Electronic Supporting Information (ESI)

A facile growth process of highly single crystalline Ir$_{1-x}$V$_x$O$_2$ mixed metal oxide nanorods and their electrochemical properties

Sung Hee Chuna,d, Hyun Yeong Kima,d, Hyesu Janga, Yejung Leea, Ara Joa, Nam-Suk Leeb, Hak Ki Yuc, Youngmi Leea, Myung Hwa Kima*, and Chongmok Leea*

aDepartment of Chemistry & Nano Science, Ewha Womans University, Seoul, 03760, Korea
bNational Institute for Nanomaterials Technology (NINT), Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
cDepartment of Materials Science and Engineering and Department of Energy Systems Research, Ajou University, Suwon, 443-749, Korea
dAuthors are equally contributed to this work.

*To whom all correspondence should be addressed: myungkim@ewha.ac.kr, cmlee@ewha.ac.kr
Fig. S1 SEM images for the time dependence of the growth process of $\text{Ir}_{0.34}\text{V}_{0.66}\text{O}_2$ mixed oxide nanorods. (a) and (b) for 10 min, (c) and (d) for 30 min, (e) and (f) for 1 hour, (g) and (h) for 1.5 hour, respectively.
Fig. S2 SEM images for the time dependence of the growth process of Ir$_{0.87}$V$_{0.13}$O$_2$ mixed oxide nanorods. (a) and (b) for 1 h, (c) and (d) for 3hrs, respectively.
Fig. S3 X-ray diffraction patterns of \(\text{Ir}_{1-x} \text{V}_x \text{O}_2 \) mixed metal oxide nanorods on a Si substrate for (a) \(\text{Ir}_{0.66} \text{V}_{0.34} \text{O}_2 \) and (b) \(\text{Ir}_{0.40} \text{V}_{0.60} \text{O}_2 \), respectively.
Fig. S4 LSV waves at Ir$_{1-x}$V$_x$O$_2$ nanorods on GC, iridium oxide (black) and Au microwire (orange) in 0.1 M N$_2$-purged PBS solution (pH 7.4) containing 0.5 mM AA with a scan rate of 10 mV s$^{-1}$.