Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI) for CrystEngComm.

Planar 2-(2-hydroxyphenyl)benzothiazole-based dyes functionalized via triple bonds as exceedingly efficient solid-state fluorophores

Yahui Niu,<sup>a</sup> Qin Wang,<sup>a</sup> Haoran Wu,<sup>b</sup> Yuxiu Wang<sup>a</sup> and Yanrong Zhang<sup>\*a</sup>

<sup>a</sup> College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

<sup>b</sup> Innovation Experimental College, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

## **Corresponding author:**

College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi

712100, P. R. China

Tel: +86-29-87092226; E-mail: zhangyr@nwsuaf.edu.cn (Y. R. Zhang).

## **Measurement Conditions and Instruments**

UV absorption spectra were obtained on a UV-vis spectrophotometer (U-3310). The fluorescence spectra were recorded on a fluorospectrophotometer (F-7000). The fluorescence quantum yield ( $\Phi_f$ ) in solution was determined by using quinine sulfate ( $\Phi_f = 0.55$  in 0.1M H<sub>2</sub>SO<sub>4</sub>) as a standard.  $\Phi_f$  of the crystals were determined with a PTI C-701 calibrated integrating sphere system.

The single crystals of compounds HBT-H and HBT-Me were obtained by the slow diffusion of their respective CH<sub>2</sub>Cl<sub>2</sub>/hexane solution for several days at room temperature. The data collection was done at room temperature on a Bruker SMART APEX-II CCD area detector using graphite-monochromated Mo Ka radiation ( $\lambda$ =0.71073 Å). Data reduction and integration were done by the INTEGRATE program of the APEX<sub>2</sub> software. Semi-empirical absorption correction was applied using the SCALE program. The structure was solved by direct method and refined by the full matrix least-squares method on F<sub>2</sub> using SHELX."



Fig. S1 the  $\Phi_{\rm f}$  of HBT-H crystal measured by integrating sphere.



Fig. S2 the  $\Phi_{\rm f}$  of HBT-Me crystal measured by integrating sphere.



Fig. S3 Absorption spectra of HBT-H and HBT-Me in toluene.



Fig. S4 Fluorescence spectra of a) HBT-H and b) HBT-Me in toluene solutions and in the crystalline state. Fluorescence lifetimes ( $\tau$ ) of HBT-H and HBT-Me c) in toluene solutions and d) in the crystalline state. The sample was excited at 360 nm and the emission kinetic data were collected at their respective keto-emission wavelength.



Fig. S5 Changes in fluorescence spectra of a) HBT-H and b) HBT-Me as the amount of water in THF was increased.  $\lambda_{em}$ =360 nm for HBT-H and HBT-Me.

| <br>                              |                                    |
|-----------------------------------|------------------------------------|
| Empirical formula                 | C21 H13 N O S                      |
| Formula weight                    | 327. 38                            |
| Temperature                       | 298(2) K                           |
| Wavelength                        | 0.71073 A                          |
| Crystal system, space group       | Orthorhombic, $P2(1)2(1)2(1)$      |
| Unit cell dimensions              | a = 4.5363(4) A alpha = 90 deg.    |
|                                   | b = 10.1250(8) A beta = 90 deg.    |
|                                   | c = 34.375(3) A gamma = 90 deg.    |
| Volume                            | 1578.8(2) A <sup>3</sup>           |
| Z, Calculated density             | 4, 1.377 Mg/m <sup>3</sup>         |
| Absorption coefficient            | 0.211 mm <sup>-1</sup>             |
| F (000)                           | 680                                |
| Crystal size                      | 0.43 x 0.17 x 0.15 mm              |
| Theta range for data collection   | 2.33 to 25.02 deg.                 |
| Limiting indices                  | -5<=h<=5, -11<=k<=12, -40<=1<=38   |
| Reflections collected / unique    | 8041 / 2782 [R(int) = 0.0448]      |
| Completeness to theta = $25.02$   | 99.3 %                             |
| Absorption correction             | Semi-empirical from equivalents    |
| Max. and min. transmission        | 0.9690 and 0.9147                  |
| Refinement method                 | Full-matrix least-squares on $F^2$ |
| Data / restraints / parameters    | 2782 / 0 / 217                     |
| Goodness-of-fit on F <sup>2</sup> | 1.076                              |
| Final R indices [I>2sigma(I)]     | R1 = 0.0446, wR2 = 0.0649          |
| R indices (all data)              | R1 = 0.0680, wR2 = 0.0684          |
| Absolute structure parameter      | -0. 10 (10)                        |
| Largest diff. peak and hole       | 0.213 and -0.178 e.A^-3            |

Table S1.Crystal data and structure refinement for HBT-H (CCDC number1482414.

Table S2. Crystal data and structure refinement for HBT-Me (CCDC number 1482415).

\_\_\_\_

| Empirical formula           | C22 H15 N O S                           |
|-----------------------------|-----------------------------------------|
| Formula weight              | 341. 41                                 |
| Temperature                 | 298(2) K                                |
| Wavelength                  | 0.71073 A                               |
| Crystal system, space group | Monoclinic, P2(1)/c                     |
| Unit cell dimensions        | a = 8.0270(8) A alpha = 90 deg.         |
|                             | b = 5.9177(5) A beta = 90.1860(10) deg. |
|                             | c = 35.133(3) A gamma = 90 deg.         |
| Volume                      | 1668.8(3) A <sup>3</sup>                |
| Z, Calculated density       | 4, 1.359 Mg/m <sup>3</sup>              |
| Absorption coefficient      | 0.203 mm <sup>-1</sup>                  |
| F (000)                     | 712                                     |

| Crystal size                    | 0.40 x 0.35 x 0.30 mm              |
|---------------------------------|------------------------------------|
| Theta range for data collection | 2.32 to 25.02 deg.                 |
| Limiting indices                | -8<=h<=9, -7<=k<=4, -38<=1<=41     |
| Reflections collected / unique  | 7857 / 2925 [R(int) = 0.0433]      |
| Completeness to theta = $25.02$ | 99.7 %                             |
| Absorption correction           | Semi-empirical from equivalents    |
| Max. and min. transmission      | 0.9416 and 0.9232                  |
| Refinement method               | Full-matrix least-squares on $F^2$ |
| Data / restraints / parameters  | 2925 / 0 / 228                     |
| Goodness-of-fit on $F^2$        | 1.056                              |
| Final R indices [I>2sigma(I)]   | R1 = 0.0570, wR2 = 0.1308          |
| R indices (all data)            | R1 = 0.0799, $wR2 = 0.1411$        |
| Extinction coefficient          | 0. 0122 (14)                       |
| Largest diff. peak and hole     | 0.248 and -0.236 e.A^-3            |