Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Enantiospecific recognition of 2-butanol by an inherently chiral cavitand in the solid state

- G. Brancatelli,^a C. Nicosia,^b T. Barboza,^b L. Guy,^c J.-P. Dutasta,^c R. De Zorzi,^a N. Demitri,^a E. Dalcanale,^b S. Geremia^a*and R. Pinalli^b*
- a. CEB Centre of Excellence in Biocrystallography, Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- b. Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma and INSTM UdR Parma, Parco Area delle Scienze 17/A, 43124 Parma (Italy).
- c. Laboratoire de Chimie, CNRS and École Normale Supérieure de Lyon, Lyon 07, France

Electronic Supplementary Information

No	Contents	Page	
1	Characterization of achiral cavitand 5 through ¹ H and ³¹ P NMR	S2	
2	Figure S1: Achiral cavitand 5		
3	Figure S2: ¹ H NMR of achiral cavitand 5		
4	Figure S3: ¹ H NMR of the chiral isomer cR/cS-cav		
5	Figure S4: Comparison between the ³¹ P NMR of the chiral isomer cR/cS-cav and cavitand 5		
6	Figure S5: Analytical HPLC chromatogram of the cR/cS cavitands chiral resolution		
7	Figure S6: Chromatogram of the chiral resolution performed by semi-preparative HPLC.		
8	Figure S7: Asymmetric unit content of the crystals of the racemic mixture of cavitands with	S5	
	2-butanol.		
9	Figure S8: Top and side views of the diastereomeric complexes	S5	
	Table S1: Crystallographic data and refinement details for (±)-2-butanol@cS/cR-cav.	S6	
	Figure S9: Chirality assignment for the R-2-butanol@cR-cav	S7	
	Figure S10: Chirality assignment for the S-2-butanol@cS-cav	S8	
10	Calculation with CSM (Continuous Symmetry Measures)	S9	
11	Table S2: Chirality values of different species mentioned in the paper	S9	

Characterization of achiral cavitand 5

¹H NMR (300 MHz, CDCl₃): δ = 8.17 (m, 2H, P(S)ArH_{ortho}); 8.08 (m, 4H, P(O)ArH_{ortho}); 7.69-7.50 (m, 9H, P(X)ArH_{para}, P(X)ArH_{meta}, X=O,S); 7.28 (m, 4H, ArH_{down}); 6.83 (s, 2H, ArH_{up}); 6.81 (s, 2H, ArH_{up}); 5.70 (d, 1H, CH_{2(out)}, J=7.4 Hz); 4.92 (d, 1H, CH_{2(in)}, J=7.4 Hz); 4.68 (m, 4H, ArCH); 2.37 (m, 8H, CH₂CH₃); 1.07 (m, 12H, CH₂CH₃);

³¹P NMR (162 MHz, CDCl₃): δ = 78.70 (s, 1P, P=S); 8.82 (s, 2P, P=O)

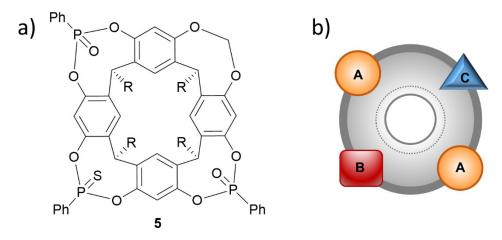
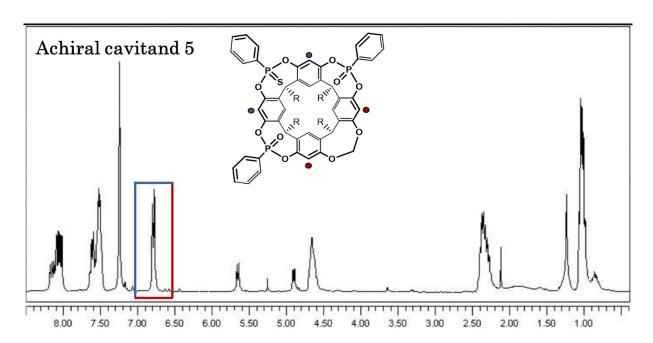



Figure S1. Achiral cavitand 5 (a) in a ABAC configuration (b).

Figure S2. ¹H NMR of the achiral cavitand **5.** The two signals corresponding to the apical protons are highlighted.

Characterization of cR/cS-cav

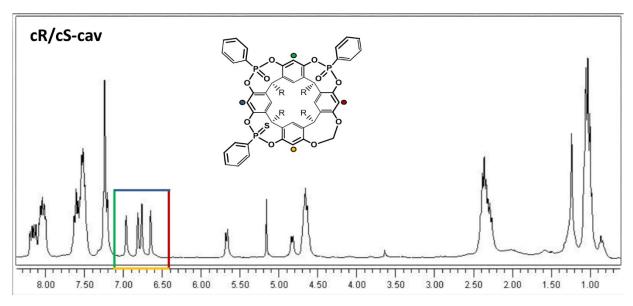


Figure S3. ¹H NMR of the chiral isomer cR/cS-cav. The four different apical signals are highlighted.

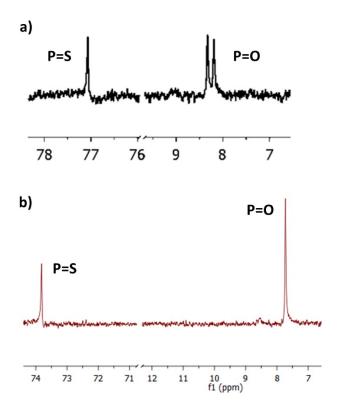


Figure S4. Comparison between the ³¹P NMR of the chiral isomer cR/cS-cav and cavitand 5.

Chiral HPLC chromatogram

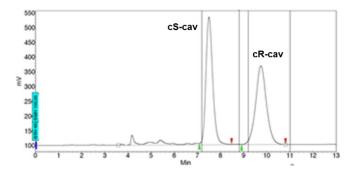
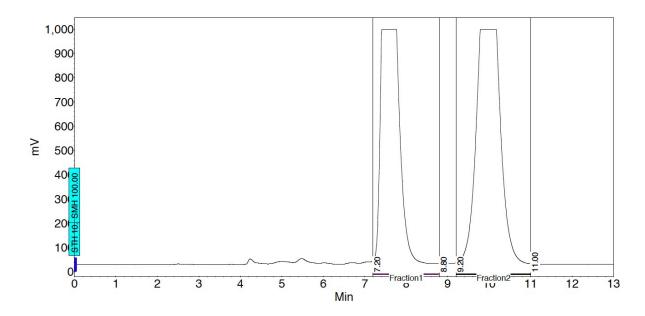



Figure S5. Analytical HPLC chromatogram of the cR/Cs cavitands chiral resolution.

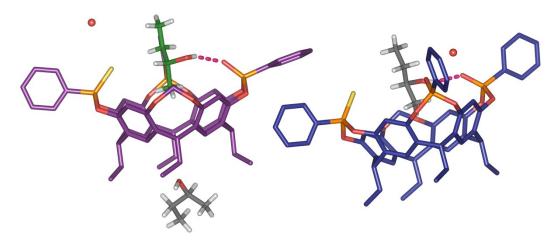
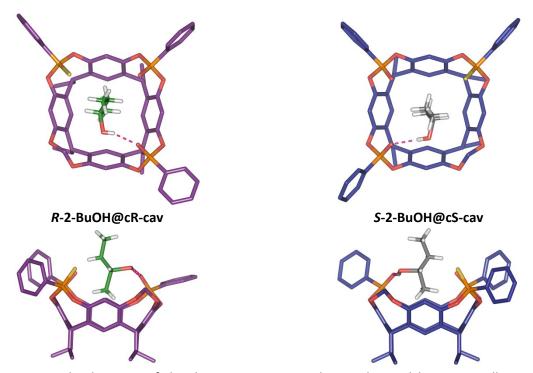
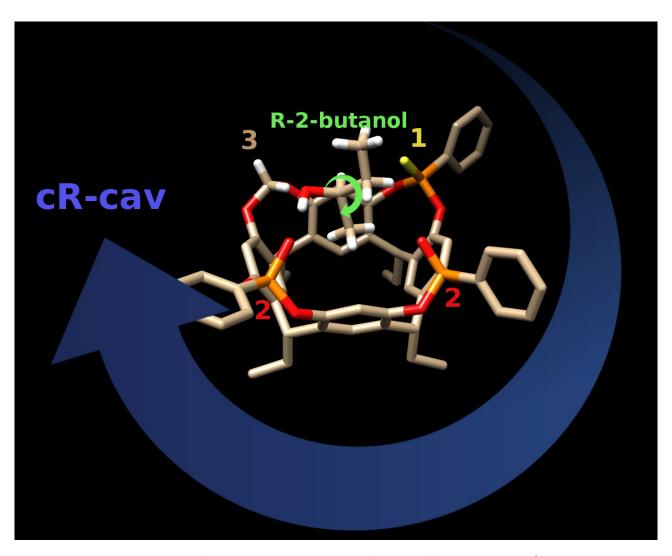


Figure S6. Chromatogram performed by semi-preparative HPLC on concentrated samples. Column: chiral pack IC (10x250mm). Eluent: $CH_3CN/H_2O/Acetone 8/2/2$. Flow rate 4.5 mL/min .


Crystals structure of the complexes

In the picture below the structure of the racemic complexes of the cavitand with 2-butanol is shown.

In the asymmetric unit of the crystal two cavitand molecules with opposite configuration were identified, together with three 2-butanol molecules and two water molecules (Figure S7). In the cavity of each cavitand a 2-butanol guest alcohol molecule was located. The two enantiomeric cavitands were hosting the two enantiomers of the 2-butanol: the cavity of the S-cavitand was occupied by the 2-butanol molecule with S configuration, and similarly the cavity of the R-cavitand hosted the R-2-butanol, as observed in Figure S8. Conversely from what observed in the structure of the enantiopure R-cavitand with the R-2- butanol, in the structure of the racemic mixture the methyl group of the alcohol guest molecule is pointing towards the cavity.


Figure S7. Asymmetric unit content of the crystals of the racemic mixture of cavitands with 2-butanol. Unit cell dimensions: $P2_1/n$, a = 24.150(5), b = 15.847(3), c = 31.397(6) Å, $\alpha = 90$, $\beta = 96.99(3)$, $\gamma = 90$, V = 11927(4), Z = 8, $\rho = 1.252$, R_1 0.1031, $WR_2 = 0.2556$, total reflections 9333.

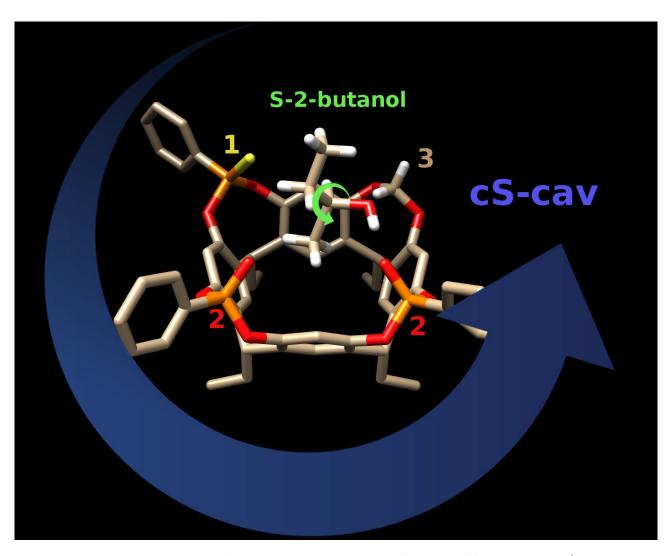

Figure S8. Top and side views of the diastereomeric complexes, obtained by co-crystallization of the racemic mixture of the cavitand in the presence of R/S-2-butanol.

Table S1. Crystallographic data and refinement details for (±)-2-butanol@cS/cR-cav.

	(±)-2-butanol @ cS/cR-cav
Empirical formula	C ₅₅ H ₄₉ O ₁₀ P ₃ S, 2.7 C ₄ H ₁₀ O, H ₂ O
Formula weight	1213.07
T (K)	100(2) K
λ (Å)	1.542
Crystal system	Monoclinic
Space group	<i>P</i> 2₁/n
Unit cell dimensions (Å, °)	a = 24.150(5)
	$b = 15.847(3), \beta = 96.99(3)$
	c = 31.397(6)
V (ų)	11927(4)
Z	8
$ ho_{ m calc}$ (g/cm 3)	1.351
μ (mm ⁻¹)	1.700
F(000)	5147.2
Crystal size (mm³)	0.200 x 0.100 x 0.100
θ range (°)	2.184 to 44.494
Reflections collected	23805
Independent reflections	9333
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameter	·
S	9333 / 9 / 740
GooF	1.042
R_1 , wR_2 [I>2 σ (I)]	0.1031, 0.2556
R_1 , wR_2 (all data)	0.1112, 0.2622

Figure S9. Chirality assignment for the R-2-butanol@cR-cav from the (±)-2-butanol@cS/cR-cav crystal structure, according to the rule summarized in Figure 2 in the main article.

Figure S10. Chirality assignment for the S-2-butanol@cS-cav from the (±)-2-butanol@cS/cR-cav crystal structure, according to the rule summarized in Figure 2 in the main article.

Calculation with CSM (Continuous Symmetry Measures)

The calculation of the chirality values was performed at the website: http://chirality.ch.huji.ac.il/new/?cmd=chirality.25

The calculation without hydrogens was used to estimate the chirality value for the cavitands cR-cav and Tiiii[H,CH₃,CH₃] and for the host-guest complex R-BuOH@cR-cav. In Table S2 the chirality values of hosts and guests mentioned in the paper are reported.

Table S2: chirality values of different species mentioned in the paper.

Chemical species	Chirality value
alanine	10.7
2-butanol	1.9
cR-cav	11.5
Tiiii[H,CH ₃ ,CH ₃]	0.1
R-BuOH@cR-cav	13.7