, 136.50, 135.09, 134.78, 131.58, 129.66, 129.44, 129.40, 129.17, 128.71, 128.46, 128.41, 128.20, 127.78, 127.31, 117.39, 77.48, 77.16, 76.84, 69.59, 49.07, 21.61 \]

HRMS (C\(_{25}\)H\(_{28}\)N\(_2\)O\(_2\)S) [M+NH\(_4\)]\(^+\) requires: 501.1029, observed: 501.1022

\([\alpha]_D^{20}\): -2.4 (c=0.05, CH\(_2\)Cl\(_2\))

\%ee: >99% (by chiral HPLC)

Compound 23, (S)-3-bromo-2-phenyl-1-tosyl-2,5-dihydro-1H-pyrrole

![Chemical structure](image)

To an oven dried 2-5 mL microwave vial was added Grubbs G2 catalyst (17 mg, 0.02 mmol, 0.1 eq.). The vial was capped, dry benzene (2 mL) was added and the reaction was stirred for 5 minutes at 60 °C. Following this, (S,Z)-N-allyl-N-(2-bromo-1,3-diphenylallyl)-4-methylbenzenesulfonamide (100 mg, 0.2 mmol, 1 eq.) in dry benzene (2 mL) was added dropwise at 60 °C. The reaction was stirred at 60 °C for 16 h then was purified directly by flash chromatography (7% EtOAc/PE) to afford the title compound as an orange oil (56.6 mg, 75%).

\[^1{H} \text{ NMR (400 MHz, CDCl}_3\)): \(\delta 7.44 \text{ (d, } 2\text{H, } 2 \times \text{ ArH, } J = 8.3 \text{ Hz}), 7.32 - 7.27 \text{ (m, } 3\text{H, } 3 \times \text{ ArH}), 7.25 - 7.20 \text{ (m, } 2\text{H, } 2 \times \text{ ArH}), 7.17 \text{ (d, } 2\text{H, } 2 \times \text{ ArH, } J = 8.0 \text{ Hz}), 5.99 \text{ (dd, } 1\text{H, CH, } J = 4.0, 2.0 \text{ Hz}), 5.40 - 5.36 \text{ (m, } 1\text{H, CH}), 4.33 \text{ (dt, } 1\text{H, CH, } J = 14.2, 2.5 \text{ Hz}), 4.21 \text{ (dddd, } 1\text{H, CH, } J = 14.2, 5.8, 2.0 \text{ Hz}), 2.38 \text{ (s, } 3\text{H, CH}) \]

\[^{13}{C} \text{ NMR (101 MHz, CDCl}_3\)): \(\delta 143.6, 138.2, 135.4, 129.7, 128.6, 128.2, 127.4, 125.5, 119.8, 73.0, 55.1, 21.6 \]

HRMS (C\(_{11}\)H\(_{10}\)NO\(_3\)Br) [M+H]\(^+\) requires: 299.9872, observed: 299.9868

N-(2,4-dimethoxybenzyl)propane-2-sulfonamide

![Chemical structure](image)

To an oven dried round bottom flask containing 2,4-dimethoxybenzylamine (417 mg, 2.5 mmol, 1 eq.) in DCM (10 mL) was added Et\(_3\)N (1043 µL, 7.5 mmol, 3 eq.) at room temperature. The reaction mixture was cooled to 0 °C and 2-propanesulfonyl chloride (280 µL, 2.5 mmol, 1 eq.) was added dropwise. The reaction was stirred at room temperature for 3 hours before being quenched with water.
then washed between 1 M HCl and DCM, and then water and DCM. The organic layers were dried with Na$_2$SO$_4$ and concentrated *in vacuo* before being purified by flash chromatography (40% EtOAc) to afford the title compound as a yellow solid (552.8 mg, 81%).

ν_{max} (neat): 3275, 2936, 2836, 1612 cm$^{-1}$

1H NMR (400 MHz, CDCl$_3$): δ 7.15 (d, 1H, ArH, $J = 8.1$ Hz), 6.48 – 6.41 (m, 2H, 2 x ArH), 4.69 (t, 1H, CH, $J = 5.9$ Hz), 4.22 (d, 2H, CH$_2$, $J = 6.2$ Hz), 3.83 (s, 3H, OCH$_3$), 3.81 (s, 3H, OCH$_3$), 2.95 (hept, 1H, CH, $J = 6.8$ Hz), 1.27 (d, 6H, 2 x CH$_3$, $J = 6.8$ Hz).

13C NMR (101 MHz, CDCl$_3$): δ 161.1, 158.7, 130.6, 118.2, 104.2, 98.8, 55.6, 55.5, 53.6, 43.8, 16.6.

HRMS (C$_{12}$H$_{19}$NO$_4$SNa) [M+Na]$^+$ requires: 296.0927, observed: 296.0928

Compound 16, N-(2-bromoallyl)-N-(2,4-dimethoxybenzyl)propane-2-sulfonamide

To a round bottom flask containing N-(2,4-dimethoxybenzyl)propane-2-sulfonamide (532 mg, 1.95 mmol, 1 eq.) in MeCN (10 mL) was added Cs$_2$CO$_3$ (950 mg, 2.93, 1.5 eq.) at 0 °C. After stirring for 5 minutes, 2,3-dibromopropene (80%) (286 µL, 2.34 mmol, 1.2 eq.) was added at 0 °C. The reaction mixture was then stirred at 80 °C for 2 hours before being quenched with water and washed between water and EtOAc. The organic layers were then dried with Na$_2$SO$_4$ and concentrated *in vacuo* before being purified by flash chromatography (30% EtOAc) to afford the title compound as a yellow oil (588.4 mg, 77%).

ν_{max} (neat): 2973, 2936, 1612, 1588 cm$^{-1}$

1H NMR (500 MHz, CDCl$_3$): δ 7.21 (d, 1H, ArH, $J = 8.2$ Hz), 6.46 – 6.41 (m, 2H, 2 x ArH), 5.84 (d, 1H, CH, $J = 1.3$ Hz), 5.60 (br. s, 1H, CH), 4.39 (s, 2H, 2 x CH), 4.02 (s, 2H, 2 x CH), 3.78 (s, 6H, 2 x CH$_3$), 3.05 (hept, 1H, CH, $J = 6.8$ Hz), 1.26 (d, 6H, 2 x CH$_3$, $J = 6.9$ Hz).

13C NMR (101 MHz, CDCl$_3$): δ 161.0, 158.7, 131.9, 128.8, 118.6, 116.1, 104.3, 98.4, 55.4, 55.2, 54.6, 46.0, 16.5.

HRMS (C$_{15}$H$_{22}$BrNO$_4$SNa) [M+Na]$^+$ requires: 414.0345, observed: 414.0344
1H NMR of Compound 11a

13C NMR of Compound 11a
1H NMR of Compound 11b

13C NMR of Compound 11b
1H NMR of Compound 11c

13C NMR of Compound 11c
1H NMR of Compound 11d

13C NMR of Compound 11d
1H NMR of Compound 11e

13C NMR of Compound 11e
1H NMR of Compound 11f

19F of Compound 11e
13C NMR of Compound 11f

1H NMR of Compound 11g
13C NMR of Compound 11g

1H NMR of Compound 11h
13C NMR of Compound 11h

1H NMR of Compound 11i
13C NMR of Compound 11i

1H NMR of Compound 11j
13C NMR of Compound 11j

1H NMR of Compound 11k
13C NMR of Compound 11k

1H NMR of Compound 11l
13C NMR of Compound 11

1H NMR of Compound 11m
13C NMR of Compound 11m

19F NMR of Compound 11m
1H NMR of Compound 11n

13C NMR of Compound 11n
1H NMR of Compound 11o

1H NMR of Compound 11o
19F NMR of Compound 11o

1H NMR of Compound 11p

13C NMR of Compound 11p
1H NMR of Compound 11q
13C NMR of Compound 11q

1H NMR of Compound 11r
13C NMR of Compound 11s

1H NMR of Compound 12a

13C NMR of Compound 12a
1H NMR of Compound 12b
13C NMR of Compound 12b

1H NMR of Compound 12c
13C NMR of Compound 12c

1H NMR of Compound 12d
13C NMR of Compound 12d

1H NMR of Compound 12e
13C NMR of Compound 12e

1H NMR of Compound 12f
13C NMR of Compound 12f

1H NMR of Compound 12g
13C NMR of Compound 12g

1H NMR of Compound 12h
13C NMR of Compound 12i

1H NMR of Compound 12j
13C NMR of Compound 12j

1H NMR of Compound 12k
\[^13 \text{C NMR of Compound 12k} \]

\[^1 \text{H NMR of Compound 12l} \]
13C NMR of Compound 12l

1H NMR of Compound 12m
13C NMR of Compound 12m

1H NMR of Compound 12n
\(^{13}\)C NMR of Compound 12n

\(^1\)H NMR of Compound 12o
13C NMR of Compound 12o

19F NMR of Compound 12o
\(^1\)H NMR of Compound 12p

\(^{13}\)C NMR of Compound 12p
\(^1\text{H NMR of Compound 12q}\)

\[^{13}\text{C NMR of Compound 12q}\]
1H NMR of Compound 12r

13C NMR of Compound 12r
1H NMR of Compound 12s

13C NMR of Compound 12s
1H NMR of Compound 13

13C NMR of Compound 13
1H NMR of Compound 14

13C NMR of Compound 14
\[\text{1H NMR of Compound 3} \]

\[\text{13C NMR of Compound 3} \]
^{1}H NMR of Compound 17

^{13}C NMR of Compound 17
1H NMR of Compound 18

1H NMR of Compound 18
1H NMR of Compound 19

13C NMR of Compound 19
1H NMR of Compound 20

13C NMR of Compound 20
1H NMR of Compound 21

13C NMR of Compound 21
1H NMR of Compound 22

13C NMR of Compound 22
\(^1\text{H NMR of Compound 23}\)

\(^{13}\text{C NMR of Compound 23}\)
HPLC Data

Racemic Compound 12s

Due to a lower solubility of minor diastereomer in 2-propanol, \(dr\) appears greater by HPLC.

Compound 12s

Due to a lower solubility of minor diastereomer in 2-propanol, \(dr\) appears greater by HPLC.
Physicochemical Analysis of Products

fsp³ data, PBF values, log P and molecular weight were generated using the LLAMA platform at the University of Leeds, UK.¹² Data obtained was analysed using Microsoft Excel to generate the following box-plots.

![Box-plot of fsp³ vs PBF](image1)

![Box-plot of logP vs MW](image2)
References

