Supporting Information

Gas-Stimuli-Responsive Molecularly Imprinted Polymer Particles with Switchable Affinity for Target Protein

Yukiya Kitayama*, Manabu Isomura

Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

Contents

1. Experimental Part ...2
2. Gas-responsive property of VA-061 ..6
3. Gas-responsive property of VA-044 ..8
4. Particle size distribution of P(S-DVB) seed particles ...9
5. CD spectra of HSA in gas-treated water ...9
6. Particle size distribution of HEMA-VA061_MIP particles prepared at 40°C ...10
7. Curve fitting data of binding isotherms of HEMA-VA-061_MIP and HEMA-VA-061_NIP particles prepared at 40°C ..11
8. Gas-responsive colloidal property of HEMA-VA061_MIP particles prepared at 65°C12
9. Binding isotherms of HEMA-VA061_MIP and HEMA-VA061_NIP particles prepared at 65°C13
10. Curve fitting data of binding isotherms of HEMA-VA-061_MIP and HEMA-VA-061_NIP particles prepared at 65°C ..14
11. Selectivity test of HEMA-VA061_MIP and HEMA-VA061_NIP particles prepared at 65°C15
12. Gas-responsive colloidal property of HEMA-VA061_MIP particles ..16
13. Particle size distributions of NIPAm-VA061_MIP and DEGMA-VA061_MIP particles18
14. Curve fitting data of binding isotherms of NIPAm-VA-061_MIP and DEGMA-VA-061_NIP particles prepared at 40°C ..19
1. Experimental Part

1-1. Materials

Styrene, divinylbenzene (DVB), N,N’-methylenesacrylamide (MBAA), 2,2’-azobis[2-(2-imidazolin-2-yl)propane] (VA-061), 2,2’-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044), sodium dihydrogenphosphate dihydrate, disodium hydrogenphosphate · 12H₂O, huma serum albumin (HSA), and cytochrome c (Cyt) were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). N-Isopropylacrylamide (NIPAm) was purchased from Nacalai Tesque. (Kyoto, Japan). 2-Hydroxyethyl methacrylate (HEMA), cetyltrimethylammonium bromide (CTAB), and tris(2-carboxyethyl)phosphine hydrochrolide (TCEP) were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Di(ethylene glycol) methyl ether methacrylate (DEGMA), γ-globulin from human blood (IgG), and lysozime (Lys) were purchased from Sigma-Aldrich Japan (Tokyo, Japan). The microBCA protein assay kit was purchased from Thermo Fisher Scientific K.K. (U.S.A).

1-2. Characterization

¹H-NMR spectra were measured using 300 MHz FT-NMR apparatus (JNM-LA300 FT NMR system, JEOL Ltd., Tokyo, Japan). UV-Vis spectra measurements were carried out using V560 (JASCO, Japan). The particle size distribution and zeta potential were measured using a dynamic light scattering system Zetasizer Nano ZS (Malvern Instruments Ltd., U.K.). The logP values for comonomers were estimated by Pallas (Computational Chemistry List, Ltd).

1-3. CO₂/N₂ responsive property of a functional initiator

VA-061 was dissolved in D₂O (1 mg/mL). ¹H-NMR measurements were carried out with the VA-061 solution before gas treatment, after CO₂ bubbling for 30 min at 25°C, and after subsequent N₂ bubbling for 30 min at 25°C. VA-044 was also tested by same procedure.

1-4. Synthesis of P(S-DVB) seed particles
Styrene (960 mg, 9.21 mmol), DVB (51 mg, 0.38 mmol), VA-061 (26 mg, 0.103 mmol) were added to the CO$_2$ treated water (100 mL), where the CO$_2$ treated water was prepared by the CO$_2$ bubbling at r.t. for 30 min with needle. After CO$_2$/degas cycles, an emulsifier-free emulsion polymerization was carried out under CO$_2$ atmosphere at 65 °C for 24 h with 1000 rpm stirring. The conversion was measured by gravimetry.

1-5. Synthesis of MIP and NIP particles

The typical procedure is follow. HEMA (31.2 mg, 240 μmol), MBAA (11.1 mg, 60 μmol), HSA (66.4 mg, 1.0 μmol), and VA-061 (2.71 mg, 10 μmol) were added to the CO$_2$ treated emulsion containing P(S-DVB) seed particles (20 mL, solid content: 0.5 wt%), where the CO$_2$ bubbling was performed at r.t. for 30 min with needle to prepare the CO$_2$ treated emulsion. After CO$_2$/degas cycles, an emulsifier-free seeded polymerization was carried out under CO$_2$ atmosphere at 40 °C for 24 h with 1000 rpm stirring. To remove the non-polymerized monomer species and template HSA, the obtained core-shell particles were washed by centrifugations with (i) aqueous solution of 0.5 wt% CTAB (thrice), (ii) 10 mM TCEP aqueous solution including 0.5 wt% CTAB and (thrice), and (iii) deionized water (ten times), resulting in the HEMA-VA061_MIP particles. The other MIP particles bearing poly(OEGMA) and poly(NIPAm) matrix were synthesized by same procedures using OEGMA (45.2 mg, 240 μmol) and NIPAm (27.2 mg, 240 μmol) as comonomers, respectively. NIP particles were also synthesized by same procedure except for using template HSA during the emulsifier-free seeded polymerization.

1-6. CO$_2$/N$_2$ responsive colloidal property of MIP particles

MIP particles (100 μg/mL) were dispersed in a deionized water. The particle size and z-potential of the particles were measured by DLS as prepared, after CO$_2$ bubbling (for 90 min), and after subsequent N$_2$ bubbling (for 90 min). The measurements were carried out at each 30 min.
1-7. Rebinding Experiments

MIP particles (100 μg/mL) were dispersed in a deionized water and the dispersion were bubbled with CO₂ or N₂ gas for 90 min. The HSA aqueous solution (10 μL) was added to the MIP emulsion (1.0 mL) with 15.1, 30.2, 75.5, 151, 302 nM as final concentrations of HSA. After 90 min incubation at 25 °C, the MIP particles were removed by centrifugation, and the remained HSA concentration at the supernatant was measured by microBCA assay (λ = 562 nm, n=3). The binding experiments for NIP particles were also demonstrated by same procedure.

The binding constant of the MIP particles toward HSA was determined by curve-fitting using DeltaGraph 5.4.5v. The fitting equation (1) is shown below, which was generally used for estimation of the binding constant of the 1:1 complex formation.

\[Y = \frac{D}{2KG} \times \left(1 + KG + KH - \sqrt{(1 + KG + KH)^2 - 4K^2HG} \right) \]

where \(Y \) is binding amount, \(K \) is the affinity constant, \(H \) is found by fitting a theoretical curve to the raw data, which would result in the smallest deviation error, \(G \) is HSA concentration, and \(D \) is the maximum amount of HSA bound.

1-8. Selectivity test

IgG, Cyt, and Lys were selected as reference proteins. MIP particles (100 μg/mL) were dispersed in a deionized water and the dispersion were bubbled with CO₂ or N₂ gas for 90 min. The aqueous solution of the reference proteins (10 μL, final concentration: 151 nM) were added to the MIP emulsion (1.0 mL). After 90 min incubation at 25°C, the MIP particles were removed by centrifugation, and the remained HSA concentration at supernatant was determined by microBCA assay (λ = 562 nm, n=3). The calibration curves for each protein were prepared for estimating the protein concentrations in microBCA assay. To evaluate the selective HSA binding capability for
HEMA-VA061_MIP particles, the selectivity factor (SF) values calculated from the following equation was adopted.

\[
\text{Selectivity factor (SF)} = \frac{B_{\text{ref}}}{B_{\text{HSA}}} \quad (1)
\]

where \(B_{\text{ref}} \) and \(B_{\text{HSA}} \) are the amount for bound reference proteins and bound target HSA, respectively.
Scheme S1. Molecular imprinting with functional initiator

Scheme S2. Synthetic procedure of core-shell MIP particles
2. Gas-responsive property of VA-061

(a) VA-061 before treatment

(b) VA-061 after CO$_2$

(c) VA-061 after CO$_2$ treatment, followed by N$_2$ treatment,

Figure S1 1H-NMR spectra of VA-061 in D$_2$O (a) before and (b) after CO$_2$ treatment for 30 min at room temperature, followed by (c) N$_2$ treatment for 30 min at room temperature.
3. Gas-responsive property of VA-044

(a) VA-044 before treatment

(b) VA-044 after CO\textsubscript{2}

(c) VA-044 after N\textsubscript{2}

Figure S2 1H-NMR spectra of VA-044 in D\textsubscript{2}O (a) before and (b) after CO\textsubscript{2} treatment for 30 min at room temperature, followed by (c) N\textsubscript{2} treatment for 30 min at room temperature.
4. Particle size distribution of P(S-DVB) seed particles

![Graph showing particle size distribution](image)

Figure S3 Particle size distribution of P(S-DVB) seed particles prepared by emulsifier-free emulsion polymerization with VA-061 in CO$_2$-treated water.

5. CD spectra of HSA in gas-treated water

![Graph showing CD spectra](image)

Figure S4 CD spectra of HSA dissolved in CO$_2$-treated and N$_2$-treated water. HSA concentration was 66 µg/mL
6. Particle size distribution of HEMA-VA061_MIP particles prepared at 40°C.

Figure S5 Particle size distribution of HEMA-VA061_MIP particles prepared by emulsifier-free emulsion polymerization with VA-061 in CO₂-treated water at 40°C.
7. Curve fitting data of binding isotherms of HEMA-VA-061_MIP and HEMA-VA-061_NIP particles prepared at 40°C

Figure S6 Curve fitting data of binding isotherms of HSA towards HEMA-VA-061_MIP particles (a) and HEMA-VA-061_NIP particles (b) under CO$_2$-treated condition, and for HEMA-VA-061_MIP particles under N$_2$-treated condition (c). The particles were prepared at 40°C.
8. Gas-responsive colloidal property of HEMA-VA061_MIP particles prepared at 65°C

Figure S7 Particle size distribution of HEMA-VA061_MIP particles prepared by emulsifier-free emulsion polymerization with VA-061 in CO₂-treated water at 65°C.

9. Binding isotherms of HEMA-VA061_MIP and HEMA-VA061_NIP particles prepared at 65°C
Figure S8 HSA binding isotherms of HEMA-VA061_MIP in CO$_2$-treated aqueous phase (a), HEMA-VA061_NIP in CO$_2$-treated aqueous phase (b), and HEMA-VA061_MIP in N$_2$-treated aqueous phase (c). The particles were prepared at 65 °C.
10. Curve fitting data of binding isotherms of HEMA-VA-061_MIP and HEMA-VA-061_NIP particles prepared at 65°C

Figure S9 Curve fitting data of binding isotherms of HSA towards HEMA-VA-061_MIP particles (a) and HEMA-VA-061_NIP particles (b) under CO$_2$-treated condition. The particles were prepared at 65°C.
Selectivity test of HEMA-VA061_MIP and HEMA-VA061_NIP particles prepared at 65°C

Figure S10 Selectivity test of HEMA-VA061_MIP in CO\(_2\)-treated aqueous phase (a) and HEMA-VA061_NIP in CO\(_2\)-treated aqueous phase (b). The protein concentration was 150 nM. The particles were prepared at 65 °C.
12. Gas-responsive colloidal property of HEMA-VA061_MIP particles

Figure S11. Particle size (a) and zeta potential profiles (b) of HEMA-VA061_MIP particles prepared at 40°C after CO$_2$ treatment (for 90 min), followed by N$_2$ treatment (for 90 min).

Figure S12. Reversible gas-responsive property of the zeta potential of HEMA-VA-061_MIP particles. The gas-treatment was carried out for 90 min.
Figure S13 Particle size (a) and zeta potential profiles (b) of HEMA-VA061_MIP particles prepared at 65°C after CO₂ treatment (until 90 min), followed by N₂ treatment (until 180 min).

13. Particle size distributions of NIPAm-VA061_MIP and DEGMA-VA061_MIP particles
Figure S14 Particle size distributions of NIPAM_VA-061-MIP (a) and DEGMA_VA-061-MIP (b) particles prepared by emulsifier-free emulsion polymerization with VA-061 in CO₂-treated water at 40°C.
14. Curve fitting data of binding isotherms of NIPAm-VA-061_MIP and DEGMA-VA-061_NIP particles prepared at 40°C

Figure S15 Curve fitting data of binding isotherms of HSA towards NIPAm-VA-061_MIP particles (a, b) and DEGMA-VA-061_NIP particles (c, d) under CO₂-treated condition (a, c) and N₂-treated condition (b, d). The particles were prepared at 40°C.