Influence of pH and citrate on the formation of oxalate layers on calcite revealed by in situ nanoscale imaging

A. Burgos-Cara, a C.V. Putnis, b,c M. Ortega-Huertas a and E. Ruiz-Agudo a

Figure S1. Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
CrystEngComm

Electronic supplementary information

Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.
Figure S1 (continuation). Selected Atomic Force Microscopy (AFM) height images from flow-through experiments. Bottom-left texts indicate pH and tribasic sodium citrate concentration. Oxalic acid concentration was always 25 mM.