Prediction and Experimental Validation of Solid Solutions and Isopolymorphs of Cytosine/5-Flucytosine

Doris E. Braun & Ulrich J. Griesser

Electronic Supplementary Information

Contents

1.	COMPUT	ATIONAL	2
	1.1. Com	putational Generation of the Anhydrate Crystal Energy Landscapes	2
	1.1.1.	Cytosine and 5-Flucytosine Tautomer Selection	2
	1.1.2.	Structure Generation: CrystalPredictor	2
	1.1.3.	Reminimisation: DMACRYS	2
	1.1.4.	Reminimisation: CrystalOptimizer	2
	1.1.5.	Reminimisation: CASTEP (PBE-TS and PBE-D2)	3
	1.2. Com	putationally Generated Low-Energy Structures	5
	1.2.1. C	/tosine Low-Energy Structures	5
	1.2.2. 5-	Flucytosine Low-Energy Structures	7
	1.2.3. C	/tosine/5-Flucytosine Low-Energy Structures	11
	1.3. Rep	esentation of the Experimental Structures	13
	1.3.1.	Cytosine	13
	1.3.2.	5-Flucytosine	13
	1.4. Sele	cted Computed Low-Energy Structures (Possible Polymorphs)	14
	1.4.1.	Cytosine: c123	14
	1.4.2.	5-Flucytosine: f3194	15
	1.4.3.	Cytosine/5-Flucytosine: ss21	16
2.	EXPERIME	NTAL	17
	2.1. Prep	aration of Anhydrate Solid Solutions	17
	2.2. Met	hodology	17
	2.2.1. TI	nermal Analysis	17
	2.2.2. In	frared Spectroscopy	18
	2.2.3. Po	owder X-ray Diffraction	18
	2.3. Solv	ent Screen	18
	2.3.1.	Crystal16® Cycling Experiments	18
	2.3.2.	Slurry Experiments	19
	2.4. Deh	ydration Experiments	20
	2.5. Subl	imation Experiments	20
	2.6. Stru	cture Determination: Simulated Annealing and Rietveld Refinement	21
	2.6.1.	Solid Solution Anhydrate I (ssF-I)	21
	2.6.2.	Solid Solution Anhydrate II (ssF-II)	22
	2.7. Solv	ates	26
	2.7.1.	Methanol Solvate	. 26
	2.7.2.	Ethanol Solvate	. 27
	2.7.3.	Dimethyl Formamide Solvate	. 29
	2.7.4.	Dimethyl Sulfoxide Solvate	30
	2.8. PXR	D Comparisons: 5-Flucytosine and Cytosine/5-Flucytosine Solid Solutions	. 32
3.	OVERVIEW	V SOLID FORMS	34

1. COMPUTATIONAL

1.1. Computational Generation of the Anhydrate Crystal Energy Landscapes

1.1.1. Cytosine and 5-Flucytosine Tautomer Selection

The two investigated compounds are known to exist (at least in solution) in different tautomeric forms. A survey of the two compounds' structures present in the Cambridge Structural Database¹ revealed that so far only the keto (amino-keto) tautomer has been identified in solid state. Thus, only the keto tautomer was considered in our computational searches for anhydrate polymorphs.

1.1.2. Structure Generation: CrystalPredictor

Cytosine (Z' = 1 & 2), 5-flucytosine (Z' = 1 & 2), and cytosine/5-flucytosine (1:1, Z' =1) crystal structures were generated with the program CrystalPredictor.²⁻⁴ For *cyt* and *fcyt* each 650.000 structures (150.000 Z' = 1 and 500.000 Z' = 2) and for cytosine/5-flucytosine 500.000 structures were randomly generated in following 48 space groups, keeping the molecular geometry rigid (keto tautomer): P1, $P\overline{1}$, $P2_1$, $P2_1/c$, $P2_12_12$, $P2_12_12_1$, $Pna2_1$, $Pca2_1$, Pbca, Pbcn, C2/c, Cc, C2, Pc, Cm, $P2_1/m$, C2/m, P2/c, $C222_1$, $Pmn2_1$, Fdd2, Pnna, Pccn, Pbcm, Pnnm, Pmmn, Pnma, $P4_1$, $P4_3$, $I\overline{4}$, P4/n, $P4_2/n$, I4/m, I41/a, P41212, $P4_32_12$, $P3_1$, $P3_2$, R3, $P\overline{3}$, $R\overline{3}$, $P3_121$, $P322_1$, R3c, $R\overline{3}c$, $P6_1$, $P6_3/m$.

The structures were relaxed to a local minimum in intermolecular lattice energy, calculated from the FIT⁵ exp-6 repulsion-dispersion potential and atomic charges, fitted to electrostatic potential around the PBE0/aug-cc-pVTz charge density using the CHELPG scheme.⁶

1.1.3. Reminimisation: DMACRYS

For each of the searches the lowest energy structures (Table S1) were refined using DMACRYS⁷ with a more realistic, distributed multipole model⁸ for the electrostatic forces which had been derived using GDMA2⁹ to analyse the PBE0/aug-cc-pVTz charge density.

1.1.4. Reminimisation: CrystalOptimizer

The orientation of the amino group (planar vs. pyramidal orientation) of the most stable structures (Table S1) of the two compounds was optimised with the program CrystalOptimizer.¹⁰ Conformational energy penalties and isolated molecule charge densities were computed at the PBEO/aug-cc-pVTz level of theory.

	Cytosine	5-Flucytosine	Cytosine/5-Flucytosine
	CrystalPre	dictor (rigid body)	
Charges	PBEO/aug-cc-pVTz	PBEO/aug-cc-pVTz	PBEO/aug-cc-pVTz
Structures	150000 (Z'=1)	150000 (Z'=1)	500000 (Z'=1, Z''=2)
	500000 (Z'=2)	500000 (Z'=2)	
Multipoles	PBE0/aug-cc-pVTz	PBE0/aug-cc-pVTz	PBE0/aug-cc-pVTz
Energy range	20.0 kJ mol ^{–1} (Z'=1)	20.0 kJ mol ^{–1} (Z'=1)	10.7 kJ mol ⁻¹
	10.1 kJ mol ^{–1} (Z'=2)	12.0 kJ mol ^{–1} (Z'=2)	
Structures	3928 (Z'=1)	3153 (Z'=1)	10000
	10000 (Z'=2)	5272 (Z'=2)	
	CrystalOp	otimizer (flexible)	
Multipoles	PBEO/aug-cc-pVTz	PBEO/aug-cc-pVTz	PBEO/aug-cc-pVTz
Energy range	20.0 kJ mol ^{–1} (Z'=1)	15.0 kJ mol ^{–1} (Z'=1)	15.0 kJ mol ⁻¹
	16.0 kJ mol ^{–1} (Z'=2)	12.0 kJ mol ^{–1} (Z'=2)	
Structures	219 (Z'=1)	573 (Z'=1)	1345
	658 (Z'=2)	2354 (Z'=2)	
	CASTEP PBE-TS (cut	-off: 780 eV, k-points: 0.0	07)
Energy range	15.0 kJ mol ⁻¹ (Z'=1)	11.0 kJ mol ⁻¹ (Z'=1)	11.0 kJ mol ⁻¹
	15.0 kJ mol ^{–1} (Z'=2)	5.0 kJ mol ^{–1} (Z'=2)	
Structures	38 (Z'=1)	155 (Z'=1)	90
	138 (Z'=2)	172 (Z'=2)	
CASTEP	PBE-D2 (cut-off: 780 eV,	k-points: 0.07, single po	int calculations)
Energy range	15.0 kJ mol ⁻¹ (Z'=1)	15.0 kJ mol ⁻¹ (Z'=1)	all
	15.0 kJ mol ^{–1} (Z'=2)	all (Z'=2)	
Structures	18 (Z'=1)	125 (Z'=1)	90
	77 (Z'=2)	172 (Z'=2)	

Table S1. Overview Computational Generation of the Anhydrate Crystal Energy Landscapes.

1.1.5. Reminimisation: CASTEP (PBE-TS and PBE-D2)

The DFT-D calculations were carried out with the CASTEP plane wave code¹¹ using the Perdew-Burke-Ernzerhof (PBE) generalised gradient approximation (GGA) exchangecorrelation density functional¹² and ultrasoft pseudopotentials,¹³ with the addition of a semiempirical dispersion correction, either the Tkatchenko and Scheffler (TS) model,¹⁴ or Grimme06 (D2).¹⁵ In a first step, the structures were geometry optimised using the TS dispersion correction. Brillouin zone integrations were performed on a symmetrised Monkhorst–Pack *k*-point grid with the number of *k*-points chosen to provide a maximum spacing of 0.07 Å⁻¹ and a basis set cut-off of 780 eV. The self-consistent field convergence on total energy was set to $1x10^{-5}$ eV. Energy minimisations were performed using the Broyden– Fletcher–Goldfarb–Shanno optimisation scheme within the space group constraints. The optimisations were considered complete when energies were converged to better than $2x10^{-5}$ eV per atom, atomic displacements converged to $1x10^{-3}$ Å, maximum forces to $5x10^{-2}$ eV Å⁻¹, and maximum stresses were converged to $1x10^{-1}$ GPa. The energies for the structures were recalculated, without optimisation, with the number of *k*-points chosen to provide a maximum spacing of 0.07 Å⁻¹ and a basis set cut-off of 780 eV, using the D2 dispersion correction. Isolated molecule minimisations to compute the isolated cytosine (keto tautomer) and 5-flucytosine (keto tautomer, U_{gas}) were performed by placing a single molecule in a fixed cubic 35x35x35 Å³ unit cell, then optimised with the same settings as used for the crystal calculations.

 $H \leftrightarrow F$ exchange was systematically applied to the experimental structures C-I, C-II, F-I and F-II to produce isostructural cytosine, 5-flucyosine and mixed crystal structures thereof. The structures were minimised as described above.

1.2. Computationally Generated Low-Energy Structures

All calculated structures are available in .res format from the authors on request.

1.2.1. Cytosine Low-Energy Structures

Table S2. Hypothetical Low-Energy Crystal Structures of Cytosine Anhydrates (PBE-TS and PBE-D2 energies). Experimental structures are highlighted in green.

ID ^a	Space	а	b	С	α	β	γ	PI ^b	Elatt	ΔE_{latt}
	Group		/ Å			/°	•		/ kJ mo	ol ⁻¹
c27 (C-I)	P212121	3.783	9.486	12.846	90	90	90	77.2	-169.84	0.00
c123	P21/c	9.418	3.729	26.260	90	90.29	90	77.5	-167.45	2.38
c7694 (C-II)	Pccn	14.949	14.990	9.292	90	90	90	68.6	-167.20	2.64
c825	P-421c	10.429	10.429	9.397	90	90	90	69.8	-166.42	3.42
c5882	P212121	5.361	7.787	23.643	90	90	90	72.1	-166.27	3.56
c1307 (cF-I)	P43212	6.677	6.677	23.041	90	90	90	69.20	-166.17	3.66
c304 (cF-II)	P21/n	3.681	9.369	13.263	90	94.81	90	78.8	-166.02	3.82
c1245 (cF-I)	P41212	6.721	6.721	22.867	90	90	90	68.8	-165.96	3.87
c6792	P21212	9.486	11.772	9.371	90	90	90	68.2	-164.20	5.63
c1062	Pna21	18.239	3.754	13.469	90	90	90	77.5	-164.18	5.65
c65	Pna21	27.538	3.664	9.174	90	90	90	77.4	-163.95	5.89
c9095	P21/n	15.710	3.802	17.192	90	115.31	90	77.3	-163.18	6.66
c2083	Pca2 ₁	26.814	3.645	9.567	90	90	90	76.1	-163.12	6.71
c1130	P21/c	14.020	3.759	17.733	90	94.71	90	77.1	-163.10	6.74
c52	P212121	4.097	9.334	12.830	90	90	90	72.3	-162.63	7.20
c312	P21/n	3.707	26.973	9.361	90	90.73	90	76.6	-162.31	7.53
c277	P21/n	3.732	26.817	9.343	90	91.49	90	76.8	-162.16	7.68
c868	P21/c	7.487	9.587	7.246	90	115.43	90	76.4	-161.98	7.86
c410	Pna21	19.038	3.649	13.418	90	90	90	76.7	-161.47	8.36
c2606	Pbca	9.702	7.051	27.378	90	90	90	76.6	-161.10	8.73
c2980	P21/c	8.251	15.933	8.189	90	111.11	90	71	-161.07	8.77
c4535	P21/n	16.282	3.638	16.749	90	109.95	90	76.8	-161.03	8.81
c1400	P21/n	3.709	13.917	9.098	90	91.40	90	76.4	-161.02	8.82
c121	P21/c	3.684	9.311	27.233	90	93.61	90	77.1	-160.94	8.90
c6962	P21	8.818	3.787	14.549	90	99.36	90	74.4	-160.61	9.23
c235	Pna21	26.560	9.350	3.907	90	90	90	73.5	-160.44	9.39
c4688	Pbca	13.878	9.738	13.942	90	90	90	76.1	-160.21	9.63
c4024	Pbca	9.737	7.013	13.800	90	90	90	76	-160.02	9.82
c126	P21/c	9.364	11.607	10.063	90	108.44	90	69	-159.79	10.04
c260	Pna21	13.552	3.732	9.381	90	90	90	75.5	-159.74	10.10
c1867	C2/c	27.625	3.706	18.268	90	95.25	90	77	-159.70	10.13
c6612	Pna21	26.676	3.639	9.428	90	90	90	78.5	-159.65	10.19
c185	P21/n	10.137	9.387	10.356	90	96.89	90	73.6	-159.64	10.19
c9043	P21/C	3.707	8.889	28.562	90	91.72	90	76.3	-159.61	10.23
c9733	P21/C	9.287	9.730	11.549	90	100.46	90	70	-159.40	10.43
c454	12/a	18.243	3.665	27.812	90	94.49	90	77.4	-159.35	10.49
c987	Pbca	9.780	6.963	13.829	90	90	90	76.2	-159.32	10.52
c5280	C2/c	18.545	3.766	28.000	90	100.16	90	74.2	-159.31	10.52
c7982	<i>P</i> -1	7.127	7.775	9.019	85.75	70.98	84.95	76.4	-159.15	10.68

ID ^a	Space	а	b	С	α	β	γ	PI	Elatt	ΔE_{latt}	
	Group		/ Å			/°			/ kJ m	nol ⁻¹	
c1010	Pna21	9.727	13.438	3.625	90	90	90	75.3	-159.12	10.71	
c409	Pbca	14.002	7.133	19.156	90	90	90	75.1	-159.03	10.81	
c1371	C2/c	18.738	3.694	27.021	90	94.82	90	77.4	-159.01	10.83	
c1616	C2/c	22.793	5.455	16.999	90	101.61	90	69.1	-159.01	10.83	
c408	Fdd2	15.694	30.103	3.897	90	90	90	78.1	-159.00	10.83	
c1077	Рс	7.074	3.800	17.595	90	97.68	90	76.8	-158.99	10.85	
c1577	P21/n	8.794	3.777	29.192	90	98.60	90	74.6	-158.86	10.98	
c79	Pca21	18.909	3.631	13.612	90	90	90	76.9	-158.85	10.98	
c3087	P21/C	14.343	9.365	7.431	90	104.95	90	74.1	-158.80	11.04	
c9031	<i>P</i> -1	6.675	7.191	11.499	96.99	92.09	114.75	72.1	-158.62	11.22	
c440	Pca21	13.484	9.395	7.918	90	90	90	72.1	-158.61	11.22	
c7843	Pca21	7.494	9.368	13.737	90	90	90	74.1	-158.60	11.23	
c3382	P21/n	7.515	9.427	13.499	90	98.19	90	75.9	-158.58	11.26	
c3433	P21/C	8.004	15.735	8.372	90	110.44	90	72.4	-158.55	11.28	
c5526	P21/n	9.363	11.232	9.956	90	108.32	90	72.3	-158.37	11.47	
c1821	P21/n	9.551	7.585	14.018	90	107.54	90	74.3	-158.33	11.50	
c4437	C2/c	17.476	6.928	16.103	90	98.25	90	74.3	-158.33	11.51	
c8089	P21/C	14.472	9.539	7.054	90	103.72	90	76	-158.29	11.55	
c581	P2/c	9.411	3.686	27.271	90	90.31	90	76.2	-158.24	11.60	
c5158	P21/C	9.526	7.799	13.056	90	93.55	90	74.2	-158.21	11.62	
c7281	P21/n	9.484	7.850	13.101	90	103.30	90	75.7	-158.18	11.65	
c8085	P21/n	10.381	9.271	10.742	90	101.95	90	71.2	-158.15	11.69	
c84	Pca21	18.960	3.607	13.721	90	90	90	76.4	-158.13	11.70	
c924	P21	6.910	7.903	9.305	90	99.91	90	71.7	-158.10	11.73	
c8866	P21/C	9.551	12.815	7.745	90	90.95	90	75.9	-158.09	11.75	
c2593	C2/c	18.544	3.803	27.710	90	93.19	90	73.4	-158.06	11.77	
c9209	P212121	9.206	9.312	11.941	90	90	90	69.9	-158.00	11.84	
c8506	P21/n	16.429	3.619	16.890	90	110.63	90	76.4	-157.98	11.86	
c7726	P21/n	4.081	9.343	25.389	90	90.76	90	73.7	-157.97	11.86	
c3303	<i>P</i> -1	6.640	7.676	9.531	91.04	94.14	94.72	74.4	-157.76	12.07	
c1928	12/a	16.084	3.941	17.330	90	113.41	90	70.8	-157.73	12.11	
c8067	P212121	3.827	9.324	27.380	90	90	90	73.3	-157.53	12.30	
c3483	Pbca	9.650	13.716	14.418	90	90	90	75.2	-157.52	12.31	
c7455	P21/C	9.406	9.750	11.072	90	91.13	90	70.7	-157.48	12.36	
c1588	P21/C	7.343	9.469	7.024	90	95.81	90	74.1	-154.45	15.38	
(dehy)											

^aStructure ID: c – cytosine and rank CrystalPredictor. The CASTEP minimised structures were checked for higher symmetry using PLATON.¹⁶ **cF-I** and **cF-II** – isostructural with **F-I** and **F-II**; **dehy** – isostructural with cytosine monohydrate. ^bPacking Index (%) calculated using PLATON.

1.2.2. 5-Flucytosine Low-Energy Structures

Table S3. Hypothetical Low-Energy Crystal Structures of 5-Flucytosine Anhydrates (PBE-TS and PBE-D2 energies). Experimental structures are highlighted in green.

ID ^a	Space	а	b	С	α	β	γ	Ыp	Elatt	ΔE_{latt}
	Group		/ Å			/°			/ kJ m	iol ⁻¹
f35 (F-I)	P41212	6.688	6.688	23.354	90	90	90	72.1	-144.10	0.00
f3194	C2/c	17.461	6.933	17.091	90	101.69	90	74.3	-142.29	1.81
f10 (F-II)	P21/c	4.035	9.465	12.912	90	90.36	90	76.5	-141.99	2.11
f1558	Pbca	9.340	9.578	24.718	90	90.00	90	68.1	-140.46	3.64
f337	P21/C	9.059	9.415	12.076	90	101.70	90	75.1	-139.27	4.84
f947	P2 ₁ 2 ₁ 2 ₁	5.105	7.739	25.943	90	90	90	74	-138.92	5.18
f3279	P21	8.018	4.599	14.332	90	105.15	90	74.1	-138.85	5.26
f2508	<i>P</i> -1	6.956	8.872	9.011	80.28	70.16	78.31	74.2	-138.33	5.77
f971	C2/c	13.455	9.397	17.225	90	110.22	90	74.1	-138.07	6.03
f293	P21/C	17.309	3.634	18.164	90	102.17	90	67.4	-137.82	6.28
f777 (fC-I)	P212121	4.188	9.400	12.876	90	90	90	74.2	-137.50	6.60
f577	Fdd2	21.015	9.999	9.615	90	90	90	74.3	-137.38	6.73
f533	C2/c	9.238	9.361	24.752	90	90.53	90	70.6	-137.35	6.75
f150	C2/c	26.374	3.637	22.663	90	94.07	90	69.4	-137.35	6.76
f369	P21	8.378	3.716	16.228	90	96.34	90	75.1	-137.31	6.79
f1121	Pbca	9.275	9.198	25.108	90	90	90	70.5	-137.19	6.91
f1332	C2/c	12.019	10.037	17.787	90	100.77	90	71.6	-137.18	6.92
f29	P21/C	4.160	9.324	26.122	90	90.99	90	74.7	-137.14	6.96
f692	P21/C	12.544	9.333	9.165	90	90.03	90	70.4	-137.04	7.06
f537	C2	17.915	3.979	16.390	90	117.06	90	72.5	-136.97	7.14
f5313	C2/c	18.337	3.793	29.483	90	98.46	90	74.3	-136.92	7.19
f1088	Pccn	9.380	24.647	9.248	90	90	90	70.6	-136.90	7.21
f480	C2/c	17.640	6.993	18.424	90	94.41	90	66.4	-136.82	7.28
f86	<i>P</i> -1	4.178	9.328	14.083	105.32	90.33	93.35	71.3	-136.80	7.30
f679	Pbca	8.930	9.299	12.386	90	90	90	73.9	-136.69	7.41
f164	P21/n	16.315	3.736	18.304	90	93.15	90	67.5	-136.68	7.43
f93	P21/C	9.163	12.050	9.803	90	97.98	90	70.3	-136.60	7.50
f59	P21/C	4.077	27.004	9.332	90	91.48	90	73.7	-136.59	7.52
f127	Pbca	12.247	9.347	17.706	90	90	90	74.7	-136.52	7.59
f1036	<i>P</i> -1	7.045	8.826	9.234	79.72	76.81	68.64	73.1	-136.51	7.59
f371	Сс	6.233	9.034	9.274	90	92.33	90	72.8	-136.46	7.64
f125	P2 ₁ /c	13.751	3.627	22.286	90	92.60	90	67.7	-136.40	7.70
f580	P2 ₁ /c	9.275	8.965	12.797	90	104.24	90	73.5	-136.40	7.71
f7	P21/C	9.268	3.827	29.188	90	95.52	90	73.5	-136.39	7.72
f563	P21/C	12.791	8.940	9.301	90	104.89	90	73.7	-136.37	7.74
f19	P212121	3.944	9.154	14.648	90	90	90	71.2	-136.36	7.75
f149	Pbca	8.940	9.316	12.297	90	90	90	73.9	-136.36	7.75
f1490	P21/C	9.283	8.961	12.263	90	90.94	90	74.2	-136.34	7.76
f131	Pccn	12.312	8.940	9.298	90	90	90	73.9	-136.31	7.80
1796	Pbca	8.952	9.301	24.722	90	90.00	90	73.5	-136.27	7.83
f116	Pccn	12.424	8.957	9.285	90	90	90	73.3	-136.27	7.84
t15	P2 ₁	3.916	9.143	14.837	90	90	90	71	-136.25	7.85
t3844	C2/c	12.748	9.307	17.538	90	104.28	90	75.1	-136.24	7.86
f873	Pbca	9.044	9.249	24.796	90	90	90	73	-136.23	7.87
f690	Pccn	24.874	8.964	9.294	90	90	90	73.1	-136.22	7.88
f100	Pca21	6.210	8.966	9.295	90	90	90	73	-136.22	7.89
f1193	C2	9.004	9.277	12.444	90	90.06	90	72.8	-136.20	7.90

ID ^a	Space	а	b	С	α	β	γ	PI ^b	Elatt	ΔE_{latt}
	Group		/ Å			/°			/ kJ m	ıol ^{−1}
f824	P2/c	8.972	9.271	12.437	90	92.78	90	73.3	-136.16	7.94
f110	Iba2	8.967	8.967	8.967	119.72	92.21	117.75	72.9	-136.15	7.95
f1601	<i>P</i> -1	7.989	8.117	9.017	72.89	72.28	70.14	74	-136.10	8.00
f3074	Pna21	27.813	7.915	4.759	90	90	90	72.3	-136.09	8.01
f1728	P21/C	9.265	12.372	9.027	90	90.14	90	73.2	-136.08	8.02
f691	P21212	12.393	9.005	9.261	90	90	90	73.3	-136.07	8.03
f284	Pbca	9.009	9.262	24.806	90	90	90	73.2	-136.05	8.05
f2048	P212121	9.304	6.120	8.940	90	90	90	74.2	-136.05	8.06
f4235	P21/C	9.300	6.117	8.947	90	90	90	74.2	-136.02	8.08
f832	Iba2	24.842	8.896	9.323	90	90	90	73.4	-136.01	8.09
f799	Pbca	9.036	9.249	24.684	90	90	90	73.4	-136.01	8.10
f724	Aba2	9.323	6.271	8.843	90	90	90	72.8	-135.96	8.14
f1978	C2/c	6.407	9.336	17.951	90	90.05	90	70.2	-135.92	8.19
f861	C2/c	23.932	3.609	26.280	90	91.80	90	66.4	-135.91	8.20
f14	P21/C	12.250	3.745	22.780	90	91.91	90	72.2	-135.89	8.21
f623	Pccn	24.845	8.971	9.282	90	90	90	73.1	-135.89	8.22
f1069	Pccn	24.719	8.927	9.306	90	90	90	73.6	-135.86	8.24
f335	P21/C	3.633	18.892	8.197	90	96.29	90	67.6	-135.85	8.25
f5059	P21	7.876	4.782	14.635	90	90.03	90	68.5	-135.84	8.27
f1299	P21/C	8.310	9.230	7.128	90	108.41	90	72.8	-135.82	8.28
f399	C2	6.395	9.250	8.975	90	101.47	90	78.8	-135.78	8.32
f525	Aba2	9.289	6.317	17.760	90	90	90	72.6	-135.77	8.33
f1148	Pca21	12.436	8.874	9.327	90	90	90	73.5	-135.74	8.36
f5564	C2	5.624	5.624	18.030	82.71	82.71	110.42	72.6	-135.72	8.38
f5228	P21/C	5.449	35.219	5.821	90	110.58	90	72.1	-135.72	8.38
f5774	Pbca	9.250	7.033	31.746	90	90	90	73.3	-135.70	8.41
f1954	P212121	9.184	9.234	12.383	90	90	90	72.1	-135.67	8.44
f148	P212121	8.957	9.275	12.451	90	90	90	73.3	-135.65	8.46
f566	Pbca	9.252	7.005	15.838	90	90	90	73.7	-135.63	8.48
f2026	P3121	9.318	9.318	22.001	90	90	120	68.3	-135.62	8.49
f5244	Aba2	36.451	6.343	9.340	90	90	90	69.9	-135.56	8.54
f1015	Pbcn	25.127	8.970	9.288	90	90	90	72.4	-135.54	8.56
f3254	Iba2	24.975	9.016	9.263	90	90	90	72.5	-135.54	8.57
f115	C2/c	12.581	8.893	9.349	90	100.23	90	73.7	-135.53	8.57
f1033	C2/c	25.072	9.008	9.281	90	95.98	90	72.8	-135.51	8.59
f1268	P21/C	8.858	9.317	13.156	90	109.57	90	74	-135.50	8.60
f618	C2/c	25.058	8.908	9.328	90	98.19	90	73.5	-135.47	8.64
f1974	P21/C	8.476	3.657	32.796	90	92.82	90	74.5	-135.46	8.64
f4828	C2/c	25.191	8.965	9.268	90	97.13	90	73	-135.45	8.65
f1667	Pna21	16.489	8.499	3.599	90	90	90	75	-135.44	8.67
f1029	C2/c	14.118	11.836	13.897	90	110.60	90	69.4	-135.43	8.67
f5000	P21/C	9.048	12.484	9.231	90	90.12	90	72.6	-135.43	8.67
f975	P212121	9.019	9.260	12.341	90	90	90	73.5	-135.43	8.67
f671	Pna21	8.943	12.450	9.301	90	90	90	73.1	-135.41	8.69
f40	P21/C	6.808	8.922	8.974	90	109.31	90	73.8	-135.41	8.70
f1483	P21/C	8.485	3.668	32.894	90	94.84	90	74	-135.40	8.70
f3625	P21/C	5.140	7.222	39.673	90	42.67	90	70.9	-135.35	8.75
f1539	C2/c	15.723	9.214	7.002	90	90.76	90	74.5	-135.34	8.77
f596	P21/C	9.278	12.512	9.036	90	90.14	90	72.2	-135.33	8.77
f1379	P21	8.437	3.665	17.835	90	102.34	90	70.1	-135.30	8.80
f933	Pbca	9.040	9.245	24.870	90	90	90	73	-135.29	8.81
f763	<i>P</i> -1	7.148	8.552	8.812	88.51	86.91	87.85	70.1	-135.28	8.83

ID ^a	Space	а	b	С	α	β	γ	PI ^b	Elatt	ΔE_{latt}
	Group		/ Å			/°			/ kJ m	ıol ^{−1}
f1350	C2/c	25.192	8.998	9.249	90.00	94.31	90.00	72.5	-135.26	8.84
f2391	<i>P</i> -1	7.169	8.666	8.904	83.97	84.35	71.09	73.1	-135.26	8.85
f1599	Pbcn	24.875	8.904	9.330	90	90	90	73.2	-135.22	8.88
f282	Pbca	9.025	9.254	24.912	90	90	90	72.9	-135.21	8.89
f835	P21/C	8.991	9.266	12.650	90	101.98	90	73.5	-135.20	8.91
f1365	P21/C	13.063	9.011	9.270	90	108.88	90	73.5	-135.17	8.93
f2740	P2/c	9.007	9.271	12.929	90	103.66	90	72	-135.16	8.95
f1394	P212121	4.013	9.168	28.749	90	90.00	90	71.4	-135.15	8.96
f401	P21	4.819	9.307	6.116	90	108.77	90	79.1	-135.09	9.01
f176	P21	4.352	9.282	12.824	90	92.32	90	73.2	-135.08	9.02
f1854	P21	4.464	9.324	6.437	90	107.01	90	73.8	-135.08	9.02
f3882	P2/c	8.987	9.281	13.116	90	106.86	90	72.2	-135.08	9.03
f3390	P21/C	8.895	12.559	9.313	90	90.16	90	72.6	-135.08	9.03
f1905	C2/c	15.802	9.224	6.964	90	90.69	90	74.6	-135.07	9.04
f1345	P21/C	12.463	9.068	9.223	90	94.75	90	73	-135.07	9.04
f680	P2/c	17.427	3.582	17.943	90	97.55	90	67.9	-135.05	9.05
f1298	Pbca	8.973	9.290	25.259	90	90	90	72	-135.04	9.06
f556	P2/c	17,490	3.616	17.666	90	94.51	90	67.6	-135.03	9.07
f310	$P2_1/c$	3 659	16.812	8 273	90	94.81	90	74 5	-135.03	9.08
f2522	$P2_{1}/c$	12 810	8 998	9 266	90	104 11	90	73	-134 98	9.00
f803	(2/c	25 175	9,009	9 258	90	92 75	90	72.3	-134 98	9.12
f3496	P-1	7 121	9.005	9 389	74.03	79.53	69 38	69.8	-134 97	9.13
f1434	Phra	9.040	9 253	24 945	90	90	90	72.5	-134.96	9.15
f2051	P21/c	12 665	8 954	9 288	90	95.36	90	72.3	-134.90	9.15
f43	P-1	3 626	11 452	13 200	94 78	94.04	94 72	69.4	-134.92	9.19
f439	P21/c	8 4 3 2	9 301	7 029	90	110 18	90	73.2	-134.92	9.19
f660	P21/C	5 510	18 322	5 787	90	111 86	90	69.7	-134.90	9.20
f782	$P2_1/c$	7 912	1 869	26 732	90.00	03.22	90	73.6	-13/ 90	9.20
f/8	R3c	1/ /70	1/ /70	12 282	00.00	00	120	70.3	-134.00	9.20
f2819	Pccn	25 024	9 001	9 278	90	90	90	70.3	-134.90	9.20
f1147		7 862	12 900	10 363	90	90.71	90	72.4	-134.89	9.21
f3787	Pccn	25.014	9 020	9 257	90	90	90	72.1	-134.88	9.21
f1/10	Phoa	8 952	9.020	2/ 9/1	90	90	90	72.5	-13/ 88	9.22
f673	$P2_1/c$	12 879	8 930	a 290	90	102.40	90	72 7	-13/ 88	9.22
f510	$r_{2}r_{1}c$	0.28/	8.930	25 164	90	01 51	90	72.7	-134.00	9.22
f1200	D2./c	2.64	27 209	23.104	90	91.51	90	69.6	124.00	9.22
f1654	P21/C	0 / 05	2 624	22 10/	00	02.66	00	74.2	124.02	0.24
f5247		27 /60	6 2 2 4	0.265	00	93.00	00	67.0	124.70	0.27
f2671		0 221	0.324 9.907	12 / 00	90	01 52	90	72.5	-134.74	0.32
12071 f4544	C2/c	25.251	0.097	0.275	90	91.52	90	73.3	124.75	9.30
14344 f226	Edd2	22.234	15 672	2 721	90	90.23	90	72.5	124.70	9.40
f2/05	P4.2.2	0.160	0.160	12 551	00	00	00	71.0	124.70	0.42
f127	F41212	7 707	9.100	15 104	90	102.41	90	71.9	124.09	9.42
f1170	(2/)	7.797	0.752	0.210	90	02.41	90	75.4	124.00	9.44
f2642		25.060	0.925	12 464	90	95.50	90	72.0	-134.05	9.45
13043 f1229		9.200	0.950	12.404	90	90	90	/3.1	-134.03	9.47
11328 fc 4 4	P-1 D 1	7.003	1.030	9.277	04.00 C0.01	60.14	11.59	71.1	-134.02	9.48
1544	P-1	0.391	0.424	9.022	10.60	01.22	00.82	71.4	-134.00	9.50
11522	PZ1/C	9.290	8.976	12.689	90	91.32	90	/1.6	-134.60	9.50
144U		3.003	0.980	0.008	90	97.05	90	12	-134.60	9.51
144/	PZ1/C	8.999	9.272	13.190	90	100.40	90	/2.3	-134.58	9.52
15301	PZ1/C	1.032	18.549	8.922	90	109.40	90	08.8 72.0	-134.58	9.52
T427	PZ1/C	12.544	8.919	9.289	90	92.17	90	72.9	-134.58	9.53

ID ^a	Space	а	b	С	α	β	γ	PI ^b	Elatt	ΔE_{latt}
	Group		/ Å			/°			/ kJ m	nol ⁻¹
f468	P21/c	9.848	9.348	11.156	90	93.67	90	74	-134.55	9.55
f4419	P1	3.657	8.086	9.034	88.30	92.05	82.84	71.6	-134.52	9.58
f3245	Pbca	8.905	9.333	24.860	90	90.00	90	73.3	-134.52	9.59
f1196	P21/C	15.385	4.262	17.284	90	113.63	90	72.8	-134.51	9.59
f3785	P2/c	9.328	8.906	12.401	90	91.33	90	73.6	-134.51	9.59
f4217	Fdd2	73.267	6.301	9.283	90	90.00	90	70.4	-134.50	9.60
f1931	P21/C	12.422	9.074	9.217	90	92.27	90	72.9	-134.49	9.62
f2143	P21/C	7.612	15.938	9.278	90	111.03	90	72.1	-134.47	9.63
f1119	<i>P</i> -1	7.408	8.274	9.320	79.07	78.59	69.23	73	-134.45	9.65
f1445	P43	9.215	9.215	12.568	90	90	90	71	-134.44	9.66
f822	Сс	5.477	18.860	5.790	90	111.93	90	67.8	-134.42	9.68
f754	P21/C	8.623	9.306	6.884	90	111.28	90	73.4	-134.42	9.69
f3269	Pbcn	8.950	9.284	24.935	90	90	90	73	-134.42	9.69
f5109	<i>P</i> -1	7.699	8.455	9.267	79.91	68.95	73.46	70.3	-134.37	9.73
f2786	P21/c	4.657	31.814	7.227	90	99.98	90	71.7	-134.36	9.74
f3136	Pbca	9.311	6.978	32.749	90	90	90	71.2	-134.34	9.77
f2556	Pbca	9.306	12.430	17.741	90	90	90	73.8	-134.33	9.77
f2071	Fdd2	36.888	12.189	9.455	90	90	90	71.1	-134.23	9.87
f2538	<i>P</i> -1	7.166	8.914	9.536	72.30	80.03	69.67	69.6	-134.20	9.91
f3505	P21/c	8.946	9.302	12.544	90	90.22	90	72.5	-134.14	9.96
f2198	Pna21	9.324	8.909	12.676	90	90	90	72	-134.13	9.97
f893	<i>P</i> -1	5.362	10.192	11.279	116.14	90.51	94.41	68.2	-134.13	9.98
f2266 (fC - II)	Pccn	15.963	16.183	9.376	90	90	90	62.7	-127.03	17.07

^aStructure ID: f – 5-flucytosine and rank CrystalPredictor. The CASTEP minimised structures were checked for higher symmetry using PLATON.¹⁶ **fC-I** and **fC-II** – isostructural with **C-I** and **C-II**. ^bPacking Index (%) calculated using PLATON.

1.2.3. Cytosine/5-Flucytosine Low-Energy Structures

Table S4. Hypothetical Low-Energy Crystal Structures of Cytosine/5-Flucytosine Anhydrate 1:1 "Cocrystals" (PBE-TS and PBE-D2 energies). Experimental structures are highlighted in green.

ID ^a	Space	а	b	С	α	β	γ	Pl ^b E _{latt}		ΔE_{latt}
	Group		/ Å			/°			/ kJ m	iol ⁻¹
cf3755 (CF-I)	P212121	5.587	7.602	23.549	90	90	90	73.20	-311.22	0.00
cf21	P21/c	9.499	3.928	25.759	90	90.17	90	76.30	-311.04	0.18
cf207 (CF-II)	Pn	3.911	9.391	13.123	90	90.31	90	76.50	-307.43	3.78
cf980	P21/C	8.170	15.934	8.417	90	112.53	90	72.50	-307.06	4.16
cf40 (CF-II)	P21	3.979	9.391	13.023	90	91.70	90	75.60	-306.97	4.25
cf5 (CF-II)	P21/C	7.743	9.420	13.553	90	105.00	90	77.00	-306.83	4.39
cf6028 (CF-II)	P21/c	7.801	9.365	13.664	90	105.84	90	76.80	-306.29	4.93
cf42 (CF-II)	<i>P</i> -1	3.821	9.401	13.362	89.10	87.81	87.18	76.80	-306.01	5.21
cf4 (CF-II)	P21/n	7.778	9.361	13.743	90	106.08	90	76.80	-306.01	5.21
cf16 (CF-II)	P21/C	7.799	9.370	13.668	90	105.58	90	76.60	-305.85	5.37
cf1809 (CF-II)	<i>P</i> -1	3.806	9.400	13.386	89.32	87.50	87.02	77.00	-305.68	5.54
cf50 (CF-II)	P21	3.944	9.384	13.058	90	90.35	90	76.20	-305.65	5.56
cf3 (CF-II)	P21/C	7.760	9.372	13.658	90	105.15	90	76.80	-305.57	5.65
cf11 (CF-II)	P21/n	7.686	9.404	13.645	90	104.37	90	77.00	-305.55	5.66
cf87 (CF-II)	<i>P-</i> 1	3.797	9.404	13.328	88.94	86.78	87.79	77.60	-305.46	5.76
cf1957 (CF-II)	P21/n	7.737	9.394	13.603	90	104.70	90	76.90	-305.16	6.06
cf33	P21/C	9.374	4.079	26.020	90	96.61	90	74.20	-303.18	8.04
cf6888	P21/n	9.287	9.518	11.063	90	97.17	90	76.10	-302.27	8.95
cf3232	C2/c	17.520	6.894	16.950	90	102.16	90	73.20	-302.15	9.06
ct1590	P2 ₁ /c	13.573	3.684	21.121	90	91.21	90	69.40	-301.23	9.99
cf101	P2 ₁ /n	3.883	26.552	9.419	90	92.54	90	75.90	-301.02	10.19
cf1808	$P2_1/n$	3.903	26.510	9.405	90	93.36	90	75.70	-301.01	10.21
cf1339	$P2_1/n$	3.882	26.550	9.429	90	92.18	90	75.80	-300.62	10.60
ct2046	P2 ₁ /C	7.714	9.456	13.601	90	99.80	90	75.50	-300.60	10.62
cf485	$P2_1/n$	12.056	5.022	16.960	90	106.43	90	74.60	-300.32	10.90
cf5379	$P2_1/c$	7.693	9.446	13.658	90	99.56	90	75.40	-300.24	10.97
cf369	P21/n	9.162	9.321	11.652	90	100.27	90	75.50	-299.80	11.42
cf1995	$P2_1/n$	3.901	26.579	9.388	90	90.34	90	75.80	-299.69	11.52
cf2485	P2 ₁ /n	9.167	9.324	11.644	90	100.39	90	75.60	-299.57	11.64
CT5663	P-1	3.660	11.322	12.540	89.19	87.62	82.08	71.60	-299.31	11.91
ct5180	P-1	3.058	11.338	12.501	88.99	87.44	82.14	71.30	-299.21	12.01
cf114	P21/C	15.999	3.852	17.302	90	116.35	90	77.00	-299.20	12.02
c16381	P-1	3.057	2 059	12.580	88.42	87.47	81.90	71.20	-299.18	12.03
c14622	02/0	18.451	3.958	12 696	90	100.96	90	74.00	-298.70	12.40
c132	PZ1 D2	9.215	4.043	13.080	90	90.41	90	71.90	-298.72	12.49
cf4020	PZ1	9.244	3.994	13.782	90	91.88	90	72.00	-298.15	12.07
c14039	PZ1Z1Z1	4.297	9.300	24.772	90	90	90	75.00	-297.90	13.25
cf10	PZ1/C	9.220	3.751	20.590	90	95.09	90	75.20	-297.77	13.45
cf172	P_{21}/c	9.217	3.750	28.055	90	100.60	90	74.90	-297.70	12 55
cf1092	D2./c	0 222	2 721	28.047	90	100.03 05.04	<u> </u>	75.20	-297.00	13.55
cf1027	$r_{21/c}$	12 07/	0.27/	17 15/	90	106.45	90	73.30	297.39	12.05
C11027	D2.2.2.	12.0/4	9.374	25 006	90	100.45 00	90	74.50	-237.49	12.75
cf049	D2./c	4.210	9.299	23.990	90	90	90	75.20	-237.37	12 0/
cf3600	רב <u>ו</u> /נ סי.	3.727	J.23/	20.307 0.221	90	95.07 01.20	90	73.40	-237.20	1/ 25
c13009	Γ21 D2.	4.049	13.045 Q 224	J.ZZI 12 716	90	00 C2	90	71.00	-290.97	1/ /0
cf911	P21	4.005	J.224	13./10	90	90.03 01.26	90	70.50	-290.74	14.40
LIQIT	rZ1	4.008	12./01	9.201	90	91.20	90	70.50	-290.40	14.01

ID ^a	Space	а	b	С	α	β	γ	Pl	Elatt	ΔE_{latt}
	Group		/ Å			/°	° / I			iol ⁻¹
cf6652	P-1	7.104	8.517	8.584	90.92	91.49	96.54	71.30	-296.30	14.92
cf2717	<i>P</i> -1	7.085	8.468	8.618	90.88	91.30	96.24	71.50	-296.25	14.97
cf5714	P21/C	3.802	9.272	34.892	90	127.22	90	75.20	-296.16	15.05
cf1774	<i>P</i> -1	7.477	8.109	8.554	85.04	71.81	84.25	75.20	-296.02	15.20
cf6907	<i>P</i> -1	7.460	8.122	8.579	85.31	71.64	84.49	75.10	-295.89	15.33
cf2469	P-1	7.463	8.121	8.624	85.14	71.42	84.56	74.90	-295.85	15.37
cf2950	P-1	3.702	9.278	15.877	105.56	91.97	91.65	70.30	-295.78	15.44
cf222	C2/c	18.347	3.728	29.287	90	99.46	90	74.50	-295.77	15.45
cf4465	P-1	7.124	8.533	8.557	90.91	91.98	96.45	71.20	-295.68	15.54
cf1911	Pbca	14.015	9.744	14.203	90	90	90	75.80	-295.58	15.64
cf2688	P21/c	3.735	28.912	9.260	90	90.88	90	73.90	-295.45	15.77
cf1952	Pna21	9.290	27.029	4.119	90	90	90	71.00	-294.92	16.30
cf93	Pna21	28.878	9.240	3.759	90	90	90	73.40	-294.75	16.46
cf3263	Pna21	9.326	26.820	4.116	90	90	90	71.30	-294.63	16.59
cf445	<i>P</i> -1	6.694	7.919	9.508	88.04	84.31	78.90	75.00	-294.03	17.19
cf1528	P21	8.474	3.721	15.767	90	95.47	90	74.10	-294.00	17.22
cf298	12	15.933	4.064	17.653	90	115.34	90	70.90	-293.99	17.22
cf76	P21/C	16.206	3.749	17.776	90	115.70	90	75.70	-293.93	17.29
cf1495	P-1	6.700	7.945	9.514	88.02	84.05	78.23	74.90	-293.89	17.33
cf271	P-1	6.670	7.954	9.516	88.71	85.94	78.53	74.70	-293.62	17.60
cf4233	P-1	7.116	8.139	9.449	82.12	80.65	66.07	75.00	-293.07	18.15
cf1060	C2/c	18.387	3.654	32.326	90	103.12	90	69.70	-293.07	18.15
cf1974	P21/c	8.078	6.627	18.690	90	90.88	90	73.60	-292.87	18.35
cf1044	P21/c	8.632	3.692	31.224	90	96.89	90	74.50	-292.85	18.37
cf4705	12/c	12.610	9.307	17.154	90	100.49	90	74.70	-292.84	18.38
cf3862	P21/C	8.082	6.631	18.694	90	90.82	90	73.50	-292.75	18.47
cf127	P-1	7.075	8.174	9.469	82.42	81.03	65.49	75.20	-292.70	18.52
cf3074	P21/C	9.492	6.670	15.499	90	90.95	90	75.00	-292.66	18.55
cf1792	P21/C	7.261	15.812	9.249	90	111.12	90	74.50	-292.33	18.88
cf1433	P-1	7.128	8.102	9.431	82.54	81.35	67.44	74.50	-291.88	19.34
cf1255	Pbca	9.573	13.950	14.712	90	90	90	75.10	-291.57	19.65
cf876	Pna2 ₁	28.393	9.262	3.950	90	90	90	70.70	-291.53	19.69
ct443	<i>P</i> -1	7.141	8.141	9.432	81.88	80.19	67.01	74.50	-291.45	19.77

^aStructure ID: cf – cytosine/5-flucytosine and rank CrystalPredictor. The CASTEP minimised structures were checked for higher symmetry using PLATON.^{16 b}Packing Index (%) calculated using PLATON.

1.3. Representation of the Experimental Structures

The computational models were successful in reproducing the experimental anhydrate and hydrate structures of cytosine (Table S5 taken from ref. 17) and 5-flucytosine (Table S6 taken from ref. 17).

The computationally generated low energy structures were compared using the Solid Form module of Mercury to determine the root mean square deviation of the non-hydrogen atoms in a cluster of 15 molecules (rmsd15).¹⁸

1.3.1. Cytosine

Table S5. Quality of Representation of the Experimental Cytosine Structures.

Method	L	attice para	meters (ce	density	rmsd15			
	а	b	С	α	β	γ	(g cm ⁻³)	(Å) ¹⁸
Calc., PBE-TS, O K	12.846	9.486	3.783	90	90	90	1.601	_
Exptl., C-I, CYTSIN01, RT	13.044	9.496	3.814	90	90	90	1.562	0.098
Calc., PBE-TS, O K	14.999	14.949	9.292	90	90	90	1.418	_
Exptl., C-II , CYTSIN02, RT	15.104	15.121	9.295	90	90	90	1.391	0.068
Calc., PBE-TS, O K	7.780	9.758	7.388	90	99.27	90	1.549	_
Exptl., cH1 , CYTOSM, RT	7.801	9.844	7.683	90	99.70	90	1.475	0.112
Exptl., cH1 , CYTOSM02, RT	7.783	9.825	7.668	90	99.57	90	1.483	0.104
Exptl., cH1 , CYTOSM11, RT	7.783	9.825	7.668	90	99.57	90	1.483	0.104
Exptl., cH1 , CYTOSM13, 100 K	7.718	9.814	7.522	90	100.48	90	1.531	0.080
Exptl., cH1 , CYTOSM03, 97 K	7.728	9.817	7.520	90	100.50	90	1.529	0.079
Exptl., cH1 , CYTOSM12, 90 K	7.716	9.834	7.513	90	100.52	90	1.530	0.081
Exptl., cH1 , CYTOSM04, 82 K	7.713	9.830	7.505	90	100.52	90	4.592	0.080

1.3.2. 5-Flucytosine

Table S6. Quality of Representation of the Experimental 5-Flucytosine Anhydrate and Monohydrate Structures.

Method	L	attice para	meters (ce	ll vectors/	Å, angles/°)	density	rmsd15
	а	b	С	α	β	γ	(g cm ⁻³)	(Å) ¹⁸
Calc., PBE-TS, O K	6.688	6.688	23.354	90	90	90	1.642	_
Exptl., F-I , MEBQEQ01, 150 K	6.639	6.639	23.471	90	90	90	1.658	0.05
Calc., PBE-TS, O K	4.080	9.522	12.896	90	91.78	90	1.712	-
Exptl., F-II , MEBQEQ, 150 K	4.063	9.521	12.739	90	92.99	90	1.743	0.08
Calc., PBE-TS, O K	7.406	9.427	17.570	90	99.06	90	1.613	_
Exptl., fH1-I , BIRMEU, RT	7.562	9.390	21.361	90	125.13	90	1.575	0.08
Exptl., fH1-I , BIRMEU01, RT	7.514	9.424	17.692	90	99.16	90	1.580	0.07
Exptl., fH1-I , BIRMEU02, 150 K	7.387	9.394	17.579	90	98.61	90	1.620	0.06
Calc., PBE-TS, O K	4.133	8.213	9.917	109.24	100.52	97.31	1.596	_
Exptl., fH1-II , BIRMEU03, 150 K	4.103	8.273	9.919	110.04	100.46	96.71	1.601	0.06
Calc., PBE-TS, O K	14.621	12.432	13.739	90	115.15	90	1.623	_
Exptl., Hemihydrate, DUKWIQ, 173 K	14.704	12.455	13.792	90	115.47	90	1.609	0.04
Calc., PBE-TS, O K	12.185	9.445	13.898	90	111.88	90	1.558	_
Exptl., Hemipentahydrate, MEBQUG,	12.238	9.425	13.873	90	111.39	90	1.553	0.09
150 K								

1.4. Selected Computed Low-Energy Structures (Possible Polymorphs)

1.4.1. Cytosine: c123

TITL c123 CELL 1.54180 9.4182 3.7288 26.2602 90.000 90.287 90.000 8 0.0000 0.0000 0.0000 0.000 0.000 0.000 ZERR LATT 1 SYMM - X , 0.50000 + Y , 0.50000 - Z SFAC C H N O C 1 0.76433 0.96496 0.19062 11.00000 0.0500 C 1 0.51359 0.92483 0.18299 11.00000 0.0500 C 1 0.65295 1.19121 0.11688 11.00000 0.0500 C 1 0.26262 0.59065 0.06231 11.00000 0.0500 C 1 0.12925 0.69788 0.04168 11.00000 0.0500 C 1 0.01164 0.61044 0.06882 11.00000 0.0500 C 1 0.15316 0.33793 0.13432 11.00000 0.0500 C 1 0.63168 0.85621 0.21125 11.00000 0.0500 H 2 0.42774 1.19543 0.12117 11.00000 -1.20000 H 2 0.87780 0.82376 0.25414 11.00000 -1.20000 H 2 0.40600 0.85437 0.19429 11.00000 -1.20000 H 2 0.98153 0.98423 0.20181 11.00000 -1.20000 H 2 0.62716 0.72376 0.24787 11.00000 -1.20000 H 2 0.47920 0.57042 0.05125 11.00000 -1.20000 H 2 0.37641 0.74198 -0.00032 11.00000 -1.20000 H 2 0.12300 0.84031 0.00573 11.00000 -1.20000 H 2-0.09675 0.66868 0.05671 11.00000 -1.20000 H 2-0.07290 0.32749 0.12951 11.00000 -1.20000 N 3 0.52321 1.09116 0.13726 11.00000 0.0500 N 3 0.88474 0.90915 0.21695 11.00000 0.0500 N 3 0.77279 1.12333 0.14445 11.00000 0.0500 N 3 0.02266 0.43588 0.11391 11.00000 0.0500 N 3 0.27225 0.41765 0.10745 11.00000 0.0500 N 3 0.38316 0.66178 0.03708 11.00000 0.0500 O 4 0.65596 1.34640 0.07410 11.00000 0.0500 O 4 0.15756 0.17188 0.17637 11.00000 0.0500 END

1.4.2. 5-Flucytosine: f3194

TITL f3194 CELL 1.54180 17.4613 6.9328 17.0909 90.000 101.689 90.000 ZERR 16 0.0000 0.0000 0.0000 0.000 0.000 0.000 LATT 7 Y, 0.50000 - Z SYMM -Х, SFAC C H F N O C 1 0.16228 0.39782 0.32903 11.00000 0.0500 C 1 0.28985 0.52959 0.33226 11.00000 0.0500 C 1 0.22191 0.45955 0.28904 11.00000 0.0500 C 1 0.24131 0.49106 0.45311 11.00000 0.0500 C 1 0.45457 0.30491 0.07635 11.00000 0.0500 С 1 0.53031 0.24192 0.11519 11.00000 0.0500 C 1 0.58248 0.18258 0.07136 11.00000 0.0500 C 1 0.49004 0.25358 -0.04866 11.00000 0.0500 H 2 0.35225 0.60598 0.44580 11.00000 -1.20000 H 2 0.05279 0.28285 0.32121 11.00000 -1.20000 H 2 0.08245 0.31308 0.22795 11.00000 -1.20000 H 2 0.33874 0.57447 0.30606 11.00000 -1.20000 H 2 0.60575 0.14535 -0.04336 11.00000 -1.20000 H 2 0.34547 0.40917 0.08568 11.00000 -1.20000 H 2 0.41296 0.36280 0.17739 11.00000 -1.20000 H 2 0.64064 0.12777 0.09687 11.00000 -1.20000 F 3 0.21037 0.44589 0.20753 11.00000 0.0500 F 3 0.55014 0.24192 0.19697 11.00000 0.0500 N 4 0.29918 0.54529 0.41256 11.00000 0.0500 N 4 0.09565 0.31821 0.28937 11.00000 0.0500 N 4 0.17358 0.41742 0.40893 11.00000 0.0500 N 4 0.56241 0.18819 -0.00947 11.00000 0.0500 N 4 0.43731 0.30791 -0.00431 11.00000 0.0500 N 4 0.40030 0.36252 0.11651 11.00000 0.0500 O 5 0.25236 0.50958 0.52772 11.00000 0.0500 0 5 0.47472 0.26205 -0.12428 11.00000 0.0500 END

1.4.3. Cytosine/5-Flucytosine: ss21

TITL ss21 CELL 1.54180 9.4985 3.9283 25.7589 90.000 90.169 90.000 ZERR 4 0.0000 0.0000 0.0000 0.000 0.000 0.000 LATT 1 - X, 0.50000 + Y, 0.50000 - Z SYMM SFAC C H F N O C 1 0.26471 0.56161 0.06618 11.00000 0.0500 C 1 0.13393 0.68585 0.04729 11.00000 0.0500 C 1 0.01279 0.59921 0.07155 11.00000 0.0500 C 1 0.14689 0.29487 0.13559 11.00000 0.0500 C 1 0.76338 0.93069 0.19064 11.00000 0.0500 C 1 0.51479 0.87993 0.18420 11.00000 0.0500 C 1 0.63395 0.80778 0.21123 11.00000 0.0500 C 1 0.64694 1.18067 0.11940 11.00000 0.0500 H 2-0.07716 0.30048 0.12950 11.00000 -1.20000 H 2 0.47977 0.53994 0.05471 11.00000 -1.20000 H 2 0.37698 0.73514 0.00430 11.00000 -1.20000 H 2-0.09151 0.67676 0.05878 11.00000 -1.20000 H 2 0.42483 1.16232 0.12455 11.00000 -1.20000 H 2 0.97930 0.95046 0.20105 11.00000 -1.20000 H 2 0.87918 0.76998 0.25310 11.00000 -1.20000 H 2 0.41005 0.79561 0.19554 11.00000 -1.20000 H 2 0.63254 0.65986 0.24668 11.00000 -1.20000 F 3 0.13614 0.88858 0.00430 11.00000 0.0500 N 4 0.01967 0.40307 0.11493 11.00000 0.0500 N 4 0.26785 0.37348 0.10992 11.00000 0.0500 N 4 0.38412 0.63295 0.04088 11.00000 0.0500 N 4 0.52038 1.06513 0.13986 11.00000 0.0500 N 4 0.88399 0.86902 0.21611 11.00000 0.0500 N 4 0.76818 1.10693 0.14554 11.00000 0.0500 O 5 0.14802 0.11926 0.17686 11.00000 0.0500 0 5 0.64527 1.35355 0.07809 11.00000 0.0500 END

2. EXPERIMENTAL

2.1. Preparation of Anhydrate Solid Solutions

Anhydrate **CF-I** was obtained by slurring the two compounds in 1-butanol in between 10 and 40 °C for two weeks.

Anhydrate **CF-II** was prepared starting from the monohydrate I solid solution. **C-I** and **F-II** were stirred in water in the temperature range from 10 to 20 °C for 72 hours. The resulting monohydrate was filtered and dried at 43 % RH (over saturated a saturated K₂CO₃ solution). Dehydration of the monohydrate over P_2O_5 (0% RH) at 25 °C resulted in **CF-II**. (Heating **CF-II** to 230 °C for 30 minutes or dehydrating the monohydrate in a sealed DSC pan leads to **CF-I**.)

2.2. Methodology

2.2.1. Thermal Analysis

A Reichert Thermovar polarisation microscope, equipped with a Kofler hot-stage (Reichert, A), was used for *hot-stage thermal microscopy (HSM)* investigations. Photographs were taken with an Olympus DP71 digital camera (Olympus, D).

Differential Scanning Calorimetry (DSC) thermograms were recorded with a DSC 7 (Perkin-Elmer Norwalk, Ct., USA) and controlled by the Pyris 2.0 software. Using a UM3 ultramicrobalance (Mettler, Greifensee, CH), samples of approximately 2 – 3 mg were weighed into perforated aluminium pans. The samples were heated using rates in between 5 and 20 °C min⁻¹ with dry nitrogen as the purge gas (purge: 20 mL min⁻¹). The instrument was calibrated for temperature with pure benzophenone (mp 48.0 °C) and caffeine (236.2 °C), and the energy calibration was performed with indium (mp 156.6 °C, heat of fusion 28.45 J g⁻¹). The errors on the stated temperatures (extrapolated onset temperatures) and enthalpy values were calculated at the 95% confidence intervals (CI) and are based on three measurements.

Thermogravimetric Analysis (TGA) was carried out with a TGA7 system (Perkin-Elmer, Norwalk, CT, USA) using the Pyris 2.0 Software. Approximately 4 - 6 mg of sample was weighed into a platinum pan. Two-point calibration of the temperature was performed with ferromagnetic materials (Alumel and Ni, Curie-point standards, Perkin-Elmer). A heating rate of 5 °C min⁻¹ was applied and dry nitrogen was used as a purge gas (sample purge: 20 mL min⁻¹, balance purge: 40 mL min⁻¹).

17

2.2.2. Infrared Spectroscopy

Infrared spectra were recorded with a diamond ATR (PIKE GaldiATR) crystal on a Bruker Vertex 70 spectrometer (Bruker Analytische Messtechnik GmbH, D). The spectra were recorded in the range of 4000 to 30 cm⁻¹ with an instrument resolution of 2 cm⁻¹ (256 scans per spectrum).

2.2.3. Powder X-ray Diffraction

Powder X-ray diffraction (PXRD) patterns were obtained using an X'Pert PRO diffractometer (PANalytical, Almelo, NL) equipped with a θ/θ coupled goniometer in transmission geometry, programmable XYZ stage with well plate holder, Cu-K_{α 1,2} radiation source with a focussing, a 0.5° divergence slit and a 0.02° Soller slit collimator on the incident beam side, a 2 mm antiscattering slit and a 0.02° Soller slit collimator on the diffracted beam side mirror and a solid state PIXcel detector. The patterns were recorded at a tube voltage of 40 kV and tube current of 40 mA, applying a step size of $2\theta = 0.013^\circ$ with 400 s per step in the 2θ range between 2° and 70°.

2.3. Solvent Screen

The experimental screen for mixed cytosine/5-flucytosine solid forms encompassed Crystal 16[®] cycling experiments, slurry experiments in selected organic solvents, dehydration and sublimation experiments.

2.3.1. Crystal16[®] Cycling Experiments

CF-II (10 – 15 mg) and solvents (1.0 mL) were dispensed into 1.8 mL vials. The vials were transferred to a Crystal16[™] parallel crystalliser, equipped with programmable heating/cooling, magnetic stirring and turbidity sensors. The suspensions were stirred at 900 rpm at 5 °C for 30 minutes, heated to X °C at 0.1 °C min⁻¹, equilibrated for another 10 minutes, then cooled to 5 °C at 0.1 °C min⁻¹ under stirring. The cycle was repeated a second time with stirring only upon heating. The solid products were isolated by filtration and analysed with PXRD (Table S7).

Solvent	Temperature Range / °C	Solid Form ^a
methanol	5 – 50	S-MeOH > H1
ethanol	5 – 30	S-EtOH
1-propanol	5 – 65	CF-II
2-propanol	5 – 65	CF-I and CF-II
1-butanol	5 – 65	CF-I and CF-II
iso-butanol	5 – 65	CF-II
1-pentanol	5 – 90	CF-I and CF-II
iso-pentanol	5 – 90	CF-I and CF-II
acetone	5 — 50	CF-II
2-butanone	5 – 65	CF-II
cyclohexanone	5 – 110	CF-I and CF-II
ethyl acetate	5 – 65	CF-II
butyl acetate	5 – 110	CF-II
methyl isobutyl ketone	5 – 90	CF-II
dimethyl sulfoxide	5 – 90	S-DMSO
dimethyl formamide	5 – 110	S-DMF
diethyl ether	5 – 30	CF-I and CF-II
diisopropyl ether	5 – 50	CF-I and CF-II
methyl t-butyl ether	5 – 30	H1 and CF-II
1,4-dioxane	5 – 65	CF-II
tetrahydrofuran	5 — 50	CF-II
acetonitrile	5 — 65	CF-II
nitromethane	5 – 90	CF-II
dichloromethane	5 – 30	CF-II
chloroform	5 — 50	CF-I and CF-II
carbon tetrachloride	5 – 50	CF-II
toluene	5 – 110	CF-II > CF-I
xylene	5 – 90	CF-II
hexane	5 — 50	CF-II
cyclohexane	5 – 50	CF-II

Table S7. Summary of Cytosine/5-Flucytosine Cycling Experiments.

^aH1 – monohydrate, S-MeOH – methanol solvate, S-EtOH – ethanol solvate, S-DMF – dimethyl formamide solvate, S-DMSO – dimethyl sulfoxide solvate.

2.3.2. Slurry Experiments

Suspensions of cytosine (C-I) and 5-flucytosine (F-I and F-II mixture) were prepared in methanol, ethanol, dimethyl formamide, dimethyl sulfoxide and 1-butanol and then stirred in the temperature range from 10 to 30 °C (40 °C – 1BuOH) for at least 96 hours. The wet-cakes were analysed by PXRD (measured between two mylar foils to prevent solvent loss). The solvate stoichiometry was determined with TGA.

Solvent	Starting Forms	Temperature Range / °C	Solid Form
methanol	C-I + F-I/F-II	10 - 30	S-MeOH > H1
ethanol	C-I + F-I/F-II	10 - 30	S-EtOH > CF-II
DMF	C-I + F-I/F-II	10 - 30	S-DMF
DMSO	C-I + F-I/F-II	10 - 30	S-DMSO > CF-II
1-butanol	C-I + F-I	10 - 40	CF-I
1-butanol	C-I + F-II	10 - 40	CF-I > CF-II
1-butanol	C-I + F-I/F-II	10 - 40	CF-I

Table S8. Summary of Cytosine/5-Flucytosine Slurry Experiments.

2.4. Dehydration Experiments

Dehydration studies of the monohydrate solid solution were performed and the resulting product was analysed with PXRD and TGA (Table S13).

Table S9. Dehydration Studies of Cytosine/F-Flucytosine Monohydrate I. Given are the Drying Conditions and Products.

Temperature	Solid form	
Temperatu	re, 0% RH	
25 °C	CF-II	
40 °C	CF-II	
60 °C	CF-II >> CF-I	
Temperature, ambient R		
40 °C	CF-II	
60 °C	CF-II >> CF-I	
Vacuum		
20 °C	CF-II	
0 °C	CF-II	
–20 °C	CF-II	
DSC, ci	losed	
170 °C	CF-I	

2.5. Sublimation Experiments

Sublimation experiments of the solid solutions lead to phase separation ("purification") and 5-flucytosine single crystals were obtained (Figure S1).

Figure S1. Cytosine/5-Flucytosine sublimation experiments at 245 °C resulting in 5-flucytosine single crystals.

2.6. Structure Determination: Simulated Annealing and Rietveld Refinement

The PXRD patterns, recorded at 25 °C, were indexed using the first twenty peaks with DICVOL04 and the space group was determined based on a statistical assessment of systematic absences,¹⁹ as implemented in the DASH structure solution package.²⁰

2.6.1. Solid Solution Anhydrate I (CF-I)

Anhydrate **CF-I** indexed to a tetragonal unit cell, $P4_12_12$, with Z'=1. The data were background subtracted and truncated to 50° 2 θ for Pawley fitting.⁵² Simulated annealing was used to optimise the cytosine/5-flucytosine model against the diffraction data set (75 reflections) in direct space. The internal coordinate (Z-matrix) description was derived from the PBE-TS optimised structure, with N–H distances normalized to 0.9 Å and C–H distances to 0.95 Å. The structure was solved using 200 simulated annealing runs of 2.5 × 10⁷ moves per run as implemented in DASH, allowing 6 external degrees of freedom. The best solutions returned a χ^2 ratio of ca. 2.43 (profile χ^2 / Pawley χ^2). A restrained Rietveld refinement was carried out using the best solution returned from the simulated annealing in TOPAS Academic V5.²¹ The background was modeled by a set of consecutive points with refineable intensities. The isotropic temperature factor (B_{iso}) for non-hydrogen atoms was set to 3.25 and for hydrogen atoms to 4.0. The final refinement included a total of 74 parameters (20 profile, 2 cell, 1 scale, 8 preferred orientation, 1 occupancy factor, 42 positon). The site oppupancies for H13 and F14 were refined as occ(H13) + occ(F14) = 1. The converged occ values were not significantly

different from the used starting ratio. One flatten restraint and 39 distance and angle restraints were applied. The refinement converged at R_{wp} = 6.29%, R_{exp} = 3.17%, R_p = 4.45%.

2.6.2. Solid Solution Anhydrate II (CF-II)

Anhydrate **CF-II** indexed to a monoclinic unit cell, $P2_1/n$, with Z'=1. The data were background subtracted and truncated to 52.2° 2θ for Pawley fitting.⁵² Simulated annealing was used to optimise the cytosine/5-flucytosine model against the diffraction data set (95 reflections) in direct space. The internal coordinate (Z-matrix) description was derived from the PBE-TS optimised structure, with N–H distances normalized to 0.9 Å and C–H distances to 0.95 Å. The structure was solved using 200 simulated annealing runs of 2.5×10^7 moves per run as implemented in DASH, allowing 6 external degrees of freedom. The best solutions returned a χ^2 ratio of ca. 2.41 (profile χ^2 / Pawley χ^2). A restrained Rietveld refinement was carried out using the best solution returned from the simulated annealing in TOPAS Academic V5.²¹ The background was modeled by a set of consecutive points with refineable intensities. The isotropic temperature factor (*B*_{iso}) for non-hydrogen atoms was set to 3.25 and for hydrogen atoms to 4.0. The final refinement included a total of 69 parameters (20 profile, 4 cell, 1 scale, 1 preferred orientation, 1 occupancy factor, 42 positon). The site oppupancies for H13 and F14 were refined as occ(H13) + occ(F14) = 1. The converged occ values were not significantly different from the used starting ratio. One flatten restraint and 39 distance and angle restraints were applied. The refinement converged at R_{wp} = 6.05%, R_{exp} = 3.34%, R_p = 4.41%.

Cell parameters for **CF-I** and **CF-II**, details of the data collection and a list of atomic parameters can be found in Tables S10-S12. Observed and calculated PXRD patterns are shown in Figure S2.

	CF-I	CF-II
Crystal system, space group	Tetragonal, P4 ₁ 2 ₁ 2	Monoclinic, P 21/n
Formula	C ₄ H _{4.393} N ₃ OF _{0.607}	$C_4H_{4.359}N_3OF_{0.641}$
<i>a,</i> Å	6.67372(5)	4.00808(9)
b, Å	6.67372(5)	9.43931(11)
<i>c,</i> Å	23.6290(3)	13.0306(2)
<i>β</i> , °	90	91.179(2)
Z	8	4
<i>V</i> , Å ³	1052.40(2)	492.889(15)
Т, °С	25	25
M (g/mol)	122.023	122.635
λ	CuK _{α1,2}	CuK α _{1,2}

 Table S10.
 Crystallographic Data for Anhydrates CF-I and CF-II.

Table S11. Atomic Coordinates of the Structure Refinement of CF-I.

atom			CF-I		
	х	У	Z	B _{iso}	Осс.
N1	0.5179(17)	0.8764(9)	0.2701(5)	3.25	1
C2	0.6880(18)	0.7866(16)	0.2469(3)	3.25	1
N3	0.7594(11)	0.6183(14)	0.2713(4)	3.25	1
C4	0.662(2)	0.5319(13)	0.3149(4)	3.25	1
C5	0.487(3)	0.624(3)	0.3370(5)	3.25	1
C6	0.4165(11)	0.794(3)	0.3139(6)	3.25	1
N7	0.7359(9)	0.3660(14)	0.3376(3)	3.25	1
08	0.7757(7)	0.8701(7)	0.2065(3)	3.25	1
Н9	0.467(8)	0.997(7)	0.254(3)	4.0	1
H10	0.669(7)	0.300(8)	0.368(3)	4.0	1
H11	0.852(9)	0.306(8)	0.3218(18)	4.0	1
H12	0.306(6)	0.859(9)	0.326(3)	4.0	1
H13	0.42(5)	0.57(5)	0.365(11)	4.0	0.393(11)
F14	0.387(2)	0.536(2)	0.3805(5)	3.25	0.607(11)

atom			ssF-II		
	х	У	Z	B _{iso}	Осс.
N1	-0.069(2)	0.0149(11)	0.2266(10)	3.25	1
C2	-0.182(2)	0.1442(19)	0.2670(6)	3.25	1
N3	-0.097(2)	0.2670(8)	0.2172(7)	3.25	1
C4	0.074(2)	0.2621(11)	0.1279(9)	3.25	1
C5	0.195(3)	0.130(2)	0.0909(10)	3.25	1
C6	0.106(3)	0.0063(14)	0.1379(11)	3.25	1
N7	0.1359(19)	0.3814(8)	0.0737(5)	3.25	1
08	-0.3389(11)	0.1448(7)	0.3498(5)	3.25	1
Н9	-0.118(15)	-0.067(6)	0.260(5)	4.0	1
H10	0.252(13)	0.373(7)	0.015(4)	4.0	1
H11	0.107(13)	0.468(5)	0.104(5)	4.0	1
H12	0.175(13)	-0.086(6)	0.117(4)	4.0	1
H13	0.175(13)	-0.086(6)	0.117(4)	4.0	0.359(9)
F14	0.378(4)	0.130(2)	0.0055(8)	3.25	0.641(9)

 Table S12.
 Atomic Coordinates of the Structure Refinement of CF-II.

Figure S2. Observed (black points), calculated (red line) and difference (diff.) profiles for the Rietveld refinements of (a) **CF-I** and (b) **CF-II**. Green tick marks denote the peak positions.

2.7. Solvates

2.7.1. Methanol Solvate

Powder X-Ray Diffraction

According to the PXRD patterns (Figure S3) the methanol solvate is not phase pure, but contains traces of the monohydrate. The methanol solvate is isostructural with the 5-flucytosine hemimethanol solvate (MEBQOA²²).

Figure S3. Comparison of anhydrous (red), monohydrate (blue), methanol solvate (green) and desolvated methanol solvate (violet) PXRD patterns. Note that the methanol solvate pattern is not phase pure.

Thermogravimetric Analysis

The methanol solvate loses its solvent molecules immediately when exposed to dry conditions (N₂). The TGA curve shows a two-step mass loss, corresponding to the loss of methanol and water (sample not phase pure). The calculated mass loss for phase pure methanol hemisolvate solid solutions is listen in Table S13.

Figure S4. TGA curve of methanol solvate/monohydrate mixture.

% 5-Flucytosine	M _r (AH)	W _w a / %	W _d ^b / %
100	129.093	11.040	12.410
90	127.294	11.179	12.586
80	125.495	11.321	12.766
70	123.596	11.467	12.952
60	121.897	11.616	13.143
50	120.098	11.770	13.340
40	118.299	11.928	13.543
30	116.500	12.089	13.752
20	114.701	12.256	13.968
10	112.902	12.427	14.190
0	111.103	12.603	14.420

Table S13. Solid Solutions of Cytosine and 5-Flucytosine Methanol Hemisolvate.

^aCalculated weight loss relative to wet substance (substance and solvent). ^bCalculated weight loss relative to dry substance (substance without solvent).

2.7.2. Ethanol Solvate

Powder X-Ray Diffraction

The slurry method produced an ethanol solvate with anhydrate II impurities (Figure S5). The PXRD characteristics of the ethanol solvate of the solid solutions suggests that it is isostructural with the 5-flucytosine hemiethanol solvate (see ref. 17).

Figure S5. Comparison of anhydrous (red), monohydrate (blue), ethanol solvate (green) and (partly) desolvated ethanol solvate (violet) PXRD patterns. Note that the ethanol solvate patters is not phase pure.

Thermogravimetric Analysis

The ethanol hemisolvate is, compared to the methanol solvate, stable. Desolvation occurs at temperatures > 80 °C. The measured mass loss in the TGA experiments is lower than expected for a hemisolvate (Table S14). This can be related to the fact that the solvate was contaminated with **CF-II**.

Figure S6. TGA curve of ethanol solvate/CF-II.

% 5-Flucytosine	M _r (AH)	Ww ^a / %	Wd ^b / %
100	129.093	15.142	17.843
90	127.294	15.323	18.095
80	125.495	15.508	18.355
70	123.596	15.698	18.622
60	121.897	15.893	18.897
50	120.098	16.093	19.180
40	118.299	16.298	19.471
30	116.500	16.508	19.772
20	114.701	16.724	20.082
10	112.902	16.945	20.402
0	111.103	17.172	20.733

Table S14. Solid Solutions of Cytosine and 5-Flucytosine Ethanol Hemisolvate.

^aCalculated weight loss relative to wet substance (substance and solvent). ^bCalculated weight loss relative to dry substance (substance without solvent).

2.7.3. Dimethyl Formamide Solvate

Powder X-Ray Diffraction

The PXRD characteristics of the DMF solvate (Figure S7) of the solid solution suggests that it is isostructural with the 5-flucytosine DMF monosolvate (see ref. 17).

Figure S7. Comparison of anhydrous (red), monohydrate (blue), DMF solvate (green) and PXRD patterns of storage experiments of the DMF solvate (violet).

Thermogravimetric Analysis

The mass loss derived from TGA experiments of the DMF solvate confirms a monosolvate stoichiometry (Figure S8 & Table S15).

Figure S8. TGA curve of DMF monosolvate.

% 5-Flucytosine	M _r (AH)	Ww ^a / %	Wd ^ь / %
100	129.093	36.152	56.622
90	127.294	36.476	57.422
80	125.495	36.807	58.245
70	123.596	37.143	59.092
60	121.897	37.486	59.964
50	120.098	37.835	60.862
40	118.299	38.191	61.788
30	116.500	38.553	62.742
20	114.701	38.922	63.726
10	112.902	39.299	64.742
0	111.103	39.683	65.790

Table S15. Solid Solutions of Cytosine and 5-Flucytosine DMF Monosolvate.

^aCalculated weight loss relative to wet substance (substance and solvent). ^bCalculated weight loss relative to dry substance (substance without solvent).

2.7.4. Dimethyl Sulfoxide Solvate

The slurry method produced a DMSO solvate with **CF-II** impurities (Figure S9). The PXRD characteristics of the DMSO solvate of the solid solution suggests that it is isostructural with the 5-flucytosine DMSO solvate (DUKWAI²³).

Figure S9. Comparison of anhydrous (red), monohydrate (blue), DMSO solvate (green) and storage experiments of DMSO solvate (violet) PXRD patterns. Note that the DMSO solvate patters is not phase pure.

Thermogravimetric Analysis

The measured mass loss in the TGA experiments is lower than expected for a monosolvate stoichiometry (Table S16), which can be related to the fact that the solvate was not phase pure but contaminated with **CF-II**.

Figure S10. TGA curve of DMSO monosolvate/CF-II.

% 5-Flucytosine	Mr (AH)	Ww ^a / %	Wd ^b / %
100	129.093	37.705	60.526
90	127.294	38.035	61.381
80	125.495	38.371	62.261
70	123.596	38.713	63.167
60	121.897	39.061	64.099
50	120.098	39.416	65.059
40	118.299	39.777	66.049
30	116.500	40.144	67.069
20	114.701	40.519	68.120
10	112.902	40.900	69.206
0	111.103	41.289	70.326

Table S16. Solid Solutions of Cytosine and 5-Flucytosine DMSO Monosolvate.

^a Calculated weight loss relative to wet substance (substance and solvent). ^bCalculated weight loss relative to dry substance (substance without solvent).

2.8. PXRD Comparisons: 5-Flucytosine and Cytosine/5-Flucytosine Solid Solutions

Figure S11. PXRD diffractograms of anhydrous forms of 5-Flucytosine (I and II) and cytosine/5-flucytosine solid solutions (ss).

Figure S12. PXRD diffractograms of monohydrate I forms of 5-Flucytosine and cytosine/5-flucytosine solid solution (SS).

Figure S13. PXRD diffractograms of solvate forms of 5-Flucytosine (F) and cytosine/5-flucytosine solid solutions (CF). Note that the patterns for F_DMSO and F_MeOH were simulated from the single crystal structure data and that some of the experimental solvates are phase mixtures.

3. OVERVIEW SOLID FORMS

Figure S14. Overview over cytosine (C), 5-flucytosine (F) and mixed solid forms. Isopolymorphs, with the exception of C-I and f777, are connected with blue dashed lines. Structures c1307, c304 and f777 are isopolymorphs that have not been observed yet, but are feasible kinetic forms. Grey symbols indicate hydrates and solvates of the solid solution that are likely to exist as well.

Reference List

- 1. Groom, C. R.; Bruno, I. J.; Lightfoot, M. P.; Ward, S. C. The Cambridge Structural Database. Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 2016, 72 (2), 171-179.
- 2. Karamertzanis, P. G.; Pantelides, C. C. Ab initio crystal structure prediction I. Rigid molecules. *J. Comput. Chem.* **2005**, *26* (3), 304-324.
- 3. Karamertzanis, P. G.; Pantelides, C. C. Ab initio crystal structure prediction. II. Flexible molecules. *Molecular Physics* **2007**, *105* (2-3), 273-291.
- 4. Habgood, M.; Sugden, I. J.; Kazantsev, A. V.; Adjiman, C. S.; Pantelides, C. C. Efficient Handling of Molecular Flexibility in Ab Initio Generation of Crystal Structures. *J. Chem. Theory Comput.* **2015**, *11* (4), 1957-1969.
- Coombes, D. S.; Price, S. L.; Willock, D. J.; Leslie, M. Role of Electrostatic Interactions in Determining the Crystal Structures of Polar Organic Molecules. A Distributed Multipole Study. J. Phys. Chem. 1996, 100 (18), 7352-7360.
- Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles From Molecular Electrostatic Potentials - The Need For High Sampling Density in Formamide Conformational-Analysis. *J. Comput. Chem.* 1990, *11* (3), 361-373.
- 7. Price, S. L.; Leslie, M.; Welch, G. W. A.; Habgood, M.; Price, L. S.; Karamertzanis, P. G.; Day, G. M. Modelling Organic Crystal Structures using Distributed Multipole and Polarizability-Based Model Intermolecular Potentials. *Phys. Chem. Chem. Phys.* **2010**, *12* (30), 8478-8490.
- 8. Stone, A. J. Distributed multipole analysis: Stability for large basis sets. J. Chem. Theory Comput. 2005, 1 (6), 1128-1132.
- 9. GDMA: A Program for Performing Distributed Multipole Analysis of Wave Functions Calculated Using the Gaussian Program System, version 2.2; University of Cambridge: Cambridge, United Kingdom, 2010
- 10. Kazantsev, A. V.; Karamertzanis, P. G.; Adjiman, C. S.; Pantelides, C. C. Efficient Handling of Molecular Flexibility in Lattice Energy Minimization of Organic Crystals. *J. Chem. Theory Comput.* **2011**, *7* (6), 1998-2016.
- 11. Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. *Z. Kristallogr.* **2005**, *220* (5-6), 567-570.
- 12. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996**, *77* (18), 3865-3868.
- 13. Vanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. *Phys. Rev. B* **1990**, *41* (11), 7892-7895.
- 14. Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. *Phys. Rev. Lett.* **2009**, *102* (7), 073005-1-073005/4.
- 15. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comput. Chem.* **2006**, *27* (15), 1787-1799.
- 16. PLATON, A Multipurpose Crystallographic Tool, Utrecht University: Utrecht, The Netherlands, 2003
- 17. Braun, D. E.; Kahlenberg, V.; Griesser, U. J. Cyt_FCyt hy. Mol. Pharm. 2017, submitted.
- 18. Chisholm, J. A.; Motherwell, S. COMPACK: a program for identifying crystal structure similarity using distances. *J. Appl. Crystallogr.* **2005**, *38*, 228-231.
- 19. Markvardsen, A. J.; David, W. I. F.; Johnson, J. C.; Shankland, K. A probabilistic approach to space-group determination from powder diffraction data. *Acta Crystallogr.*, Sect. A. **2001**, *57*, 47-54.
- 20. David, W. I. F.; Shankland, K.; van de Streek, J.; Pidcock, E.; Motherwell, W. D. S.; Cole, J. C. DASH: a program for crystal structure determination from powder diffraction data. *J. Appl. Crystallogr.* **2006**, *39*, 910-915.
- 21. Topas Academic V5, Coelho Software: Brisbane, 2012
- 22. Hulme, A. T.; Tocher, D. A. The Discovery of New Crystal Forms of 5-Fluorocytosine Consistent with the Results of Computational Crystal Structure Prediction. *Cryst. Growth Des.* **2006**, *6* (2), 481-487.
- 23. Tutughamiarso, M.; Bolte, M.; Egert, E. New pseudopolymorphs of 5-fluorocytosine. *Acta Crystallogr. , Sect. C: Cryst. Struct. Commun.* **2009**, *65* (11), o574-o578.