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1. General remarks

All starting materials and solvents were bought from commercial sources and used
without further purification unless stated otherwise. All NMR data were measured on
Bruker AV11400 or Bruker AVIIHD400 FT-NMR spectrometers and references to the
indicated solvent at 298 K. Multiplicity abbreviations used for the chemical shifts are:
s =singlet, d = doublet, t = triplet, g = quartet, m = multiplet, br = broad peak.

For high-resolution mass spectrometry (HRMS), all receptor samples were analyzed
on a MaXis (Bruker Daltonics, Bremen, Germany) equipped with a Time of Flight
(TOF) analyzer. The sample was introduced into the mass spectrometer via a Diones
Ultimate 3000 autosampler and uHPLC pump. Mobile phase: gradient 20%
acetonitrile (0.2% formic acid) to 100% acetonitrile (0.2% formic acid) in five
minutes at a flow rate of 0.6 mL/min. High resolution mass spectra were recorded
using positive/negative ion electrospray ionization. Melting point (Mp) analyses were
conducted using a Barnstead Electrothermal 1A9100 melting point apparatus.
Fluorescent spectra were recorded on a Cary Eclipse fluorescence spectrophotometer
at 298 K.

Cytotoxicity measurements were performed by Shanghai R&S Biotechnology Co.,

Ltd (Shanghai, China).

2. Overview of compounds 1-4
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3. Synthesis

Synthesis of 4-bromo-N-butyl-1,8-naphthalimide

The synthesis of 4-bromo-N-butyl-1,8-naphthalimide was conducted according to the
previously reported procedure.

'H NMR (400 MHz, DMSO-dg) &: 8.58-8.54 (m, 2H), 8.34 (d, J = 8.0 Hz, 1H), 8.22
(d, J = 8.0 Hz, 1H), 8.00 (t, J = 8.0 Hz, 1H), 4.04 (t, J = 8.0 Hz, 2H), 1.64-1.60 (m,
2H), 1.39-1.33 (m, 2H), 0.93 (t, J = 8.0 Hz, 3H).

Synthesis of N-butyl-4[(4’-aminobutyl)amino]-1,8-naphthalimide

'

N

O 2y S
HN

The synthesis of N-butyl-4[(4’-aminobutyl)amino]-1,8-naphthalimide was carried out
based on the previously reported method.?
'H NMR (400 MHz, DMSO-ds) &: 8.70 (d, J = 8.0 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H),
8.25 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 6.76 (d, J = 8.0 Hz, 1H), 4.01 (t, J =
8.0 Hz, 1H), 3.39-3.35 (m, 4H), 1.75-1.72 (m, 2H), 1.60-1.50 (m, 4H), 1.36-1.30 (m,
2H), 0.91 (t, J = 6.0 Hz, 3H).
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Synthesis of squarate monoesters
The synthesis of appropriate squarate monoesters was performed according to the

previous literature reported by Taylor et al >
3-((3,5-bis(trifluoromethyl)phenyl)amino)-4-ethoxycyclobut-3-ene-1,2-dione
0] O

e

A,
CFs

'H NMR (400 MHz, DMSO-dg) &: 11.20 (s, 1H), 8.04 (s, 2H), 7.78 (s, 1H), 4.80 (q, J
= 8.0 Hz, 2H), 1.42 (t, J = 8.0 Hz, 3H).

3-(4-trifluorophenylamino)-4-ethoxycyclobut-3-ene-1,2-dione

0} O

/—Oj\;/(NHOCFg,

'H NMR (400 MHz, DMSO-dg) &: 11.01 (s, 1H), 7.72 (d, J = 8.0 Hz, 2H), 7.58 (d, J =
8.0 Hz, 2H), 4.80 (g, J = 8.0 Hz, 2H), 1.4 (t, J = 8.0 Hz, 3H).

3-(4-nitrophenylamino)-4-ethoxycyclobut-3-ene-1,2-dione

o_ 0O
/—Oj;/(NHONOZ

'H NMR (400 MHz, DMSO-dg) &: 11.23 (s, 1H), 8.26 (d, J = 8.0 Hz, 2H), 7.61 (d, J =
8.0 Hz, 2H), 4.81 (g, J = 8.0 Hz, 2H), 1.46 (t, J = 8.0 Hz, 3H).

3-phenylamino-4-ethoxycyclobut-3-ene-1,2-dione

O O
e
'H NMR (400 MHz, DMSO-dg) 8: 10.75 (s, 1H), 7.37-7.34 (m, 4H), 7.13-7.10 (m,
1H), 4.76 (q, J = 8.0 Hz, 2H), 1.43 (t, J = 8.0 Hz, 3H).
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Synthesis of anion transporters 1-4

The appropriate squarate monoester (0.5 mmol) and
N-butyl-4[(4’-aminobutyl)amino]-1,8-naphthalimide (203 mg, 0.6 mmol) were
dissolved in 50 mL ethanol in the presence of triethylamine (0.3 mL, 2.0 mmol). The
above solution was stirred at room temperature for 16~24 h. After the removal of
excessive solvent under reduced pressure, the obtained residue was subjected to
column chromatography on silica gel using ethyl acetate-methanol solvent mixture as

the eluent, affording transporters 1—4 in 35-62% vyield.

Compound 1

§ O o] o]
5 N j;/( CFs

S

HN CF3

Yield: 35%; *H NMR (400 MHz, DMSO-dg) &: 10.09 (s, 1H), 8.66 (d, J = 8.0 Hz, 1H),
8.39 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.96 (s, 2H), 7.75 (br, 2H),
7.66—7.62 (m, 2H), 6.78 (d, J = 8.0 Hz, 1H), 3.97 (t, J = 8.0 Hz, 2H), 3.68 (br, 2H),
3.44-3.40 (br, 2H), 1.76 (br, 4H), 1.59-1.52 (m, 2H), 1.34-1.29 (m, 2H), 0.90 (t, J =
8.0 Hz, 3H); *C NMR (100 MHz, DMSO-dg) &: 169.7, 163.7, 162.9, 150.5, 141.0,
134.2, 131.5, 131.2, 130.0 (g, J = 124.0 Hz), 128.5, 127.2, 124.5, 124.2, 122.1, 121.9,
121.8, 120.1, 117.9, 114.6, 107.6, 103.8, 43.7, 42.3, 40.4, 29.8, 28.1, 24.7, 19.8, 13.7;
HRMS (ES) for CayHo9FsN4O4 [M + H]™: m/z = 647.2088 (calcd), 647.2089 (found);

CaoH2sFsN4NaO4 [M + Na]™: m/z = 669.1907 (calcd), 669.1906 (found). Mp: 247-250
(0]
C.

S5



Compound 2

§ O 0 o}

55 Moo

Yield: 42%; *H NMR (400 MHz, DMSO-dg) &: 9.86 (s, 1H), 8.69 (d, J = 8.0 Hz, 1H),
8.42 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.79-7.75 (m, 2H), 7.69—7.64 (m,
3H), 7.55 (d, J = 8.0 Hz, 2H), 6.80 (d, J = 8.0 Hz, 1H), 3.99 (t, J = 8.0 Hz, 2H),
3.72-3.68 (m, 2H), 3.47-3.42 (m, 2H), 1.77 (br, 4H), 1.61-1.54 (m, 2H), 1.36-1.30
(m, 2H), 0.92 (t, J = 8.0 Hz, 3H); **C NMR (100 MHz, DMSO-ds) &: 185.2, 180.5,
170.1, 164.2, 163.4, 151.0, 143.0, 134.6, 131.1, 129.9, 129.0, 127.1, 127.0, 126.3,
124.7,123.6, 122.4, 120.6, 118.3, 108.1, 104.3, 44.0, 42.8, 40.7, 30.3, 28.6, 25.2, 20.3,
14.2; HRMS (ES) for CaHaoFsN4Os [M + H]*: m/z = 579.2214 (calcd), 579.2205
(found); Ca1HoF3N4NaO,4 [M + Na]™: m/z = 601.2033 (calcd), 601.2032 (found). Mp:
226-228°C.

Compound 3

§

0 0 0
N
o
O O
S Walk
HN

Yield: 40%; ‘*H NMR (400 MHz, DMSO-ds) &: 10.32 (s, 1H), 8.68 (d, J = 8.0 Hz, 1H),
8.40 (d, J = 8.0 Hz, 1H), 8.24 (d, J = 8.0 Hz, 1H), 8.17 (d, J = 8.0 Hz, 2H), 8.05 (t, J =
4.0 Hz, 1H), 7.77 (t, 3 = 4.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.54 (d, J = 8.0 Hz, 2H),
6.79 (d, J = 8.0 Hz, 1H), 3.97 (t, J = 8.0 Hz, 2H), 3.71-3.66 (m, 2H), 3.44-3.41 (m,
2H), 1.77 (br, 4H), 1.58-1.54 (m, 2H), 1.34-1.29 (m, 2H), 0.90 (t, J = 8.0 Hz, 3H);
B3C NMR (100 MHz, DMSO-dg) 6: 185.0, 179.5, 170.3, 163.7, 162.9, 162.4, 150.5,
145.7, 141.1, 134.2, 130.6, 129.4, 128.6, 125.5, 124.2, 121.8, 120.1, 117.3, 107.6,
103.9, 43.6, 42.3, 29.8, 27.9, 24.7, 19.8, 13.7; HRMS (ES) for C3oH3oNsO0g [M + H]":
m/z = 556.2191 (calcd), 556.2186 (found); C3gH2oNsNaOg [M + Na]*™: m/z = 578.2010
(calcd), 578.1999 (found). Mp: 223-225 °C.
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Compound 4

§ O 0 0

(0] g j\;/(
N J_Fﬁ w—)

Yield: 62%; 'H NMR (400 MHz, DMSO-ds) &: 9.62 (s, 1H), 8.69 (d, J = 8.0 Hz, 1H),
8.42 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 4.0 Hz, 1H), 7.68-7.65
(m, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 7.01 (t, J = 4.0 Hz, 1H),
6.80 (d, J = 8.0 Hz, 1H), 4.00 (t, J = 8.0 Hz, 2H), 3.71-3.66 (m, 2H), 3.46-3.41 (m,
2H), 1.82—-1.69 (m, 4H), 1.61-1.54 (m, 2H), 1.35-1.30 (m, 2H), 0.91 (t, J = 8.0 Hz,
3H); 3¢ NMR (100 MHz, DMSO-dg) 6: 180.5, 169.6, 164.2, 164.0, 163.4, 159.4,
151.1, 139.5, 134.7, 131.1, 129.9, 129.8, 129.0, 124.7, 123.0, 122.4, 120.6, 118.4,
108.1, 104.3, 43.9, 42.8, 40.9, 30.3, 28.7, 25.3, 20.3, 14.2; HRMS (ES) for
C3oH31N4O4 [M + H]™: m/z = 511.2340 (calcd), 511.2348 (found); CsoH3N4NaO, [M
+ Na]™: m/z = 533.2159 (calcd), 533.2171 (found). Mp: 201-203 °C.
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4. Characterization

4.1'*H and *C NMR Spectra
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Figure S1. '"H NMR spectrum of compound 1 in DMSO-d; at 298 K. Residual ethyl acetate was

present.
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Figure S2. *C NMR spectrum of compound 1 in DMSO-ds at 298 K. Residual ethyl acetate was

present.
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Figure S3. "H NMR spectrum of compound 2 in DMSO-d; at 298 K.
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Figure S4. **C NMR spectrum of compound 2 in DMSO-dg at 298 K.
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4.2 High resolution mass spectrometry (HRMS)

o o} 0
N CF3
(@)
SeWad
HN CF;
Chemical Formula: C35HygFgN4O4
Exact Mass: 646.2015
Molecular Weight: 646.5904
Intens. XB -Di CF3 ph_GE3_01_30950.d: EIC 647.2056 +All MS
x104
1.04 |
0.8
061 |
0.4
0.24 |
0.0 - - - - : - , . . .
0.5 1.0 1.5 20 25 3.0 35 4.0 4.5 Time [min]
Intens. X i X a
:1. 647 2089 +MS, 2.7-3.1min #(160-184), -Peak Bkgrnd!
6000
1
5000
4000
3000
2000 669.1906
1000 i
550 600 650 ) " 700 750 800 miz

Figure S9. UPLC chromatogram and HRMS-ESI spectrum of compound 1.
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Chemical Formula: C31HygF3N404
Exact Mass: 578.2141
Molecular Weight: 578.5922
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Figure S10. UPLC chromatogram and HRMS-ESI spectrum of compound 2.
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Chemical Formula: C3gH29N50g
Exact Mass: 555.2118
Molecular Weight: 555.5910

Intens.

6000+

2000+

XB -pNO2ph_GE1_01_30948.d: EIC 556.2166 +All MS|

T T T T

20 25 3.0 35 40 4.5 Time [min]

Intens.

4000+

3000+

2000+

1000

556.2186 +MS, 2.3-2.8min #(135-165), -Peak Bkgrnd

578.1999

m iy ),

01—
450

475

500

525

550 575 600 625 650 675 miz

Figure S11. UPLC chromatogram and HRMS-ESI spectrum of compound 3.
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Chemical Formula: C3gH39N404
Exact Mass: 510.2267
Molecular Weight: 510.5940
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Figure S12. UPLC chromatogram and HRMS-ESI spectrum of compound 4.
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4.3 Single crystal X-ray diffraction

Slow evaporation of DMSO solution of compound 4 gave yellow crystals suitable for
single-crystal X-ray diffraction. Data was collected on a Rigaku AFC12 goniometer
equipped with an enhanced sensitivity (HG) Saturn 724+ detector mounted at the
window of an FR-E+ SuperBright molybdenum rotating anode with HF Varimax
optics (100 um focus), using the CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013)
software. Data reduction and cell refinement were conducted using CrysAlisPro
(Version 1.171.37.31, Agilent Technologies). The structure was solved using
SHELXT and refined by full-matrix least-squares refinements using SHELXL
program. Graphics was generated using Mercury 3.9. The CIF file has been deposited

in the Cambridge Crystallographic Database Centre (CCDC 1530149).
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5. NMR binding studies

5.1 Overview and procedures

Proton NMR titrations were carried out on a Bruker Avance AVII400 FT-NMR
spectrometer, working at a frequency of 400 MHz with the probe temperature at 298
K. In all cases, proton NMR titrations were conducted while keeping the receptor
concentration (3.0 mM) constant through dissolving the guest anions with the same
receptor solution to prepare the guest solution. The guest solution was gradually
added to the receptor solution using an appropriate pipette. All the tested anions were
added as their tetra-n-butylammonium (TBA) salts, which were dried under high
vaccum overnight before use. Stock solution of the receptor was prepared in
DMSO-dg with the concentration of 3.0 mM. The same receptor stock solution was
then utilized to prepare the titrant solution containing 45-120 mM of the different
anion salts, thus keeping the concentration of the receptor constant over the entire
titration process. The titrant solution was gradually added into the NMR tube
containing 0.5 mL of the receptor solution, and the resultant *H NMR spectrum was
recorded after each addition. The above operations make sure that the concentration of
the receptor remains constant, whilst the concentration of the added anions varies.
Finally, a global fitting analysis assuming a 1:1 binding model was performed to fit

the experimental data and give the corresponding binding constants (Kj).
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5.2 Interaction with TBACI
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Figure S13. Stack plot of *H NMR titration of compound 1 with TBACI in DMSO-d; at 298 K.
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Figure S15. Stack plot of "H NMR titration of compound 2 with TBACI in DMSO-d; at 298 K.
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Figure S16. Fitting binding isotherms of compound 2 (3.0 mM) with TBACI in DMSO-d; at 298
K, showing the changes in chemical shifts for the squaramide NH? and NH"®, fitted to the 1:1
binding model (K,= 236 M ™).
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Figure S17. Stack plot of "H NMR titration of compound 3 with TBACI in DMSO-d; at 298 K.
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Figure S18. Fitting binding isotherms of compound 3 (3.0 mM) with TBACI in DMSO-d; at 298
K, showing the changes in chemical shifts for the squaramide NH? and NH"®, fitted to the 1:1
binding model (K= 291 M™).
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Figure S19. Stack plot of "H NMR titration of compound 4 with TBACI in DMSO-d; at 298 K.
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Figure S20. Fitting binding isotherms of compound 4 (3.0 mM) with TBACI in DMSO-ds at 298
K, showing the changes in chemical shifts for the squaramide NH? and NH"®, fitted to the 1:1
binding model (K,= 163 M™).
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5.3 Interaction with TBANO3;
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Figure S21. Stack plot of *H NMR titration of compound 1 with TBANO; in DMSO-ds at 298 K.
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Figure S22. Stack plot of 'H NMR titration of compound 2 with TBANO; in DMSO-d; at 298 K.
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Figure S23. Stack plot of 'H NMR titration of compound 3 with TBANO; in DMSO-d; at 298 K.
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Figure S24. Stack plot of 'H NMR titration of compound 4 with TBANO; in DMSO-d; at 298 K.
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5.4 Interaction with TBAH>PO,
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Figure S25. Stack plot of *H NMR titration of compound 1 with TBAH,PO, in DMSO-d; at
298 K.
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Figure S26. Titration profile of the proton H® within compound 1 upon addition of TBAH,PO, in
DMSO-dg at 298 K.
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Figure S27. Stack plot of 'H NMR titration of compound 2 with TBAH,PO,4 in DMSO-dg at
298 K.
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Figure S28. Titration profile of the proton H° within compound 2 upon addition of TBAH,PO, in
DMSO-dg at 298 K. The saturation point appeared at [H,PO,4 ]/[2] = 1.00.
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Figure S29. Stack plot of 'H NMR titration of compound 3 with TBAH,PO,4 in DMSO-dg at

298 K.
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Figure S30. Titration profile of the proton H® within compound 3 upon addition of TBAH,PO, in
DMSO-dg at 298 K. The turning point appeared at [H,PO, ]/[3] = 1.10.
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Figure S31. Stack plot of 'H NMR titration of compound 4 with TBAH,PO,4 in DMSO-dg at

298 K.
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Figure S32. Fitting binding isotherms of compound 4 (3.0 mM) with TBAH,PO,in DMSO-ds
at 298 K, showing the changes in chemical shifts for the squaramide NH? and NH" as well as
the naphthalimide NHC fitted to the 1:1 binding model (K, = 4357 M™).
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5.5 Interaction with TBAOH
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Figure S33. Stack plot of "H NMR titration of compound 1 with a TBAOH solution (40 wt% in

H,0) in DMSO-dg at 298 K. The titrated solution turned red from greenish-yellow after addition
of 2.0 equiv of TBAOH.
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Figure S34. Stack plot of *H NMR titration of compound 2 with a TBAOH solution (40 wt% in
H,0) in DMSO-dg at 298 K. The titrated solution turned red from greenish-yellow after addition
of 2.0 equiv of TBAOH.
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Figure S35. Stack plot of "H NMR titration of compound 3 with a TBAOH solution (40 wt% in
H,0) in DMSO-d; at 298 K. The titrated solution turned deep blue from red after addition of 4.0
equiv of TBAOH.
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6. Fluorescence titration studies with TBACI
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Figure S36. Fluorescent changes (Ex = 450 nm) of compound 1 (5.0 uM) upon addition of
increasing amounts of CI™ (0~35.2 equiv) in DMSO.
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Figure S37. Fluorescent changes (Ex = 450 nm) of compound 2 (5.0 uM) in DMSO upon addition
of increasing amounts of CI™ (0~20.0 equiv).
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Figure S38. Fluorescent changes (Ex = 450 nm) of compound 3 (5.0 uM) in DMSO upon addition
of increasing amounts of CI™ (0~43.0 equiv).
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Figure S39. Fluorescent changes (Ex = 450 nm) of compound 4 (5.0 uM) in DMSO upon addition
of increasing amounts of CI™ (0~48.0 equiv).
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7. Membrane transport studies

7.1 Preparation of vesicles

A lipid film of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) was
prepared from a chloroform solution under reduced pressure and then dried in vacuo
for at least 8 hours. The lipid film was hydrated through vortexing a sodium chloride
buffered solution. Next, nine freeze-thaw cycles were conducted, where the
suspension was alternatingly allowed to freeze in a liquid nitrogen bath, followed by
thawing in a warm water bath. The lipid suspension was then left to stand for half an
hour. The obtained vesicles were subsequently extruded 25 times through a 200 nm
polycarbonate membrane (Whatman Nucleopore) utilizing a LiposoFast-Basic
extruder set (Avestin, Inc). The resulted large unilamellar POPC vesicles were
dialyzed against the external buffered solution overnight in order to remove any
unencapsulated internal salts. Finally, the lipid solution was diluted to 1 mM using the

external buffered solution.

7.2 CI"/NO3™ transport assay and Hill plots

The unilamellar POPC vesicles containing 489 mM NaCl (buffered to pH 7.2 with 5
mM sodium phosphate) were suspended in the external medium containing 489 mM
NaNO; (buffered to pH 7.2 with 5 mM sodium phosphate). A DMSO solution of
tested compound was added at O s to trigger the transport process and the resultant
chloride efflux was monitored using a chloride ion selective electrode. At 300 s, the
detergent of Triton X-100 was added to lyse the vesicles and the final reading was set

as 100% chloride efflux to normalize the collected data.
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Figure S40. Chloride efflux as a function of time, promoted by compound 1 from unilamellar
POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate. The
vesicles were dispersed in 489 mM NaNO; buffered to pH 7.2 with 5 mM sodium phosphate. The
transporter was added as a DMSO solution at 0 s. Chloride efflux was measured using a chloride
selective electrode. The detergent was added to lyse the vesicles at the end of the experiment to

calibrate 100% chloride efflux.
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Figure S41. Hill analysis for CI"”/NO3™ antiport facilitated by compound 1. Data fitted to the Hill
equation using Origin 6.0 Professional.
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Figure S42. Chloride efflux as a function of time, promoted by compound 2 from unilamellar
POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate. The
vesicles were dispersed in 489 mM NaNO; buffered to pH 7.2 with 5 mM sodium phosphate. The
transporter was added as a DMSO solution at 0 s. Chloride efflux was measured using a chloride
selective electrode. The detergent was added to lyse the vesicles at the end of the experiment to
calibrate 100% chloride efflux.

80
70 ]
—~ _— —
S _—
~ 60 —
o g
o
N
50 + 3
= - Data: Datal_B
Model: Hill
é 20 Equation: y=100*x"n/(x"n+K"n)
=
D Chir2 = 7.47516
[} R"2 = 0.98807
S 304
— n 0.79236 +0.05493
o / K 0.62583 +0.04434
5 i
O 20+ Jut
/
/
L}
10 H
T T T T T T T T T
0.0 0.5 1.0 15 2.0

Concentration of transporter (mol%)

Figure S43. Hill analysis for CI"”/NO3 " antiport facilitated by compound 2. Data fitted to the Hill
equation using Origin 6.0 Professional.
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Figure S44. Chloride efflux as a function of time, promoted by compound 3 from unilamellar
POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate. The
vesicles were dispersed in 489 mM NaNO; buffered to pH 7.2 with 5 mM sodium phosphate. The
transporter was added as a DMSO solution at 0 s. Chloride efflux was measured using a chloride
selective electrode. The detergent was added to lyse the vesicles at the end of the experiment to
calibrate 100% chloride efflux.
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Figure S45. Hill analysis for CI"”/NO3 ™ antiport facilitated by compound 3. Data fitted to the Hill
equation using Origin 6.0 Professional.
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Figure S46. Chloride efflux as a function of time, promoted by compound 4 from unilamellar
POPC vesicles loaded with 489 mM NaCl buffered to pH 7.2 with 5 mM sodium phosphate. The
vesicles were dispersed in 489 mM NaNO; buffered to pH 7.2 with 5 mM sodium phosphate. The
transporter was added as a DMSO solution at 0 s. Chloride efflux was measured using a chloride
selective electrode. The detergent was added to lyse the vesicles at the end of the experiment to
calibrate 100% chloride efflux.

70 ~
1 1

60 "

50 H

40 + Data: Datal_B
Model: Hill

Equation: y=100*x"n/(x"n+K"n)

Chloride efflux at 270 s (%)

30 -
chir2 = 1.82795
R2 = 099712
20 n 0.94643 +0.03458
K 2.06723 +0.07107
10 S
0 T T T T T T T T T T 1

00 05 10 15 20 25 30 35 40 45
Concentration of transporter (mol%)

Figure S47. Hill analysis for CI"”/NO3" antiport facilitated by compound 4. Data fitted to the Hill
equation using Origin 6.0 Professional.
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7.3 Determination of initial rate of chloride release
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Figure S48. The value (ki) was determined by fitting the plot of relative chloride release versus
time for 2 mol% compound 1 to lipid according to an asymptotic equation y = a—bc*. The initial
rate of chloride release (ki in % s) was provided by —bIn(c).
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Figure S49. The value (ki) was determined by fitting the plot of relative chloride release versus
time for 2 mol% compound 2 to lipid according to an asymptotic equation y = a—bc*. The initial
rate of chloride release (ki in % s ) was provided by —bIn(c).
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Figure S50. The value (ki) was determined by fitting the plot of relative chloride release versus
time for 2 mol% compound 3 to lipid according to an asymptotic equation y = a—bc*. The initial

rate of chloride release (ki in % s ) was provided by —bIn(c).
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Figure S51. The value (ki) was determined by fitting the plot of relative chloride release versus
time for 2 mol% compound 4 to lipid according to an asymptotic equation y = a—bc”. The initial

rate of chloride release (ki in % s ) was provided by —blIn(c).
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7.4 CI'/H" or OH™ transport assay and Hill plots

The unilamellar POPC vesicles containing 100 mM NMDG-CI and 1 mM HPTS
(buffered to pH 7.0 with 10 mM HEPES) were suspended in the external solution
containing 100 mM NMDG-CI (buffered to pH 7.0 with 10 mM HEPES). A base
pulse of 5 mM NMDG was added to the above solution to create the pH gradient
(inside: pH 7.0; outside: pH 8.0), and then a DMSO solution of tested compound was
added immediately at O s to trigger the transport process and the ionophore-induced
dissipation of the pH gradient was monitored by HPTS fluorescence. At 200 s, the
detergent of Triton X-100 was added to lyse the vesicles and the final reading was set
as 100% chloride efflux to normalize the collected data. It should be noted that the
background change in HPTS fluorescence is due to a simple diffusion of neutral form

of NMDG, which slowly dissipates the pH gradient.
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Figure S52. The H*/CI symport or OH/CI antiport facilitated by compound 1 from unilamellar
POPC vesicles containing 1 mM HPTS and 100 mM NMDG-CI buffered to pH 7.0 with 10 mM
HEPES buffer and suspended in an external solution of 100 mM NMDG-CI buffered to pH 7.0
with 10 mM HEPES buffer. At the endpoint of each experiment (200 s), the detergent was added
to lyse the vesicles and collapse the pH gradient for calibration of HPTS fluorescence. Pure
DMSO was utilized as a control experiment.
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Figure S53. Hill plot analysis of H*/CI” symport or CI/OH™ antiport facilitated by compound 1.
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Figure S54. The H*/CI” symport or OH/CI antiport facilitated by compound 2 from unilamellar
POPC vesicles containing 1 mM HPTS and 100 mM NMDG-CI buffered to pH 7.0 with 10 mM
HEPES buffer and suspended in an external solution of 100 mM NMDG-CI buffered to pH 7.0
with 10 mM HEPES buffer. At the endpoint of each experiment (200 s), the detergent was added
to lyse the vesicles and collapse the pH gradient for calibration of HPTS fluorescence. Pure
DMSO was utilized as a control experiment.
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Figure S55. Hill plot analysis of H*/CI~ symport or CI"/OH™ antiport facilitated by compound 2.
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Figure S56. The H*/CI symport or OH/CI antiport facilitated by compound 3 from unilamellar
POPC vesicles containing 1 mM HPTS and 100 mM NMDG-CI buffered to pH 7.0 with HEPES
buffer and suspended in an external solution of 100 mM NMDG-CI buffered to pH 7.0 with 10
mM HEPES buffer. At the endpoint of each experiment (200 s), the detergent was added to lyse
the vesicles and collapse the pH gradient for calibration of HPTS fluorescence. Pure DMSO was
utilized as a control experiment.
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Figure S57. Hill plot analysis of H*/CI~ symport or CI"/OH™ antiport facilitated by compound 3.
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Figure S58. The H*/CI symport or OH/CI antiport facilitated by compound 4 from unilamellar
POPC vesicles containing 1 mM HPTS and 100 mM NMDG-CI buffered to pH 7.0 with 10 mM
HEPES buffer and suspended in an external solution of 100 mM NMDG-CI buffered to pH 7.0
with 10 mM HEPES buffer. At the endpoint of each experiment (200 s), the detergent was added
to lyse the vesicles and collapse the pH gradient for calibration of HPTS fluorescence. Pure
DMSO was utilized as a control experiment.
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Figure S59. Hill plot analysis of H*/CI~ symport or CI"/OH™ antiport facilitated by compound 4.
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7.5 The effect of proton channel on the CI/H" or OH™ transport activity
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Figure S60. The H'/CI” symport or OH/CI antiport facilitated by compound 1 (0.05 mol%
transporter relative to lipid) in the absence/presence of proton channel gramicidin D (0.1 mol%).
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Figure S61. The H'/CI” symport or OH/CI™ antiport facilitated by compound 2 (0.2 mol%
transporter relative to lipid) in the absence/presence of proton channel gramicidin D (0.1 mol%).
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Figure S62. The H'/CI” symport or OH/CI™ antiport facilitated by compound 3 (0.01 mol%
transporter relative to lipid) in the absence/presence of proton channel gramicidin D (0.1 mol%).
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Figure S63. The H'/CI” symport or OH/CI™ antiport facilitated by compound 4 (0.5 mol%
transporter relative to lipid) in the absence/presence of proton channel gramicidin D (0.1 mol%).
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8. Fluorescent imaging of compounds 1-4 in A549 cells

A549 lung cancer cells were seeded in 6 well plates (1.0 x 10° cells per mL) and
allowed to continuously grow for 24 h before treatment with compounds 1-4 for the
24 hours. The cells were washed two times with PBS buffer prior to incubation with
compounds 1-4 (in 0.5% DMSO/DMEM) for the stated time. After the treatment, the
cells were washed twice with PBS buffer before being imaged using a Nikon
ECLIPSE Ti fluorescence microscope using the following parameters: Aex= 450 nm,

Aem =525 nm.

Figure S64. Fluorescent micrographs of A549 cells after incubation with compounds 2 and 4 (1.0
uM) for 24 hours. The bright-field and fluorescent images are displayed in the upper and lower
row, respectively. Scale bar: 25 um.
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Figure S65. Fluorescent micrographs of A549 cells after incubation with compounds 2, 3, and 4
(10 uM) for 24 hours. The bright-field and fluorescent images are displayed in the upper and
lower row, respectively. Scale bar: 25 um. The fluorescence observed for 3 is due to precipitation.

9. Cytotoxicity measurement of compound 1 in A549 cells

A549 lung cancer cells (100 pL suspensions) were seeded in 96 well plates (5000
cells per well), grown at 37 <C in a humidified atmosphere of 5% CO,. The cells were
treated with aliquots of 10 mM DMSO solutions of compound 1 or DMSO (1 pL) for
24 h. Afterwards, 10 puL of CCK-8 was added to each well and the cell suspensions

were incubated for 90 min before the optical density (O.D.) at 450 nm was measured.
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Figure S66. CCK-8 assay for A549 cells after 24 h treatment of compound 1 at different
concentrations. The data are shown as the mean value =SD from three repeats.
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Figure S67. Micrographs of A549 cells before (left) and after (right) the addition of compound 1
(100 pM).
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